

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 6x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11778gna-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Ordering Information

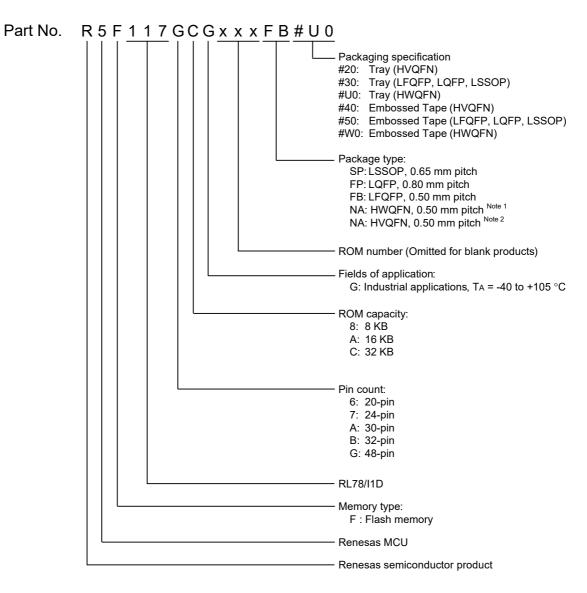


Figure 1 - 1 Part Number, Memory Size, and Package of RL78/I1D

Note 1. 24-pin products

Note 2. 32-pin products

Absolute Maximum Ratings

Absolute Maximum	Ratings				(2/2
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P04, P30 to P33, P40, P50 to P57, P130	-40	mA
		Total of all pins	P00 to P04, P40, P130	-70	mA
		-170 mA	P30 to P33, P50 to P57	-100	mA
	Іон2	Per pin	P10 to P17, P20 to P25	-0.1	mA
		Total of all pins		-1.4	mA
Output current, low	IOL1	Per pin	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130	40	mA
		Total of all pins	P00 to P04, P40, P130	70	mA
		170 mA	P30 to P33, P50 to P57, P60 to P63	100	mA
	IOL2	Per pin	P10 to P17, P20 to P25	0.4	mA
		Total of all pins		5.6	mA
Operating ambient	Та	In normal operat	ion mode	-40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P04, P30 to P33, P40, P50 to P57, P130	TA = -40 to +85°C			20.0 Note 2	mA
			TA = +85 to +105°C			8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40, P130	$2.7~V \leq V \text{DD} \leq 3.6~V$			15.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			4.5	mA
		Total of P30 to P33, P50 to P57, P60 to P63	$2.7~V \leq V\text{DD} \leq 3.6~V$			35.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				50.0	mA
	IOL2	Per pin for P10 to P17, P20 to P25				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			5.6	mA

(Ta = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (Ta = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Con	ditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	H1 P00 to P04, P30 to P33, P40, VI = VDD P50 to P57, P60 to P63, P130, P137					1	μA
	ILIH2	RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P10 to P17, P20 to P25	VI = AVDD				1	μA
Input leakage current, low	ILIL1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	VI = Vss				-1	μA
	ILIL2	RESET	VI = Vss				-1	μA
	Ilil3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μΑ
	ILIL4	P10 to P17, P20 to P25	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P04, P30 to P33, P40, P50 to P57, P130	Vı = Vss, In	input port	10	20	100	kΩ

$(TA = -40 \text{ to } +85^{\circ}C, \ 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \ \text{Vss} = \text{AVss} = 0 \text{ V}) \\ (TA = +85 \text{ to } +105^{\circ}C, \ 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \ \text{Vss} = \text{AVss} = 0 \text{ V}) \\$

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fsx = 32.768 kHz			0.02		μΑ
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsx = 32.768 kHz			0.04		μΑ
8-bit interval timer operating current	ITMT Notes 1, 9	fsx = 32.768 kHz	8-bit counter mode \times 2-channel operation		0.12		μΑ
		fmain stopped (per unit)	16-bit counter mode operation		0.10		μΑ
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μΑ
A/D converter operating current	J _{ADC} Notes 6, 10	During maximum-speed conversion	AV _{DD} = 3.0 V		420	720	μA
Avref(+) current	IAVREF Note 11	AVREFP = 3.0 V, ADREFP1	= 0, ADREFP0 = 1		14.0	25.0	μΑ
Internal reference voltage (1.45 V) current	ADREF Notes 1, 12				85.0		μA
Temperature sensor operating current	ITMPS Note 1				85.0		μA
Comparator operating current	I _{CMP} Notes 8, 10	AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		12.5		μΑ
		= 2.1 V	Comparator low-speed mode Window mode		3.0		
			Comparator high-speed mode Standard mode		6.5		
			Comparator low-speed mode Standard mode		1.7		
		AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		8.0		
		= 1.8 V	Comparator low-speed mode Window mode		2.2		
			Comparator high-speed mode Standard mode		4.0		
			Comparator low-speed mode Standard mode		1.3		
Operational amplifier operating current	IAMP Notes 10, 13	Low-power consumption	One operational amplifier unit operates Note 14		2.5	4.0	μΑ
		mode	Two operational amplifier units operate Note 14		4.5	8.0	
			Three operational amplifier units operate Note 14		6.5	11.0	
			Four operational amplifier units operate Note 14		8.5	14.0	1
		High-speed mode	One operational amplifier unit operates Note 14		140	220	1
			Two operational amplifier units operate Note 14		280	410	1
			Three operational amplifier units operate Note 14		420	600	
			Four operational amplifier units operate Note 14		560	780	1
LVD operating current	ILVD Notes 1, 7				0.10		μA

(Notes and Remarks are listed on the next page.)

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cand	Conditions		main) Mode	Unit
Parameter	Symbol	Cond			MAX.	Unit
SCKp cycle time Note 5	tксү2	$2.7~V \leq V_{\text{DD}} < 3.6~V$	fмск > 16 MHz	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4 \text{ V} \leq \text{V}\text{DD} < 2.7 \text{ V}$		12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		tkcy2/2 - 16		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsik2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		1/fмск + 40		ns
		$2.4~V \leq V_{DD} < 2.7~V$		1/fмск + 60		ns
SIp hold time (from SCKp [↑]) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		2/fмск + 66	ns
			$2.4~V \leq V_{DD} < 2.7~V$		2/fмск + 113	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Parameter Sym bol		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
	DOI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	$\label{eq:kcy1} \begin{array}{l} \mbox{tkcy1} \geq \mbox{fclk/4} & 2.7 \mbox{V} \leq \mbox{Vd} \leq 3.6 \mbox{ V}, \\ & 2.3 \mbox{ V} \leq \mbox{Vb} \leq 2.7 \mbox{ V}, \\ & C_b = 30 \mbox{ pF, } \mbox{Rb} = 2.7 \mbox{ k}\Omega \end{array}$		500		1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150		1150		1150		1150		ns
SCKp high- level width	tĸн1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ C_b = 30 \ pF, \ R_b \end{array}$	3.6 V, 2.3 V ≤ Vb ≤ 2.7 V, = 2.7 kΩ	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3 \\ C_b = 30 \ pF, \ R_b \end{array}$.3 V, 1.6 V \leq Vb \leq 2.0 V $^{Note},$ = 5.5 k Ω	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3$ C _b = 30 pF, R _b	5.3 V, 1.6 V \leq Vb \leq 2.0 V $^{Note},$ = 5.5 k Ω	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(2/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym bol	Conditions		h-speed Mode	· ·	v-speed Mode	· ·	v-power mode	· ·	-voltage Mode	Unit
	501		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsıĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		479		ns
(to SCKp↑) _{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b \mbox{ = } 30 \ \mbox{pF}, \ R_b \mbox{ = } 5.5 \ \mbox{k} \Omega \end{array}$	479		479		479		479		ns
SIp hold time (from SCKp↑)	tksi1	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	19		19		19		19		ns
Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note } 3, \\ C_b = 30 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↓	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k \Omega \end{array}$		195		195		195		195	ns
to SOp output ^{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b \mbox{ = } 30 \ pF, \ R_b \mbox{ = } 5.5 \ k\Omega \end{array}$		483		483		483		483	ns
SIp setup time	tsıĸ1	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 2.7 \ \text{k}\Omega \end{array}$	44		110		110		110		ns
(to SCKp↓) Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		110		ns
SIp hold time (from SCKp↓)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note } 3, \\ C_b = 30 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↑	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 30 \; pF, \; R_{b} = 2.7 \; k \Omega \end{array}$		25		25		25		25	ns
to SOp output ^{Note 2}		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \leq \mbox{ V}_b \leq 2.0 \mbox{ V} \mbox{ Note 3}, \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \mbox{ k}\Omega \end{array}$		25		25		25		25	ns

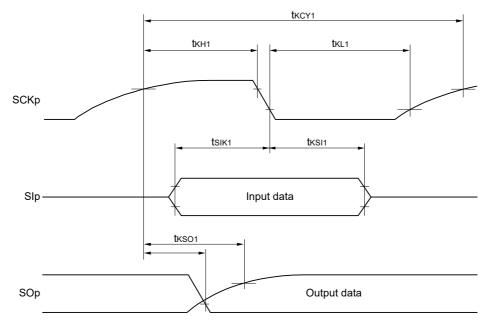
(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

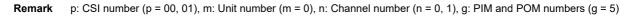
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

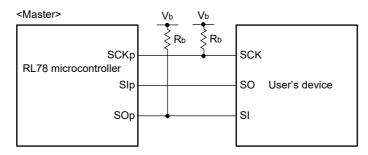

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)




CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Com	ditions	HS (high-spe	ed main) Mode	Unit
Parameter	Symbol	Con	Iditions	MIN.	MAX.	Unit
SCKp cycle time Note 1	tксү2	$2.7~V \leq V_{DD} \leq 3.6~V,$	20 MHz < fmck \leq 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	$16 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V} \text{ Note } 2$	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
			16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tĸн2, tĸL2	$2.7 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}, 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}$		tксү2/2 - 36		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$I \le V_b \le 2.0 \text{ V}$ Note 2	tксү2/2 - 100		ns
SIp setup time (to SCKp↑) Note 3	tsik2	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V$	$l \leq V_b \leq 2.7 V$	1/fмск + 40		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le V_b \le 2.0 \text{ V Note 2}$	1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 5	tĸso2	$\begin{array}{l} 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}\\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega \end{array}$	$l \leq V_b \leq 2.7 V$		2/fмск + 428	ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V_{D} Cb = 30 pF, Rb = $5.5 \text{ k}\Omega$		2/fмск + 1146	ns	

(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	500		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 100 \; pF, R_{b} = 2.7 \; k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 340 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fMCK + 760 Note 3		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1/fMCK + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, R_{b} = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	0	1215	ns

(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV \text{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	8		10 Note 1	
		$1.6 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$		8 Note 2			
Overall error Note 3	AINL	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±8.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±6.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.5	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Analog input voltage	Vain			0		AVDD	V
		Internal reference voltag	$e (1.8 V \le VDD \le 3.6 V)$,	VBGR Note	4	
		Temperature sensor out (1.8 V \leq VDD \leq 3.6 V)	V	TMP25 Note	e 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error ($\pm 1/2$ LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(6) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Full-scale error Note	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(9) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4~V \leq AV \text{DD} \leq 3.6~V$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4~V \leq AV \text{DD} \leq 3.6~V$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	LSB
Analog input voltage	VAIN			0		AVdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V)		١	/BGR Note	2	
		Temperature sensor output voltage (2.4 V \leq VDD \leq 3.6 V)		V	TMP25 Note	2	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.4 Operational amplifier characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	

•							
Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Common mode input range	Vicm1	Low-power consumption mod	le	0.2		AVDD - 0.5	V
	Vicm2	High-speed mode		0.3		AVDD - 0.6	V
Output voltage range	Vo1	Low-power consumption mode		0.1		AVDD - 0.1	V
	Vo2	High-speed mode		0.1		AVDD - 0.1	V
Input offset voltage	Vioff			-10		10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mod	le		0.04		MHz
	GBW2	High-speed mode			1.7		MHz
Phase margin	PM	CL = 20 pF		50			deg
Gain margin	GM	CL = 20 pF		10			dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power		230		nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode		200		nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode		90		nV/√Hz
	Vnoise4	f = 2 kHz			70		nV/√Hz
Power supply reduction ratio	PSRR		1		90		dB
Common mode signal	CMRR				90		dB
reduction ratio							
Operation stabilization wait	Tstd1	CL = 20 pF	Low-power	650			μs
time		Only operational amplifier is activated ^{Note}	consumption mode				
	Tstd2		High-speed mode	13			μs
	Tstd3	CL = 20 pF	Low-power	650			μs
	T 1 1 4	Operational amplifier and reference current circuit are	consumption mode	10			
	Tstd4	activated simultaneously	High-speed mode	13			μs
Settling time	Tset1	CL = 20 pF	Low-power			750	μs
			consumption mode				
	Tset2		High-speed mode			13	μs
Slew rate	Tslew1	CL = 20 pF	Low-power		0.02		V/µs
			consumption mode				
	Tslew2		High-speed mode		1.1		V/µs
Load current	lload1	Low-power consumption mod	le	-100		100	μA
	lload2	High-speed mode		-100		100	μA
Load capacitance	CL					20	pF

Note

When the operational amplifier reference current circuit is activated in advance.

2.6.6 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Parameter		Symbol	Conditions	MIN.	. TYP. MAX.			
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V	
			Power supply fall time	3.00	3.06	3.12	V	
		VLVD3	Power supply rise time	2.96	3.02	3.08	V	
			Power supply fall time	2.90	2.96	3.02	V	
		VLVD4	Power supply rise time	2.86	2.92	2.97	V	
			Power supply fall time	2.80	2.86	2.91	V	
		VLVD5	Power supply rise time	2.76	2.81	2.87	V	
			Power supply fall time	2.70	2.75	2.81	V	
		VLVD6	Power supply rise time	2.66	2.71	2.76	V	
			Power supply fall time	2.60	2.65	2.70	V	
		VLVD7	Power supply rise time	2.56	2.61	2.66	V	
			Power supply fall time	2.50	2.55	2.60	V	
		VLVD8	Power supply rise time	2.45	2.50	2.55	V	
			Power supply fall time	2.40	2.45	2.50	V	
		VLVD9	Power supply rise time	2.05	2.09	2.13	V	
			Power supply fall time	2.00	2.04	2.08	V	
		VLVD10	Power supply rise time	1.94	1.98	2.02	V	
			Power supply fall time	1.90	1.94	1.98	V	
		VLVD11	Power supply rise time	1.84	1.88	1.91	V	
			Power supply fall time	1.80	1.84	1.87	V	
		VLVD12	Power supply rise time	1.74	1.77	1.81	V	
			Power supply fall time	1.70	1.73	1.77	V	
		VLVD13	Power supply rise time	1.64	1.67	1.70	V	
			Power supply fall time	1.60	1.63	1.66	V	
Minimum pulse width		tLW		300			μs	
Detection delay time	9					300	μs	

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

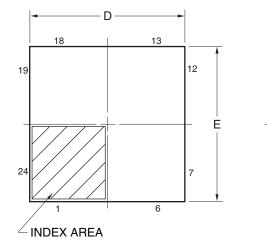
(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Р	arameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	າ	tLw		300			μs
Detection delay time	i					300	μs

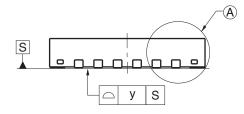
3.2 24-pin products

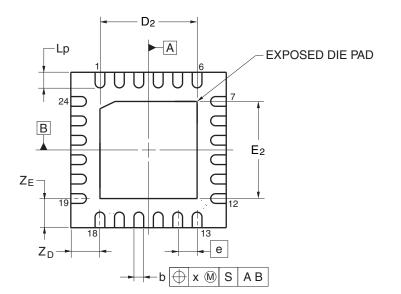
R5F1177AGNA, R5F11778GNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-3	0.04


0

C


C


C

O

DETAIL OF A PART

Referance	Dimens	sion in Mil	limeters
Symbol	Min	Nom	Max
D	3.95	4.00	4.05
E	3.95	4.00	4.05
А			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	—
Lp	0.30	0.40	0.50
х			0.05
у			0.05
ZD		0.75	
Z _E		0.75	
C2	0.15	0.20	0.25
D ₂		2.50	
E ₂		2.50	

©2013 Renesas Electronics Corporation. All rights reserved.

REVISION HISTORY	RL78/I1D Datasheet
-------------------------	--------------------

Rev.	Date		Description
Rev.	Date	Page	Summary
1.00	Aug 29, 2014	_	First Edition issued
2.00	Jan 16, 2015	24, 25, 27	Addition of note 7 in 2.3.2 Supply current characteristics
		24, 26	Addition of description in 2.3.2 Supply current characteristics
		26, 28	Modification of description in 2.3.2 Supply current characteristics
		28	Correction of error in 2.3.2 Supply current characteristics
		95	Modification of package drawing in 3.2 24-pin products
2.20	Feb 20, 2017	ALL	The function name changed from real-time clock to real-time clock 2
		5	Addition of product name in 1.3.1 20-pin products
		6	Addition of product name in 1.3.2 24-pin products
		7	Addition of product name in 1.3.3 30-pin products
		8	Addition of product name in 1.3.4 32-pin products
		9	Change of description and addition of product name in 1.3.4 32-pin products
		10	Addition of product name in 1.3.5 48-pin products
		13, 14	Change of description in 1.6 Outline of Functions
		16	Change of 2.1 Absolute Maximum Ratings
		22	Change of 2.3.1 Pin characteristics
		24	Change of conditions in 2.3.2 Supply current characteristics
		25, 27, 28	Change of note 1 in 2.3.2 Supply current characteristics
		26	Change of conditions and unit in 2.3.2 Supply current characteristics
		30	Change of note 3 in 2.3.2 Supply current characteristics
		31	Addition of note 5 in 2.3.2 Supply current characteristics
		92	Change of table in 2.8 Flash Memory Programming Characteristics
		92	Addition of note 4 in 2.8 Flash Memory Programming Characteristics
		99	Change of package drawing in 3.5 48-pin products

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.