

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XF

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 6x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11778gna-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 24-pin products

<R>

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. It is recommended to connect an exposed die pad to Vss.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

1.3.5 48-pin products

<R>

• 48-pin plastic LFQFP (7×7 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AV $\ensuremath{\mathsf{DD}}$ pin the same potential as $\ensuremath{\mathsf{VDD}}$ pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

Pin Identification 1.4

ANI0 to ANI13,	: Analog input	PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer
ANI16 to ANI18			output
AVDD	: Analog power supply	REGC	: Regulator capacitance
AVREFM	: A/D converter reference	RESET	: Reset
	potential (- side) input	RTC1HZ	: Real-time clock correction clock (1 Hz)
AVREFP	: A/D converter reference		output
	potential (+ side) input	RxD0	: Receive data
AVss	: Analog ground	SCK00, SCK01	: Serial clock input/output
EXCLK	: External clock input	SCL00, SCL01	: Serial clock input/output
	(main system clock)	SDA00, SDA01	: Serial data input/output
EXCLKS	: External clock input	SI00, SI01	: Serial data input
	(subsystem clock)	SO00, SO01	: Serial data output
INTP0 to INTP6	: External interrupt input	SS100	: Serial interface chip select input
IVCMP0, IVCMP1	: Comparator input	TI00 to TI03	: Timer input
IVREF0, IVREF1	: Comparator reference input	TO00 to TO03	: Timer output
KR0 to KR3	: Key return	TOOL0	: Data input/output for tool
P00 to P04	: Port 0	TOOLRXD, TOOLTXD	: Data input/output for external device
P10 to P17	: Port 1	TxD0	: Transmit data
P20 to P25	: Port 2	VCOUT0, VCOUT1	: Comparator output
P30 to P33	: Port 3	AMP0+, AMP1+,	: Operational amplifier (+side) input
P40	: Port 4	AMP2+, AMP3+	
P50 to P57	: Port 5	AMP0-, AMP1-,	: Operational amplifier (-side) input
P60 to P63	: Port 6	AMP2-, AMP3-	
P121 to P124	: Port 12	AMP0O, AMP1O,	: Operational amplifier output
P130, P137	: Port 13	AMP2O, AMP3O	
		Vdd	: Power supply
		Vss	: Ground
		X1, X2	: Crystal oscillator (main system clock)
		XT1, XT2	: Crystal oscillator (subsystem clock)

: Crystal oscillator (subsystem clock)

R01DS0244EJ0220 Rev. 2.20 Feb 20, 2017

1.6 Outline of Functions

Remark This outline describes the functions at the time when Peripheral I/O redirection register 0 (PIOR0) are set to 00H.

						(1/2)			
		20-pin	24-pin	30-pin	32-pin	48-pin			
	Item	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)			
Code flash me	emory (KB)	8 to 16 KB	8 to 16 KB	8 to 32 KB	16 to 32 KB	16 to 32 KB			
Data flash mer	mory (KB)	2 KB	2 KB	2 KB	2 KB	2 KB			
RAM		0.7 to 2.0 KB	0.7 to 2.0 KB	0.7 to 3.0 KB Note	2.0 to 3.0 KB Note	2.0 to 3.0 KB Note			
Address space)	1 MB							
Main system clock	High-speed system clock (fмx)	X1 (crystal/ceramic HS (High-speed ma HS (High-speed ma LS (Low-speed mai LV (Low-voltage ma LP (Low-power mai	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode:1 to 20 MHz (VDD = 2.7 to 3.6 V), HS (High-speed main) mode:1 to 16 MHz (VDD = 2.4 to 3.6 V), LS (Low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (Low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 3.6 V), LP (Low-power main) mode:1 MHz (VDD = 1.8 to 3.6 V)						
	High-speed on-chip oscillator clock (fiн) Max: 24 MHz	HS (High-speed ma HS (High-speed ma	nin) mode: 1 to 24 M nin) mode: 1 to 16 M	IHz (Vdd = 2.7 to 3.6 IHz (Vdd = 2.4 to 3.6	V), V),				
	Middle-speed on-chip oscillator clock (fim) Max: 4 MHz	LS (Low-speed mai LV (Low-voltage ma LP (Low-power mai	n) mode: 1 to 8 MH ain) mode: 1 to 4 MH n) mode: 1 MHz (V	Hz (VDD = 1.8 to 3.6 \ Hz (VDD = 1.6 to 3.6 \ YDD = 1.8 to 3.6 V)	/), /),				
Subsystem clock	Subsystem clock oscillator (fsx, fsxr)	-	_	XT1 (crystal) oscilla 32.768 kHz (TYP.):	tion Vdd = 1.6 to 3.6 V				
	Low-speed on-chip oscillator clock (fiL)	15 kHz (TYP.): V _{DD} = 1.6 to 3.6 V							
General-purpose register		8 bits \times 32 registers	$(8 \text{ bits} \times 8 \text{ registers})$	imes4 banks)					
Minimum instr	Minimum instruction execution time		peed on-chip oscillat	tor clock: fiн = 24 MH	z operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)							
		— 30.5 μs (Subsystem clock oscillator clock: fsx = 32.768 kHz operation)							
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	14	18	24	26	42			
	CMOS I/O	11	15	19	21	33			
	CMOS input	3	3	5	5	5			
	N-ch open-drain I/O (6 V tolerance)	_	_	_		4			
Timer	16-bit timer	4 channels							
	Watchdog timer	1 channel							
	Real-time clock	1 channel							
	12-bit interval timer	1 channel							
	8/16-bit interval timer	4 channels (8 bit) /	2 channels (16 bit)						
	Timer output	2	4	3	4	4			
	RTC output	-	_	1 channel • 1 Hz (subsystem clock fsx = 32.768 kHz)	generator and RTC/	other clock:			

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Items	Symbol	Cond	itions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilih1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	VI = VDD				1	μA
	Ilih2	RESET	VI = VDD				1	μA
	Ilih3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P10 to P17, P20 to P25	VI = AVDD				1	μA
Input leakage current, low	ILIL1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	VI = Vss				-1	μA
	ILIL2	RESET	VI = Vss				-1	μΑ
	Ilil3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
	ILIL4	P10 to P17, P20 to P25	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P04, P30 to P33, P40, P50 to P57, P130	VI = Vss, In	input port	10	20	100	kΩ

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

RL	78/I	1D
----	------	----

<r></r>	Note 1.	Total cu	urrent flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or								
<r>< Note Note Note Note Note Note Note Rema Rema Rema Rema Rema Rema Rema Rem</r>		vss. The MAX values include the peripheral operating current. However, these values do not include the current flow									
		into the	A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors,								
		and the	e current flowing during data flash rewrite.								
	Note 2.	When t	e HALT instruction is executed in the flash memory.								
	Note 3.	When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip os and sub clock are stopped.									
	Note 4.	When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.									
	Note 5.	When t speed (AMPH	the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and high- l on-chip oscillator clock are stopped. When RTCLPC = 1 and ultra-low-power consumption oscillation is set HS1, AMPHS0) = (1, 0). The values include the current flowing into the real-time clock. However, the values do not e the current flowing into the 12-bit interval timer and watchdog timer.								
	Noto 6	M/bon f									
	Note 6.	clock a	ck are stopped. hen the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock stopped.								
	Note 7.	When t are sto									
	Remark 1.	fмх:	High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)								
	Remark 2.	fiн:	High-speed on-chip oscillator clock frequency (24 MHz max.)								
	Remark 3.	fıм:	Middle-speed on-chip oscillator clock frequency (4 MHz max.)								
	Remark 4.	fı∟:	Low-speed on-chip oscillator clock frequency								
	Remark 5.	fsx:	Sub clock frequency (XT1 clock oscillation frequency)								
	Remark 6.	6. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)									
	Remark 7.	Except	subsystem clock operation, temperature condition of the TYP. value is TA = 25°C								

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +10	5°C, 2.4	$V \leq AVDD = VDD$	\leq 3.6 V, Vss = AVss = 0 V)				(4/4)
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current	Idd3	STOP mode	TA = -40°C		0.16	0.51	μA
Supply current IDD3 STOP mode TA = -40°C 0.16 Note 1 Note 2 Note 3 TA = -40°C 0.22 TA = +25°C 0.22 TA = +50°C 0.27 TA = +70°C 0.37 TA = +70°C 0.37 TA = +85°C 0.26 0.46 0.46	0.22	0.51					
			TA = +50°C		0.27	1.10	-
			TA = +70°C		0.37	1.90	
			TA = +85°C		0.60	3.30	
			TA = +105°C		1.50	17.00	

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.

Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

AC Timing Test Points

External System Clock Timing

TI/TO Timing

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- Remark 2. r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym	1 Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
	DOI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/4	$\label{eq:2.7V} \begin{split} & 2.7V \leq V_{DD} \leq 3.6 \text{ V}, \\ & 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}, \\ & C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega \end{split}$	500		1150		1150		1150		ns
			$\begin{split} & 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150		1150		1150		1150		ns
SCKp high- level width	tкн1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$ C _b = 30 pF, R _b =	8.6 V, 2.3 V ≤ Vb ≤ 2.7 V, = 2.7 kΩ	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$1.8 V \le V_{DD} < 3$ C _b = 30 pF, R _b =	.3 V, 1.6 V \leq Vb \leq 2.0 V $^{Note},$ = 5.5 k Ω	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ C_b = 30 \ pF, \ R_b \end{array}$	$0.6 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ = 2.7 kΩ	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 V \le V_{DD} < 3$ C _b = 30 pF, R _b =	.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note} , = 5.5 k Ω	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

1	$T_{A} = +85 \text{ to } 105^{\circ}\text{C}$		V = 22V = 22V
	IA - 103 10 103 0	, Z.4 V > AVDD - VDD > 3.0 V	, voo - Avoo - U vj

(1/2)

Deremeter	Symbol		Conditions		HS (high-speed main) Mode		
Farameter	Symbol	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline \mbox{tkcy1} \geq \mbox{fclk/4} & 2.7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	MIN.	MAX.	Unit		
SCKp cycle time	t КСҮ1	tксү1 ≥ fc∟к/4	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	1000		ns	
	$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2. \\ \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	2300		ns	
SCKp high-level width	tкнı	$2.7 \text{ V} \leq \text{V}_{DD} \leq$ Cb = 30 pF, Rb	.7 V \leq VDD \leq 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ			ns	
		2.4 V \leq Vdd $<$ 3.3 V, 1.6 V \leq Vb \leq 2.0 V, Cb = 30 pF, Rb = 5.5 k\Omega		tксү1/2 - 916		ns	
SCKp low-level width	tĸ∟1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$ Cb = 30 pF, Rb	7 V ≤ V _{DD} ≤ 3.6 V, 2.3 V ≤ V _b ≤ 2.7 V, _b = 30 pF, R _b = 2.7 kΩ			ns	
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ R_b \end{array}$	3.3 V, 1.6 V \leq Vb \leq 2.0 V, = 5.5 k\Omega	tkcy1/2 - 100		ns	

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \le AV_{DD} \le 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±8.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.5	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4~V \le AV_{DD} \le 3.6~V$	3.3125			
		8-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±8.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0	
Integral linearity error	ILE	12-bit resolution	$2.4~V \le AV_{DD} \le 3.6~V$			±3.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4~V \le AV_{DD} \le 3.6~V$			±2.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$			±2.5	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	
Analog input voltage	Vain			0		AVDD	V
		Internal reference voltage (1.8 V \leq VDD \leq 3.6 V)		VBGR Note 4			
		Temperature sensor outp $(1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V})$	VTMP25 Note 4				

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error ($\pm 1/2$ LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(8) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±7.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±5.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±5.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±3.0	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0	LSB
Analog input voltage	Vain			0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V)		V	BGR Note	2	
		Temperature sense $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}_{\text{DD}} = 3.6 \text{ V}_{\text{DD}} $	or output voltage V)	V	TMP25 Note	e 2	

Note 1. Excludes quantization error ($\pm 1/2$ LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.3 Comparator

 $(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V) \\ (TA = +85 \ to \ +105^{\circ}C, \ 2.4 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	lvref0	IVREF0 pin IVREF1 pin IVCMP0, IVCMP1 pins		0		VDD - 1.4 Note	V
	lvref1			1.4 Note		Vdd	V
	lvcmp			-0.3		VDD + 0.3	V
Output delay	td	AV _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0		μs
			Comparator low-speed mode, window mode		4		μs
Operation stabilization wait time	tсмр			100			μs

Note In window mode, make sure that Vref1 - Vref0 \ge 0.2 V.

2.6.6 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V	
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse width		tlw		300			μs
Detection delay time						300	μs

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		tlw		300			μs
Detection delay time						300	μs

3.3 30-pin products

R5F117ACGSP, R5F117AAGSP, R5F117A8GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18	

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

K

ITEM	MILLIMETERS
A	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} 3°
Т	0.25
U	0.6±0.15

R5F117BAGFP, R5F117BCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2	

NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

0.80

0.20

0.10

е

х

у

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.