

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 6x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1177agna-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

○ ROM, RAM capacities

Flash	Data flash	RAM		RL78/I1D						
ROM	Data nash		20 pins	24 pins	30 pins	32 pins	48 pins			
32 KB	2 KB	3 KB Note	_	_	R5F117AC	R5F117BC	R5F117GC			
16 KB	2 KB	2 KB	R5F1176A	R5F1177A	R5F117AA	R5F117BA	R5F117GA			
8 KB	2 KB	0.7 KB	R5F11768	R5F11778	R5F117A8	_	—			

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Pin count	Package	Ordering Part Number
20 pins	20-pin plastic LSSOP	R5F11768GSP#30, R5F1176AGSP#30,
	$(4.4 \times 6.5 \text{ mm}, 0.65 \text{ mm pitch})$	R5F11768GSP#50, R5F1176AGSP#50
24 pins	24-pin plastic HWQFN	R5F11778GNA#U0, R5F1177AGNA#U0,
	$(4 \times 4 \text{ mm}, 0.5 \text{ mm pitch})$	R5F11778GNA#W0, R5F1177AGNA#W0
30 pins	30-pin plastic LSSOP	R5F117A8GSP#30, R5F117AAGSP#30, R5F117ACGSP#30,
	(7.62 mm (300), 0.65 mm pitch)	R5F117A8GSP#50, R5F117AAGSP#50, R5F117ACGSP#50
32 pins	32-pin plastic HVQFN	R5F117BAGNA#20, R5F117BCGNA#20,
	$(5 \times 5 \text{ mm}, 0.5 \text{ mm pitch})$	R5F117BAGNA#40, R5F117BCGNA#40
	32-pin plastic LQFP	R5F117BAGFP#30, R5F117BCGFP#30,
	$(7 \times 7 \text{ mm}, 0.8 \text{ mm pitch})$	R5F117BAGFP#50, R5F117BCGFP#50
48 pins	48-pin plastic LFQFP	R5F117GAGFB#30, R5F117GCGFB#30,
	$(7 \times 7 \text{ mm}, 0.5 \text{ mm pitch})$	R5F117GAGFB#50, R5F117GCGFB#50

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

<R>

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark For pin identification, see 1.4 Pin Identification.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

Pin Identification 1.4

ANI0 to ANI13,	: Analog input	PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer
ANI16 to ANI18			output
AVDD	: Analog power supply	REGC	: Regulator capacitance
AVREFM	: A/D converter reference	RESET	: Reset
	potential (- side) input	RTC1HZ	: Real-time clock correction clock (1 Hz)
AVREFP	: A/D converter reference		output
	potential (+ side) input	RxD0	: Receive data
AVss	: Analog ground	SCK00, SCK01	: Serial clock input/output
EXCLK	: External clock input	SCL00, SCL01	: Serial clock input/output
	(main system clock)	SDA00, SDA01	: Serial data input/output
EXCLKS	: External clock input	SI00, SI01	: Serial data input
	(subsystem clock)	SO00, SO01	: Serial data output
INTP0 to INTP6	: External interrupt input	SS100	: Serial interface chip select input
IVCMP0, IVCMP1	: Comparator input	TI00 to TI03	: Timer input
IVREF0, IVREF1	: Comparator reference input	TO00 to TO03	: Timer output
KR0 to KR3	: Key return	TOOL0	: Data input/output for tool
P00 to P04	: Port 0	TOOLRXD, TOOLTXD	: Data input/output for external device
P10 to P17	: Port 1	TxD0	: Transmit data
P20 to P25	: Port 2	VCOUT0, VCOUT1	: Comparator output
P30 to P33	: Port 3	AMP0+, AMP1+,	: Operational amplifier (+side) input
P40	: Port 4	AMP2+, AMP3+	
P50 to P57	: Port 5	AMP0-, AMP1-,	: Operational amplifier (-side) input
P60 to P63	: Port 6	AMP2-, AMP3-	
P121 to P124	: Port 12	AMP0O, AMP1O,	: Operational amplifier output
P130, P137	: Port 13	AMP2O, AMP3O	
		Vdd	: Power supply
		Vss	: Ground
		X1, X2	: Crystal oscillator (main system clock)
		XT1, XT2	: Crystal oscillator (subsystem clock)

: Crystal oscillator (subsystem clock)

R01DS0244EJ0220 Rev. 2.20 Feb 20, 2017

(2/2)

		20-nin	24-nin	30-nin	32-nin	48-nin					
ltom		20-pill	24-pin		52-pin	40-pill					
lien		R5F1176x	R5F1177x	R5F117Ax	R5F117Bx	R5F117Gx					
		(X = 8, A)	(X = 8, A)	(X = 8, A, C)	(x = A, C)	(x = A, C)					
Clock output/buzzer o	output	1	1	1	1	2					
		[20-pin, 24-pin produ	icts]								
		• 2.44 kHz, 4.88 kHz	z, 9.76 kHz, 1.25 MHz,	2.5 MHz, 5 MHz, 10	MHz						
		(Main system clock	: fmain = 20 MHz operation	ation)							
		[30-pin, 32-pin, 48-pi	30-pin, 32-pin, 48-pin products]								
		• 2.44 kHz, 4.88 kHz	• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz								
		(Main system clock: than = 20 MHz operation)									
		 200 HZ, 012 HZ, 1.024 KHZ, 2.048 KHZ, 4.096 KHZ, 8.192 KHZ, 16.384 KHZ, 32.768 KHZ (subsystem clock generator and RTC/other clock: fsys = 32.768 kHz operation) 									
		(Subsystem Clock g		IEI CIUCK. ISAR - 32.70		T					
12-bit resolution A/D of	converter	6 channels	6 channels	12 channels	12 channels	17 channels					
Comparator (Window	Comparator)	2 channels	2 channels								
Operational amplifier		2 channels		4 channels							
Data Operation Circui	t (DOC)	Comparison, addition	n, and subtraction of 1	6-bit data							
Serial interface		[20-pin, 30-pin products]									
		CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel									
		[24-pin, 32-pin, 48-pi	[24-pin, 32-pin, 48-pin products]								
		CSI: 2 channels/U/	ART: 1 channel/simplifi	ied I ² C: 2 channels							
Data transfer controller (DTC)		16 sources	20 sources	19 sources	20 sources	22 sources					
Event link controller (ELC)	Event input: 15	Event input: 17	Event input: 17	Event input: 17	Event input: 20					
		Event trigger	Event trigger	Event trigger	Event trigger	Event trigger					
		output: 5	output: 5	output: 7	output: 7	output: 7					
Vectored interrupt	Internal	22	22	24	24	24					
sources	External	3	5	5	5	8					
Key interrupt		—	3	—	3	4					
Reset		Reset by RESET p	in								
		 Internal reset by water 	atchdog timer								
		 Internal reset by po 	ower-on-reset								
		 Internal reset by vol 	oltage detector								
		 Internal reset by ille 	egal instruction execut	ion ^{Note}							
		Internal reset by R	AM parity error								
		 Internal reset by Internal 	egal-memory access								
Power-on-reset circuit	t	Power-on-reset: 1.	$51 \pm 0.04 \text{V}$ (T _A = -40 to	o +85°C)							
		Power-down-reset:	$1.50 \pm 0.04 \text{ V}$ (1A = -4	10 to +85°C)							
voltage detector	Power on	1.67 V to 3.13 V (12	stages)								
On abin dabua fur -4	Power down	1.03 V to 3.06 V (12	stages)								
)(I	Provided (Enable to	uacing)								
Power supply voltage		$v_{DD} = 1.6 \text{ to } 3.6 \text{ V}$									
Operating ambient temperature		$IA = -40$ to $+105^{\circ}C$									

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Г

<R>

Items	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1	P00 to P04, P30 to P33, P40, P50 to P57, P130	2.7 V ≤ VDD ≤ 3.6 V, Іон = -2.0 mA	Vdd - 0.6			V
			1.8 V \leq V _{DD} \leq 3.6 V ^{Note 3} , IOH = -1.5 mA	Vdd - 0.5			V
			$\begin{array}{l} 1.6 \ V \leq V_{DD} \leq 3.6 \ V \ ^{Note \ 1}, \\ \\ I_{OH} = -1.0 \ mA \end{array}$	Vdd - 0.5			V
	Voh2	P10 to P17, P20 to P25	1.6 V \leq AV _{DD} \leq 3.6 V ^{Note 2} , IOH = -100 μ A	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P04, P30 to P33, P40, P50 to P57, P130	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V},$ lol = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}^{\text{Note 3}},$ IOL = 0.6 mA			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 0.3 \text{ mA}$			0.4	V
	Vol2	P10 to P17, P20 to P25	$\begin{array}{l} 1.6 \ V \leq AV_{DD} \leq 3.6 \ V \ ^{Note \ 2}, \\ I_{OL} = 400 \ \mu A \end{array}$			0.4	V
	Vol3	P60 to P63	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $\text{IOL} = 3.0 \text{ mA}$			0.4	V
			$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}^{\text{Note 3}}, \\ \text{IoL} = 2.0 \ \text{mA} \end{array}$			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 1.0 \text{ mA}$			0.4	V

$(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V) \\ (TA = +85 \ to \ +105^{\circ}C, \ 2.4 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V)$

(4/5)

Note 1. Only $T_A = -40$ to $+85^{\circ}C$ is guaranteed.

 $\label{eq:Note 2.} \mbox{Note 2.} \mbox{The condition that } 2.4 \mbox{ V} \leq A \mbox{V} \mbox{DD} \leq 3.6 \mbox{ V} \mbox{ is guaranteed when } +85^{\circ}\mbox{C} < T_A \leq +105^{\circ}\mbox{C}.$

Note 3. The condition that 2.4 V \leq VDD \leq 3.6 V is guaranteed when +85°C < TA \leq +105°C.

Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = +85 t	o +105	°C, 2.4 V	$V \leq AVDD = V$							
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD1	Operating	Subsystem clock	fsx = 32.768 kHz,	Normal operation	Square wave input		3.2	6.1	μΑ
Note 1		mode	operation	$T_A = -40^{\circ}C$ Note 4		Resonator connection		3.3	6.1	
			fsx = 32.768 kHz,	Normal operation	Square wave input		3.4	6.1		
				$T_A = +25^{\circ}C$ Note 4		Resonator connection		3.6	6.1	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.5	6.7	-
				$T_A = +50^{\circ}C$ Note 4		Resonator connection		3.7	6.7	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.7	7.5	
				$T_A = +70^{\circ}C$ Note 4		Resonator connection		3.9	7.5	
				fsx = 32.768 kHz,	Normal operation	Square wave input		4.0	8.9	
				$T_A = +85^{\circ}C$ Note 4		Resonator connection		4.2	8.9	
				fsx = 32.768 kHz,	Normal operation	Square wave input		4.5	21.0	
				$T_A = +105^{\circ}C$ Note 4		Resonator connection		4.7	21.1	
				fı∟ = 15 kHz, T _A = -40°C ^{Note 6}	Normal operation			1.8	5.9	
				fiL = 15 kHz, TA = +25°C Note 6	Normal operation			1.9	5.9	
				fiL = 15 kHz, TA = +85°C Note 6	Normal operation			2.3	8.7	
				fiL = 15 kHz, T _A = +105°C Note 6	Normal operation			3.0	20.9	

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$ $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.

- Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 4. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped. When ultra-low-power consumption oscillation is set (AMPHS1, AMPHS0) = (1, 0). The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.
- **Note 5.** When the high-speed system clock, high-speed on-chip oscillator clock, sub clock, and low-speed on-chip oscillator clock are stopped. The MAX values include the current of peripheral operation except BGO operation, and the STOP leakage current. However, the real time clock, watchdog timer, LVD circuit, and A/D converter are stopped.
- Note 6. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and sub clock are stopped.
- Note 7. When the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
- Remark 4. fil: Low-speed on-chip oscillator clock frequency
- Remark 5. fsx: Sub clock frequency (XT1 clock oscillation frequency)
- Remark 6. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)
- Remark 7. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1			0.20		μA	
RTC operating current	IRTC Notes 1, 2, 3	fsx = 32.768 kHz		0.02		μA	
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsx = 32.768 kHz		0.04		μA	
8-bit interval timer operating current	ITMT Notes 1, 9	fsx = 32.768 kHz	8-bit counter mode \times 2-channel operation		0.12		μA
		fmain stopped (per unit)	16-bit counter mode operation		0.10		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating current	I _{ADC} Notes 6, 10	During maximum-speed conversion	AV _{DD} = 3.0 V		420	720	μA
Avref(+) current	IAVREF Note 11	AVREFP = 3.0 V, ADREFP1	= 0, ADREFP0 = 1		14.0	25.0	μA
Internal reference voltage (1.45 V) current	J _{ADREF} Notes 1, 12				85.0		μA
Temperature sensor operating current	ITMPS Note 1				85.0		μA
Comparator operating current	ICMP Notes 8, 10	AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		12.5		μA
		= 2.1 V	Comparator low-speed mode Window mode		3.0		
			Comparator high-speed mode Standard mode		6.5		
			Comparator low-speed mode Standard mode		1.7		
		AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		8.0		
		= 1.8 V	Comparator low-speed mode Window mode		2.2		
			Comparator high-speed mode Standard mode		4.0		
			Comparator low-speed mode Standard mode		1.3		
Operational amplifier operating current	IAMP Notes 10, 13	Low-power consumption	One operational amplifier unit operates Note 14		2.5	4.0	μA
		mode	Two operational amplifier units operate Note 14		4.5	8.0	
			Three operational amplifier units operate Note 14		6.5	11.0	
			Four operational amplifier units operate Note 14		8.5	14.0	
		High-speed mode	One operational amplifier unit operates Note 14		140	220	
			Two operational amplifier units operate Note 14		280	410	1
			Three operational amplifier units operate Note 14		420	600	
			Four operational amplifier units operate Note 14		560	780	
LVD operating current	ILVD Notes 1, 7				0.10		μA

(Notes and Remarks are listed on the next page.)

Note 1.

Current flowing to VDD.

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and high-speed system clock are stopped.

- <R> Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
 - **Note 8.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
 - Note 9. Current flowing only to the 8-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 8-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - Note 10. Current flowing to AVDD.
 - Note 11. Current flowing into AVREFP.
 - **Note 12.** Current consumed by generating the internal reference voltage (1.45 V).
 - **Note 13.** Current flowing only to the operational amplifier. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and IAMP when the operational amplifier is operating in operating mode, HALT mode, or STOP mode.
 - Note 14. The values include the operating current of the operational amplifier reference current circuit.
 - Remark 1. fiL: Low-speed on-chip oscillator clock frequency
 - Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - Remark 3. fcLK: CPU/peripheral hardware clock frequency
 - **Remark 4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	hditions HS (high-speed main) LS (low-speed main) Mode Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1≥fc∟к/2	83.3		250		2000		500		ns
SCKp high-/low-level width	tĸ∟1		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı		33		110		110		110		ns
SIp hold time (from SCKp↑) Note 2	tĸsı1		10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note 4		10		20		20		20	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
	501			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	$\label{eq:kcy1} \begin{array}{l} \mbox{tkcy1} \geq \mbox{fclk/4} & 2.7 V \leq \mbox{Vd} \leq 3.6 \ \mbox{V}, \\ & 2.3 \ \mbox{V} \leq \mbox{Vb} \leq 2.7 \ \mbox{V}, \\ & C_b = 30 \ \mbox{pF}, \ \mbox{Rb} = 2.7 \ \mbox{k}\Omega \end{array}$		500		1150		1150		1150		ns
			$\begin{split} 1.8 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150		1150		1150		1150		ns
SCKp high- level width	tкн1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$ C _b = 30 pF, R _b =	8.6 V, 2.3 V ≤ Vb ≤ 2.7 V, = 2.7 kΩ	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note}, \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \mbox{ k}\Omega \end{array}$		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 V \le V_{DD} < 3$ C _b = 30 pF, R _b =	0.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note} , = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4~V \leq AV \text{DD} \leq 3.6~V$	8		12	bit	
			$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	8		10 Note 1		
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$		8 Note 2			
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq AV \text{DD} \leq 3.6 \text{ V}$			±7.5	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±5.5		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±3.0		
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	3.375			μs	
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq AV \text{DD} \leq 3.6 \text{ V}$	6.75				
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	13.5				
		ADTYP = 1,	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$	2.5625				
		8-bit resolution	$1.8 \text{ V} \leq AV\text{DD} \leq 3.6 \text{ V}$	5.125				
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	10.25				
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±6.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5		
Full-scale error Note 3	Efs	12-bit resolution	$2.4~V \leq AV \text{DD} \leq 3.6~V$			±6.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5		
Integral linearity error	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±3.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±1.5		
Differential linearity error	DLE	12-bit resolution	$2.4~V \leq AV_{DD} \leq 3.6~V$			±2.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±1.5		
Analog input voltage	Vain	ANI0 to ANI6		0		AVdd	V	

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

Caution Always use AVDD pin with the same potential as the VDD pin.

(3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$		8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±7.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6~\text{V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4~\text{V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6~\text{V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference volta	age (1.8 $V \leq V$ DD $\leq 3.6 V$)	VBGR Note 4			
		Temperature sensor ou	utput voltage (1.8 V \leq VDD \leq 3.6 V)	V	/TMP25 No	ite 4	

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(7) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±7.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±6.0	LSB
Full-scale error Note	Efs	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±2.0	LSB
Analog input voltage	Vain			0		AVdd	V

Note Excludes quantization error ($\pm 1/2$ LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(10) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = +85 to +105°C, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$	5			μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$	10			

2.6.4 Operational amplifier characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	
(Ta = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Common mode input range	Vicm1	Low-power consumption mode		0.2		AVDD - 0.5	V
	Vicm2	High-speed mode		0.3		AVDD - 0.6	V
Output voltage range	Vo1	Low-power consumption mod	le	0.1		AVDD - 0.1	V
	Vo2	High-speed mode		0.1		AVDD - 0.1	V
Input offset voltage	Vioff			-10		10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mod	le		0.04		MHz
	GBW2	High-speed mode			1.7		MHz
Phase margin	PM	CL = 20 pF		50			deg
Gain margin	GM	CL = 20 pF		10			dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power		230		nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode		200		nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode		90		nV/√Hz
	Vnoise4	f = 2 kHz			70		nV/√Hz
Power supply reduction ratio	PSRR				90		dB
Common mode signal reduction ratio	CMRR				90		dB
Operation stabilization wait time	Tstd1	CL = 20 pF Only operational amplifier is	Low-power consumption mode	650			μs
	Tstd2	activated ^{Note}	High-speed mode	13			μs
	Tstd3	CL = 20 pF Operational amplifier and	Low-power consumption mode	650			μs
	Tstd4	reference current circuit are activated simultaneously	High-speed mode	13			μs
Settling time	Tset1	CL = 20 pF	Low-power consumption mode			750	μs
	Tset2		High-speed mode			13	μs
Slew rate	Tslew1	CL = 20 pF	Low-power consumption mode		0.02		V/µs
	Tslew2		High-speed mode		1.1		V/µs
Load current	lload1	Low-power consumption mod	le	-100		100	μA
	lload2	High-speed mode		-100		100	μA
Load capacitance	CL					20	pF

Note

When the operational amplifier reference current circuit is activated in advance.

2.9 Dedicated Flash Memory Programmer Communication (UART)

(Ta = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V	′ ≤ AV DD =	$VDD \leq$ 3.6 V, Vss = AVss = 0 V)		
Deremeter	Symbol	Conditions	MINI	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified ^{Note 1}	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends Note 1	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory) ^{Notes 1, 2}	thd	POR and LVD reset must end before the external reset ends.	1			ms

Note 1. Deassertion of the POR and LVD reset signals must precede deassertion of the pin reset signal.

Note 2. This excludes the flash firmware processing time (723 μ s).

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

- tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

RENESAS

REVISION HISTORY RL78/I1D Datasheet

Dav	Dete		Description
Rev.	Dale	Page	Summary
1.00	Aug 29, 2014	_	First Edition issued
2.00	Jan 16, 2015	24, 25, 27	Addition of note 7 in 2.3.2 Supply current characteristics
		24, 26	Addition of description in 2.3.2 Supply current characteristics
		26, 28	Modification of description in 2.3.2 Supply current characteristics
		28	Correction of error in 2.3.2 Supply current characteristics
		95	Modification of package drawing in 3.2 24-pin products
2.20	Feb 20, 2017	ALL	The function name changed from real-time clock to real-time clock 2
		5	Addition of product name in 1.3.1 20-pin products
		6	Addition of product name in 1.3.2 24-pin products
		7	Addition of product name in 1.3.3 30-pin products
		8	Addition of product name in 1.3.4 32-pin products
		9	Change of description and addition of product name in 1.3.4 32-pin products
		10	Addition of product name in 1.3.5 48-pin products
		13, 14	Change of description in 1.6 Outline of Functions
		16	Change of 2.1 Absolute Maximum Ratings
		22	Change of 2.3.1 Pin characteristics
		24	Change of conditions in 2.3.2 Supply current characteristics
		25, 27, 28	Change of note 1 in 2.3.2 Supply current characteristics
		26	Change of conditions and unit in 2.3.2 Supply current characteristics
		30	Change of note 3 in 2.3.2 Supply current characteristics
		31	Addition of note 5 in 2.3.2 Supply current characteristics
		92	Change of table in 2.8 Flash Memory Programming Characteristics
		92	Addition of note 4 in 2.8 Flash Memory Programming Characteristics
		99	Change of package drawing in 3.5 48-pin products

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.