

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	15
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 6x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1177agna-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Outline of Functions

Remark This outline describes the functions at the time when Peripheral I/O redirection register 0 (PIOR0) are set to 00H.

	10 UUH.					(1/2				
		20-pin	24-pin	30-pin	32-pin	48-pin				
	Item	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)				
Code flash me	emory (KB)	8 to 16 KB	8 to 16 KB	8 to 32 KB	16 to 32 KB	16 to 32 KB				
Data flash me	emory (KB)	2 KB	2 KB	2 KB	2 KB	2 KB				
RAM		0.7 to 2.0 KB	0.7 to 2.0 KB	0.7 to 3.0 KB Note	2.0 to 3.0 KB Note	2.0 to 3.0 KB Note				
Address spac	e	1 MB								
Main system clock	High-speed system clock (fмx)	HS (High-speed ma HS (High-speed ma LS (Low-speed mai LV (Low-voltage ma	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode:1 to 20 MHz (VDD = 2.7 to 3.6 V), HS (High-speed main) mode:1 to 16 MHz (VDD = 2.4 to 3.6 V), LS (Low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 3.6 V), LV (Low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 3.6 V), LP (Low-power main) mode:1 MHz (VDD = 1.8 to 3.6 V)							
	High-speed on-chip oscillator clock (fiн) Max: 24 MHz	HS (High-speed ma	ain) mode: 1 to 16 N	1Hz (Vdd = 2.7 to 3.6 1Hz (Vdd = 2.4 to 3.6 Hz (Vdd = 1.8 to 3.6 \	V),					
	Middle-speed on-chip oscillator clock (fim) Max: 4 MHz	LV (Low-voltage ma	,	Hz (VDD = 1.6 to 3.6 \						
Subsystem clock	Subsystem clock oscillator (fsx, fsxR)	_	_	XT1 (crystal) oscilla 32.768 kHz (TYP.):						
	Low-speed on-chip oscillator clock (fiL)	15 kHz (TYP.): V _{DD} = 1.6 to 3.6 V								
General-purpo	ose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)								
Minimum instr	ruction execution time	0.04167 μs (High-s	peed on-chip oscilla	tor clock: fін = 24 MH	lz operation)					
		0.05 µs (High-spee	d system clock: fмx :	= 20 MHz operation)						
		— 30.5 μs (Subsystem clock oscillator clock: fsx = 32.768 kHz operation)								
Instruction set	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits + 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 								
I/O port	Total	14	18	24	26	42				
	CMOS I/O	11	15	19	21	33				
	CMOS input	3	3	5	5	5				
	N-ch open-drain I/O (6 V tolerance)	—	_	-	_	4				
Timer	16-bit timer	4 channels								
	Watchdog timer	1 channel								
	Real-time clock	1 channel								
	12-bit interval timer	1 channel								
	8/16-bit interval timer	4 channels (8 bit) / 2 channels (16 bit)								
	Timer output	2	4	3	4	4				
	RTC output	-	_	1 channel • 1 Hz (subsystem clock fsx = 32.768 kHz)	generator and RTC	other clock:				

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

(2/2)

			.	;		(2)					
		20-pin	24-pin	30-pin	32-pin	48-pin					
lter	n	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)					
Clock output/buzzer	output	1	1	1	1	2					
		(Main system clock [30-pin, 32-pin, 48-p • 2.44 kHz, 4.88 kHz (Main system clock • 256 Hz, 512 Hz, 1.	 [20-pin, 24-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) [30-pin, 32-pin, 48-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (subsystem clock generator and RTC/other clock: fsxr = 32.768 kHz operation) 								
12-bit resolution A/D	converter	6 channels	6 channels	12 channels	12 channels	17 channels					
Comparator (Window Comparator)		2 channels									
Operational amplifier		2 channels		4 channels							
Data Operation Circuit (DOC)		Comparison, addition	n, and subtraction of 1	6-bit data							
Serial interface		• CSI: 1 channel/UA [24-pin, 32-pin, 48-p	 [20-pin, 30-pin products] CSI: 1 channel/UART: 1 channel/simplified l²C: 1 channel [24-pin, 32-pin, 48-pin products] CSI: 2 channels/UART: 1 channel/simplified l²C: 2 channels 								
Data transfer control	ler (DTC)	16 sources	20 sources	19 sources	20 sources	22 sources					
Event link controller	(ELC)	Event input: 15 Event trigger output: 5	Event input: 17 Event trigger output: 5	Event input: 17 Event trigger output: 7	Event input: 17 Event trigger output: 7	Event input: 20 Event trigger output: 7					
Vectored interrupt	Internal	22	22	24	24	24					
sources	External	3	5	5	5	8					
Key interrupt		—	3	—	3	4					
Reset		Internal reset by R	atchdog timer ower-on-reset oltage detector egal instruction execu	tion Note							
Power-on-reset circu	it		51 ± 0.04V (T _A = -40 t : 1.50 ± 0.04 V (T _A = -	,							
Voltage detector	Power on	1.67 V to 3.13 V (12	1.67 V to 3.13 V (12 stages)								
	Power down	1.63 V to 3.06 V (12	stages)								
On-chip debug funct	ion	Provided (Enable to	tracing)								
Power supply voltage	e	V _{DD} = 1.6 to 3.6 V									
Operating ambient te	emperature	T _A = -40 to +105°C									

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/I1D User's Manual.
- Caution 3. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Caution 4. When operating temperature exceeds 85°C, only HS (high-speed main) mode can be used as the flash operation mode. Regulator mode should be used with the normal setting (MCSEL = 0).

2.3 DC Characteristics

2.3.1 Pin characteristics

(Ta = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (Ta = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P04, P30 to P33, P40, P50 to P57, P130	TA = -40 to +85°C			-10.0 Note 2	mA
			TA = +85 to +105°C			-3.0 Note 2	mA
		Total of P00 to P04, P40, P130	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			-5.0	mA
			$1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V}$			-2.5	mA
		Total of P30 to P33, P50 to P57	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-19.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{VDD} < 2.7 \text{ V}$			-10.0	mA
			$1.6 \text{ V} \le \text{VDD} < 1.8 \text{ V}$			-5.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				-29.0	mA
	Іон2	Per pin for P10 to P17, P20 to P25				-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			-1.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

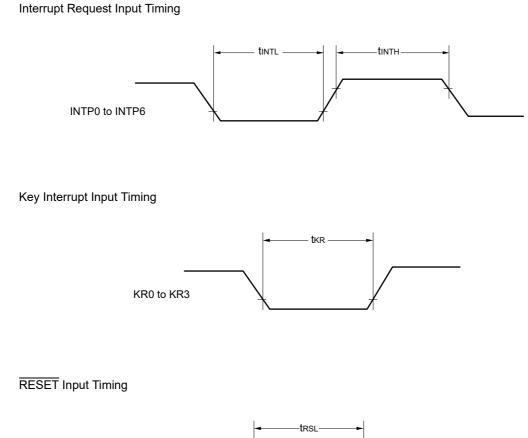
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

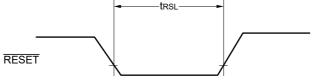
Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

TA = +85 t	TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)									(2/4)
Parameter	Symbol			Conditions					MAX.	Unit
Supply current	IDD1	Operating	Subsystem clock	fsx = 32.768 kHz,	Normal operation	Square wave input		3.2	6.1	μA
Note 1		mode	operation	T _A = -40°C Note 4		Resonator connection		3.3	6.1	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.4	6.1	
				$T_A = +25^{\circ}C$ Note 4		Resonator connection		3.6	6.1	
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.5	6.7	
				$T_A = +50^{\circ}C$ Note 4		Resonator connection		3.7	6.7	
			fsx = 32.768 kHz,		Normal operation	Square wave input		3.7	7.5	
				$T_A = +70^{\circ}C \text{ Note 4}$		Resonator connection		3.9	7.5	
				$ f_{SX} = 32.768 \text{ kHz}, \\ T_A = +85^{\circ} C \text{ Note 4} $	Normal operation	Square wave input		4.0	8.9	
						Resonator connection		4.2	8.9	
				fsx = 32.768 kHz,	Normal operation	Square wave input		4.5	21.0	
				T _A = +105°C Note 4		Resonator connection		4.7	21.1	
	fiL = 15 kHz, TA	fiL = 15 kHz, TA = -40°C Note 6	Normal operation			1.8	5.9			
			fı∟ = 15 kHz, T _A = +25°C ^{Note 6}	Normal operation		1.9	5.9	1		
			fı∟ = 15 kHz, T _A = +85°C ^{Note 6}	Normal operation			2.3	8.7		
				fi∟ = 15 kHz, T _A = +105°C ^{Note 6}	Normal operation			3.0	20.9	1

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$


<R>


Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.

- Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 4. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped. When ultra-low-power consumption oscillation is set (AMPHS1, AMPHS0) = (1, 0). The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.
- Note 5. When the high-speed system clock, high-speed on-chip oscillator clock, sub clock, and low-speed on-chip oscillator clock are stopped. The MAX values include the current of peripheral operation except BGO operation, and the STOP leakage current. However, the real time clock, watchdog timer, LVD circuit, and A/D converter are stopped.
- Note 6. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and sub clock are stopped.
- Note 7. When the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2 file High-speed on-chip oscillator clock frequency (24 MHz max.)
- Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
- Remark 4. fill: Low-speed on-chip oscillator clock frequency
- Remark 5. fsx Sub clock frequency (XT1 clock oscillation frequency)
- Remark 6. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)
- Remark 7. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sympol		Conditions	HS (high-spee	Unit	
Parameter	Symbol		Conditions	MIN.	MIN. MAX.	
SCKp cycle time	tKCY1	tксү1 ≥ fcLк/4	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	250		ns
			$2.4~V \leq V_{DD} \leq 3.6~V$	500		ns
SCKp high-/low-level width	evel width tĸн1, tĸL1 2.7 V ≤ Vpp ≤ 3.6 V		tксү1/2 - 36		ns	
		$2.4~V \leq V_{DD} \leq 3$.6 V	tксү1/2 - 76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3$	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$			ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		133		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4	1		50	ns

(TA = +85 to +105°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2/2)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions	HS (high-	Unit	
rarameter	Cymbol		Conditions	MIN.	MAX.	Onit
Transfer rate Note 2		Transmission	$ V \leq V_{DD} \leq 3.6 \text{ V}, $ $ V \leq V_b \leq 2.7 \text{ V} $		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 kΩ, V _b = 2.3 V		1.2 Note 2	Mbps
			$V \le V_{DD} < 3.3 V,$ $V \le V_b \le 2.0 V$		Notes 3, 4	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V _b = 1.6 V		0.43 Note 5	Mbps

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$

Baud rate error (theoretical value) =

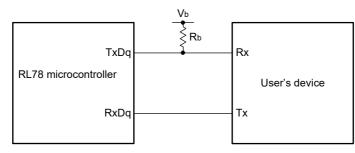
$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

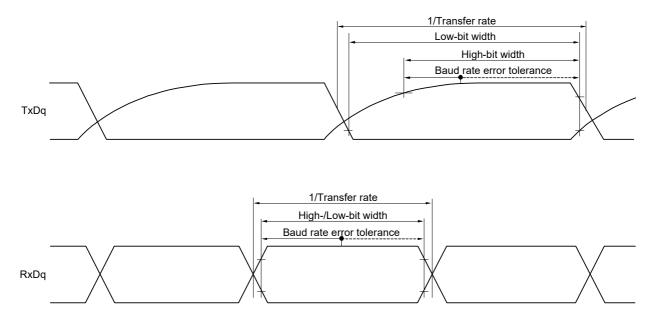
20

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** Use it with $V_{DD} \ge V_b$.
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{Transfer rate}) \times 100 [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides


- Note 5.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RENESAS

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Sym bol	Conditions		HS (hig main)		LS (low-speed main) Mode		LP (Low-power main) mode		``	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/2	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1500		1500		1500		ns
SCKp high-level width	t кн1	$2.3~V \leq V_b \leq 2.3$	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$			tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟1	$2.3~V \leq V_b \leq 2.3$	2.7 V \leq Vdd \leq 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 1.4 kΩ			tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$2.3~V \leq V_b \leq 2.3$	2.7 V \leq Vdd \leq 3.6 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 20 pF, Rb = 2.7 k Ω			479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3\\ 2.3 \ V \leq V_b \leq 2.\\ C_b = 20 \ pF, \ R_b \end{array}$	7 V,	10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ 2.3 \ V \leq V_b \leq 2. \\ C_b = 20 \ pF, \ R_b \end{array}$	7 V,		130		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	7 V,	33		110		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	7 V,	10		10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	7 V,		10		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

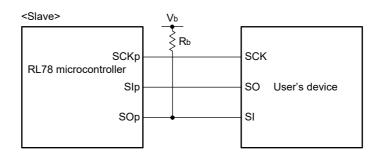
Remark 1. Rb[i]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)


Parameter	Symb	Co	onditions		h-speed Mode	LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
	OI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$2.7~V \leq V\text{DD} \leq 3.6~V,~2.3$	20 MHz < fmck \leq 24 MHz	16/fмск		—		—		-		ns
time Note 1		$V \leq Vb \leq 2.7 \ V$	16 MHz < fмск ≤ 20 MHz	14/fмск		-		—		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		—				-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		—		ns
			fMCK ≤ 4 MHz	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6$	20 MHz < fмск ≤ 24 MHz	36/fмск		—				-		ns
		V ≤ Vb ≤ 2.0 V Note 2	16 MHz < fмск ≤ 20 MHz	32/fмск		-		_		—		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		—				—		ns
		4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				—		ns	
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level	tкн2, tкL2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$V \le Vb \le 2.7 V$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
width		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le Vb \le 2.0 V$ Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to	tsık2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$V \leq Vb \leq 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SCKp†) Note 3		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le Vb \le 2.0 V$ Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓	tĸso2	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	$V \leq Vb \leq 2.7 V$,		2/fмск + 214		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
to SOp output ^{Note 5}		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \mbox{ k}\Omega \end{array}$	$^{\prime} \leq Vb \leq 2.0 V$ Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq Vdd \leq 3.6 V, 1.6 V \leq AVREFP \leq AVdd = Vdd \leq 3.6 V, Vss = 0 V, AVss = 0 V,
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit	
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1		
		$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			8 Note 2			
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.0	LSB	
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.5		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0		
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	4.125			μs	
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	9.5				
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	57.5				
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125				
		8-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	7.875				
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25				
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5		
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	LSB	
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5		
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5		
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB	
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0		
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5		
Analog input voltage	VAIN			0		AVREFP	V	
		Internal reference volta	VBGR Note 4					
		Temperature sensor ou	stput voltage (1.8 V \leq VDD \leq 3.6 V)	V	/TMP25 No	te 4		

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(5) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(6) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±6.0	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±4.5	LSB
Full-scale error Note	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN			0		AVREFP	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(2) LVD Detection Voltage of Interrupt & Reset Mode

Parameter	Symbol		Cor	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDA0	VPOC0,	VPOC1, VPOC2 = 0, 0, 0, f	alling reset voltage	1.60	1.63	1.66	V
reset mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, f	alling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0,	VPOC1, VPOC2 = 0, 1, 0, falling reset voltage		2.40	2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, f	alling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	1	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

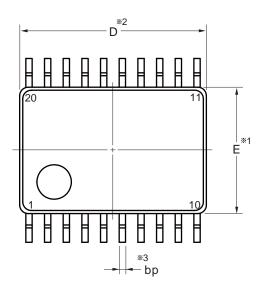
Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Interrupt and	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, falling reset voltage			2.75	2.86	V
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0 Rising release reset voltage 2		2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

2.6.7 Power supply voltage rising slope characteristics

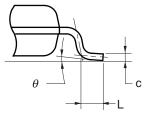
(TA = -40 to +105°C	C, Vss = AVss = 0 V)
---------------------	----------------------

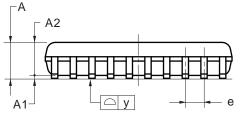
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

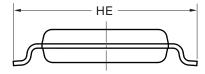
Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.



3. PACKAGE DRAWINGS


3.1 20-pin products


R5F1176AGSP, R5F11768GSP

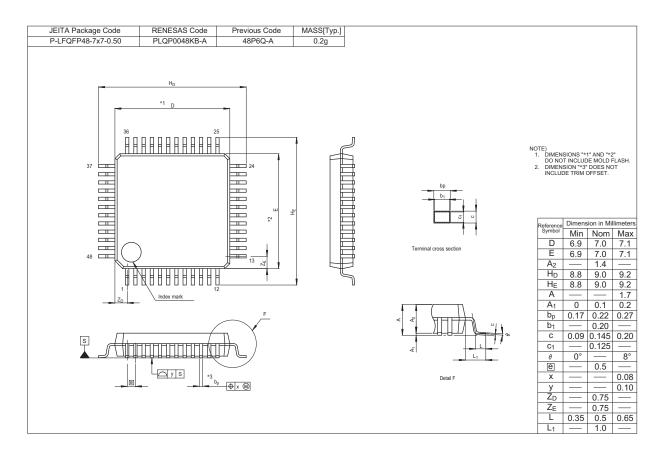

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

detail of lead end

DIMENSIONS
6.50±0.10
4.40±0.10
6.40±0.20
1.45 MAX.
0.10±0.10
1.15
0.65±0.12
0.22 + 0.10 - 0.05
0.15 + 0.05 - 0.02
0.50±0.20
0.10
0° to 10°

© 2012 Renesas Electronics Corporation. All rights reserved.

NOTE


- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "3" does not include trim offset.

3.5 48-pin products

<R>

R5F117GCGFB, R5F117GAGFB

REVISION HISTORY	RL78/I1D Datasheet
-------------------------	--------------------

Rev.	Date -		Description
Rev.	Date	Page	Summary
1.00	Aug 29, 2014	_	First Edition issued
2.00	Jan 16, 2015	24, 25, 27	Addition of note 7 in 2.3.2 Supply current characteristics
		24, 26	Addition of description in 2.3.2 Supply current characteristics
		26, 28	Modification of description in 2.3.2 Supply current characteristics
		28	Correction of error in 2.3.2 Supply current characteristics
		95	Modification of package drawing in 3.2 24-pin products
2.20	Feb 20, 2017	ALL	The function name changed from real-time clock to real-time clock 2
		5	Addition of product name in 1.3.1 20-pin products
		6	Addition of product name in 1.3.2 24-pin products
		7	Addition of product name in 1.3.3 30-pin products
		8	Addition of product name in 1.3.4 32-pin products
		9	Change of description and addition of product name in 1.3.4 32-pin products
		10	Addition of product name in 1.3.5 48-pin products
		13, 14	Change of description in 1.6 Outline of Functions
		16	Change of 2.1 Absolute Maximum Ratings
		22	Change of 2.3.1 Pin characteristics
		24	Change of conditions in 2.3.2 Supply current characteristics
		25, 27, 28	Change of note 1 in 2.3.2 Supply current characteristics
		26	Change of conditions and unit in 2.3.2 Supply current characteristics
		30	Change of note 3 in 2.3.2 Supply current characteristics
		31	Addition of note 5 in 2.3.2 Supply current characteristics
		92	Change of table in 2.8 Flash Memory Programming Characteristics
		92	Addition of note 4 in 2.8 Flash Memory Programming Characteristics
		99	Change of package drawing in 3.5 48-pin products

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.