

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117a8gsp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Identification 1.4

ANI0 to ANI13,	: Analog input	PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer
ANI16 to ANI18			output
AVDD	: Analog power supply	REGC	: Regulator capacitance
AVREFM	: A/D converter reference	RESET	: Reset
	potential (- side) input	RTC1HZ	: Real-time clock correction clock (1 Hz)
AVREFP	: A/D converter reference		output
	potential (+ side) input	RxD0	: Receive data
AVss	: Analog ground	SCK00, SCK01	: Serial clock input/output
EXCLK	: External clock input	SCL00, SCL01	: Serial clock input/output
	(main system clock)	SDA00, SDA01	: Serial data input/output
EXCLKS	: External clock input	SI00, SI01	: Serial data input
	(subsystem clock)	SO00, SO01	: Serial data output
INTP0 to INTP6	: External interrupt input	SS100	: Serial interface chip select input
IVCMP0, IVCMP1	: Comparator input	TI00 to TI03	: Timer input
IVREF0, IVREF1	: Comparator reference input	TO00 to TO03	: Timer output
KR0 to KR3	: Key return	TOOL0	: Data input/output for tool
P00 to P04	: Port 0	TOOLRXD, TOOLTXD	: Data input/output for external device
P10 to P17	: Port 1	TxD0	: Transmit data
P20 to P25	: Port 2	VCOUT0, VCOUT1	: Comparator output
P30 to P33	: Port 3	AMP0+, AMP1+,	: Operational amplifier (+side) input
P40	: Port 4	AMP2+, AMP3+	
P50 to P57	: Port 5	AMP0-, AMP1-,	: Operational amplifier (-side) input
P60 to P63	: Port 6	AMP2-, AMP3-	
P121 to P124	: Port 12	AMP0O, AMP1O,	: Operational amplifier output
P130, P137	: Port 13	AMP2O, AMP3O	
		Vdd	: Power supply
		Vss	: Ground
		X1, X2	: Crystal oscillator (main system clock)
		XT1, XT2	: Crystal oscillator (subsystem clock)

: Crystal oscillator (subsystem clock)

R01DS0244EJ0220 Rev. 2.20 Feb 20, 2017

1.5 Block Diagram

1.5.1 48-pin products

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

(Ta = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 3.6~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V \text{DD} < 2.7~V$	1.0		16.0	
		$1.8~V \leq V \text{DD} < 2.4~V$	1.0		8.0	
		$1.6~V \leq V \text{DD} < 1.8~V$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		-20 to +85°C	$1.8~V \leq V_{DD} \leq 3.6~V$	-1.0		+1.0	%
			$1.6~V \leq V_{DD} < 1.8~V$	-5.0		+5.0	
		-40 to -20°C	$1.8~V \le V_{DD} \le 3.6~V$	-1.5		+1.5	%
			$1.6~V \leq V_{DD} < 1.8~V$	-5.5		+5.5	
		+85 to +105°C	$2.4~V \leq V_{DD} \leq 3.6~V$	-2.0		+2.0	%
Middle-speed on-chip oscillator oscillation frequency Note 2	fім			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy		$1.8V \leq V_{DD} \leq 3.6V$		-12		+12	%
Low-speed on-chip oscillator clock frequency Note 2	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/I1D User's Manual.

(TA = +85 t	$+85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V}) \tag{2/4}$										
Parameter	Symbol			MIN.	TYP.	MAX.	Unit				
Supply current	IDD1	Operating	Subsystem clock	fsx = 32.768 kHz,	Normal operation	Square wave input		3.2	6.1	μΑ	
Note 1		mode	operation	$T_A = -40^{\circ}C$ Note 4		Resonator connection		3.3	6.1		
				fsx = 32.768 kHz,	Normal operation	Square wave input		3.4	6.1		
				$T_A = +25^{\circ}C$ Note 4		Resonator connection		3.6	6.1		
				fsx = 32.768 kHz, Nor T _A = +50°C ^{Note 4}	Normal operation	Square wave input		3.5	6.7		
						Resonator connection		3.7	6.7		
	$f_{SX} = 32.768 \text{ kHz},$ $T_{A} = \pm 70^{\circ} \text{C}$ Note 4	fsx = 32.768 kHz,	Normal operation	Square wave input		3.7	7.5				
T _A = +70°	$T_A = +70^{\circ}C$ Note 4		Resonator connection		3.9	7.5					
	fsx = 32.768 kHz,	fsx = 32.768 kHz,	Normal operation	Square wave input		4.0	8.9				
				$T_A = +85^{\circ}C$ Note 4		Resonator connection		4.2	8.9		
				fsx = 32.768 kHz,	Normal operation	Square wave input		4.5	21.0		
				$T_A = +105^{\circ}C$ Note 4		Resonator connection		4.7	21.1		
				fı∟ = 15 kHz, T _A = -40°C ^{Note 6}	Normal operation			1.8	5.9		
			fiL = 15 kHz, TA = +25°C Note 6	Normal operation			1.9	5.9			
	fiL = 15 kHz, TA = +85°C Note 6	Normal operation			2.3	8.7					
				fiL = 15 kHz, T _A = +105°C Note 6	Normal operation			3.0	20.9		

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$ $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.

- Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 4. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped. When ultra-low-power consumption oscillation is set (AMPHS1, AMPHS0) = (1, 0). The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.
- **Note 5.** When the high-speed system clock, high-speed on-chip oscillator clock, sub clock, and low-speed on-chip oscillator clock are stopped. The MAX values include the current of peripheral operation except BGO operation, and the STOP leakage current. However, the real time clock, watchdog timer, LVD circuit, and A/D converter are stopped.
- Note 6. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and sub clock are stopped.
- Note 7. When the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fin: High-speed on-chip oscillator clock frequency (24 MHz max.)
- Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
- Remark 4. fil: Low-speed on-chip oscillator clock frequency
- Remark 5. fsx: Sub clock frequency (XT1 clock oscillation frequency)
- Remark 6. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)
- Remark 7. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +10	$A = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V}) $ (4/4)						
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current INNote 1	Idd3	STOP mode	TA = -40°C		0.16	0.51	μA
	Note 2	Note 3	TA = +25°C		0.22	0.51	
			TA = +50°C		0.27 1.10		
			TA = +70°C		0.37	1.90	
			TA = +85°C		0.60	3.30	
			TA = +105°C		1.50	17.00	

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.

Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Paramotor	Symbol		Conditions	HS (high-spee	Llnit		
Falanielei	Symbol		onduions	MIN.	MAX.	Offic	
SCKp cycle time	tKCY1	tkcy1 \ge fclk/4 2.7 V \le VDD \le 3.6 V		250		ns	
			$2.4~V \leq V_{DD} \leq 3.6~V$	500		ns	
SCKp high-/low-level width	tĸнı, tĸ∟ı	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	tксү1/2 - 36		ns	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	tксү1/2 - 7 6		ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	66		ns	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	133		ns	
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns	
Delay time from SCKp \downarrow to SOp output $^{\rm Note\;3}$	tkso1	C = 30 pF Note 4			50	ns	

(TA = +85 to +105°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Condi	tions	HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode	LP (Lov main)	v-power mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	fмск > 16 MHz	8/fмск		—	—	—	—	—	_	ns
Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		6/fмск		
	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		6/fмск and 500		6/fмск		6/fмск		6/fмск			
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—		6/fмск		6/fмск		6/fмск		
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		-		-		_				
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$	-		-		_					
SCKp high-/ low-level width	tкн2, tкL2	$2.7~V \leq V_{DD} \leq 3.6~V$		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18			
		$1.8 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$		—								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		-		—		—		tксү2/2		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$	-		-		_		- 66			
SIp setup time (to SCKp↑)	tsık2	$2.7~V \leq V_{DD} \leq 3.6~V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns	
Note 1		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 30									
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	-									
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$	_		_		_		1/fмск			
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$	_		—		—		+ 40			
SIp hold time (from SCKp↑)	tĸsı2	$2.4~V \leq V_{DD} \leq 3.6~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Note 2		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		-								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		—		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		_		+ 250		
Delay time from SCKp↓ to SOp	tĸso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110		2/fмск + 110	ns
output Note 3			$2.4~V \leq V_{DD} \leq 3.6~V$		2/fмск + 75							
			$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—	1						
			$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—		2/fмск	
			$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—	1	+ 220	

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cond	itiono	HS (high-speed	Unit	
Falameter	Symbol	Cond	luons	MIN.	MAX.	Unit
SCKp cycle time Note 5	tксү2	$2.7~V \leq V_{\text{DD}} < 3.6~V$	fмск > 16 MHz	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{DD} < 2.7~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tkL2	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$		tксү2/2 - 16		ns
				tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		1/fмск + 40		ns
		$2.4~V \leq V_{DD} < 2.7~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		2/fмск + 66	ns
			$2.4~V \leq V_{DD} < 2.7~V$		2/fмск + 113	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(2/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Deremeter	Symbol		Conditions	HS (high-spee	HS (high-speed main) Mode		
Falanlelei	Symbol		Conditions	MIN.	MAX.	Unit	
SSI00 setup time	tssiĸ	DAPmn = 0	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$	240		ns	
			$2.4 \text{ V} \leq \text{V}\text{DD} < 2.7 \text{ V}$	400		ns	
		DAPmn = 1	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$	1/fмск + 240		ns	
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	1/fмск + 400		ns	
SSI00 hold time	tĸssi	DAPmn = 0	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$	1/fмск + 240		ns	
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	1/fмск + 400		ns	
		DAPmn = 1	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$	240		ns	
			$2.4~V \leq V_{DD} < 2.7~V$	400		ns	

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-sp Mo	beed main) bde	LP (Lov main)	w-power mode	LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\label{eq:def_def_def_def} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$		-							
		$\label{eq:def_def_def_def} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		_		300 Note 1		250 Note 1		300 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		—		-		250 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		—		—			
Hold time when SCLr = "L"	t∟ow	$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} \leq 3.6 \; V, \\ C_{\text{b}} = 50 \; p\text{F}, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		—		_				
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		—		—		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		—				
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$\label{eq:VD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_		1/fмск + 290		
		$\label{eq:VD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_		Note 2		
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	_	—		355		355		355	
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-	-							
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-	-	-	-	-	—		405	
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-	—	-	-	_	-			

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(Notes and Caution are listed on the next page.)

(5) During communication at same potential (simplified I²C mode)

Deremeter	Symbol	Conditions	HS (high-speed	ל main) Mode	Linit
Parameter	Symbol	Conditions	MIN.	MAX.	Onit
SCLr clock frequency	fsc∟	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tнigн	$\label{eq:VDD} \begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ \\ C_b = 50 \ \text{pF}, \ R_b = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	0	1420	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(2/2)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

Parameter	er Symbol Conditions		Conditions	HS (high-spe main) Moc		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{Note 2}		Transmission	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		Note 1		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 3, 4		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 5.5 \ k\Omega, \\ V_b = 1.6 \ V \end{array}$		0.43 Note 5		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1.The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

Maximum transfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

$$Baud rate error (theoretical value) = \frac{1}{(\frac{1}{Transfer rate \times 2} - {-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})} \times 100 [\%]} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

1

- Note 3. Use it with $V_{DD} \ge V_b$.
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$

Baud rate error (theoretical value) =
$$\frac{1}{-\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RENESAS

(7) Communication at different potential (2.5 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Sym bol		Conditions		h-speed Mode	LS (low main)	v-speed Mode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ fc∟к/2	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; p\text{F}, \; R_b = 2.7 \; k\Omega \end{array}$	300		1500		1500		1500		ns
SCKp high-level width	tкнı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ 2.3 \ V \leq V_b \leq 2. \\ C_b = 20 \ pF, \ R_b \end{array}$	3.6 V, 7 V, = 2.7 kΩ	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3\\ 2.3 \ V \leq V_b \leq 2.\\ C_b = 20 \ pF, \ R_b \end{array}$	3.6 V, 7 V, = 1.4 kΩ	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		121		479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ 2.3 \ V \leq V_b \leq 2. \\ C_b = 20 \ pF, \ R_b \end{array}$	3.6 V, 7 V, = 2.7 kΩ	10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3 \\ 2.3 \ V \leq V_b \leq 2. \\ C_b = 20 \ pF, \ R_b \end{array}$	3.6 V, 7 V, = 2.7 kΩ		130		130		130		130	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	3.6 V, 2.7 V, t _b = 2.7 kΩ	33		110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tĸsıı	$2.7 V \le V_{DD} \le 2.3 V \le V_b \le 2$ C _b = 20 pF, R	3.6 V, 2.7 V, α _b = 2.7 kΩ	10		10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	3.6 V, 2.7 V, bb = 2.7 kΩ		10		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[i]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Deremeter	Symbol	Con	ditiono	HS (high-spe	ed main) Mode	Unit
Falameter	Symbol	Con	lanons	MIN.	MAX.	Unit
SCKp cycle time Note 1	tксү2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V,$	20 MHz < fмск \leq 24 MHz	32/fмск		ns
		$2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	16 MHz < fмск ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V ,	$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	72/fмск		ns
		$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note } 2$	16 MHz < fмск \leq 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tkH2, tkL2	$2.7~V \leq V_{DD} \leq 3.6~V,~2.3~V$	$I \leq V_b \leq 2.7 V$	tксү2/2 - 36		ns
		$2.4~V \leq V_{DD}$ < 3.3 V, 1.6 \backslash	$V \le V_b \le 2.0 \text{ V}$ Note 2	tксү2/2 - 100		ns
SIp setup time (to SCKp↑) Note 3	tsiк2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$I \leq V_b \leq 2.7 V$	1/fмск + 40		ns
		$2.4~\text{V} \leq \text{V}_\text{DD}$ < 3.3 V, 1.6 \	$I \le V_b \le 2.0 \text{ V}$ Note 2	1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tkso2	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V}\\ \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	$I \leq V_b \leq 2.7 V$		2/fмск + 428	ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V_{Cb} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	$V \le V_b \le 2.0 V$ Note 2		2/fмск + 1146	ns

(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter	Sym	Conditions	HS (hig main)	h-speed Mode	LS (low-speed main) Mode		LP (Low main)	/-power mode	LV (low- main)	-voltage Mode	Unit
	DOI		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 100 \; \text{pF}, \; \text{R}_b = 2.7 \; \text{k}\Omega \end{array}$		400 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ \text{Note} \ \text{2}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 5.5 \ \text{k}\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
Hold time when SCLr	t∟ow	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \ 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	475		1550		1550		1550		ns
= "L"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		1550		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1550		1550		1550		1550		ns
Hold time when SCLr	tніgн	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq V_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	200		610		610		610		ns
= "H"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		610		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	610		610		610		610		ns
Data setup time (reception)	tsu: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 190 Note 2		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \; 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	0	355	0	355	0	355	0	355	ns
		$\label{eq:VDD} \hline $1.8 \mbox{ V} \leq V_{DD}$ < $3.3 \mbox{ V}, $1.6 \mbox{ V} \leq V_b \leq $2.0 \mbox{ V}$ Note 2,} $$C_b$ = $100 \mbox{ pF}, R_b = $5.5 \mbox{ k}\Omega$ }$	0	405	0	405	0	405	0	405	ns

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than $f_{MCK}/4$.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(9) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0)

Parameter	Symbol	Conc	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV \text{DD} \leq 3.6~V$	8		12	bit
Overall error Note 1	AINL	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{dd} \leq 3.6~\text{V}$	4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	$2.4~V \leq AV \text{DD} \leq 3.6~V$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.5	LSB
Analog input voltage	VAIN			0		AVDD	V
		Internal reference voltage (2.4 V \leq VDD \leq 3.6 V)		VBGR Note 2		2	
		Temperature sensor outp $(2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$	Temperature sensor output voltage (2.4 V \leq VDD \leq 3.6 V)				

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.5 POR circuit characteristics

$(T_{A} = -40)$	to +105°C,	Vss = AVs	ss = 0 V)
(

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Detection voltage	VPOR	Power supply rise time	TA = -40 to +85°C	1.47	1.51	1.55	V
			TA = +85 to +105°C	1.45	1.51	1.57	V
	Vpdr	Power supply fall time Note 1	TA = -40 to +85°C	1.46	1.50	1.54	V
			TA = +85 to +105°C	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs
	TPW2	STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

(2) LVD Detection Voltage of Interrupt & Reset Mode

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDA0	VPOC0,	VPOC1, VPOC2 = 0, 0, 0, falli	ng reset voltage	1.60	1.63	1.66	V
reset mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, falli	ng reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0,	VPOC1, VPOC2 = 0, 1, 0, falli	ng reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, falli	ng reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol		Condit	MIN.	TYP.	MAX.	Unit	
Interrupt and	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, falli	2.64	2.75	2.86	V	
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0	2.81	2.92	3.03	V	
				Falling interrupt voltage				V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

2.6.7 Power supply voltage rising slope characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

3. PACKAGE DRAWINGS

3.1 20-pin products

R5F1176AGSP, R5F11768GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
Е	4.40±0.10
HE	6.40±0.20
A	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	0.22 + 0.10 - 0.05
с	0.15 + 0.05 - 0.02
L	0.50±0.20
У	0.10
θ	0° to 10°

© 2012 Renesas Electronics Corporation. All rights reserved.

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "3" does not include trim offset.

