

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	19
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117aagsp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Identification 1.4

ANI0 to ANI13,	: Analog input	PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer
ANI16 to ANI18			output
AVDD	: Analog power supply	REGC	: Regulator capacitance
AVREFM	: A/D converter reference	RESET	: Reset
	potential (- side) input	RTC1HZ	: Real-time clock correction clock (1 Hz)
AVREFP	: A/D converter reference		output
	potential (+ side) input	RxD0	: Receive data
AVss	: Analog ground	SCK00, SCK01	: Serial clock input/output
EXCLK	: External clock input	SCL00, SCL01	: Serial clock input/output
	(main system clock)	SDA00, SDA01	: Serial data input/output
EXCLKS	: External clock input	SI00, SI01	: Serial data input
	(subsystem clock)	SO00, SO01	: Serial data output
INTP0 to INTP6	: External interrupt input	SS100	: Serial interface chip select input
IVCMP0, IVCMP1	: Comparator input	TI00 to TI03	: Timer input
IVREF0, IVREF1	: Comparator reference input	TO00 to TO03	: Timer output
KR0 to KR3	: Key return	TOOL0	: Data input/output for tool
P00 to P04	: Port 0	TOOLRXD, TOOLTXD	: Data input/output for external device
P10 to P17	: Port 1	TxD0	: Transmit data
P20 to P25	: Port 2	VCOUT0, VCOUT1	: Comparator output
P30 to P33	: Port 3	AMP0+, AMP1+,	: Operational amplifier (+side) input
P40	: Port 4	AMP2+, AMP3+	
P50 to P57	: Port 5	AMP0-, AMP1-,	: Operational amplifier (-side) input
P60 to P63	: Port 6	AMP2-, AMP3-	
P121 to P124	: Port 12	AMP0O, AMP1O,	: Operational amplifier output
P130, P137	: Port 13	AMP2O, AMP3O	
		Vdd	: Power supply
		Vss	: Ground
		X1, X2	: Crystal oscillator (main system clock)
		XT1, XT2	: Crystal oscillator (subsystem clock)

: Crystal oscillator (subsystem clock)

R01DS0244EJ0220 Rev. 2.20 Feb 20, 2017

(TA = +85 to +105°	C, 2.4 V ≤	AVDD = VDD \leq 3.6 V, Vss = A	Vss = 0 V)				(3/5)
Items	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P04, P30 to P33, P40, P50 to P57, P130	Normal input buffer	0.8 Vdd		Vdd	V
	VIH2	P30, P32, P33, P51, P52, P54 to P57	TTL input buffer $3.3 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$	2.0		Vdd	V
			TTL input buffer $1.6 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}$	1.5		Vdd	V
	Vінз	P10 to P17, P20 to P25	0.7 AVDD		AVDD	V	
	VIH4	P60 to P63	0.7 Vdd		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, E	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P04, P30 to P33, P40, P50 to P57, P130	Normal input buffer	0		0.2 Vdd	V
ıput voltage, low	VIL2	P30, P32, P33, P51, P52, P54 to P57	TTL input buffer $3.3 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P10 to P17, P20 to P25		0		0.3 AVDD	V
	VIL4	P60 to P63		0		0.3 Vdd	V
	VIL5	P121 to P124, P137, EXCLK, E	XCLKS, RESET	0		0.2 Vdd	V

$(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V) \\ (TA = +85 \ to \ +105^{\circ}C, \ 2.4 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V)$

Caution The maximum value of VIH of pins P30 and P51 to P56 is VDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R> <R> <R>

<R>

<R>

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/4)

Parameter	Symbol		MIN.	TYP.	MAX.	Unit					
Supply current Note 1	Idd1	Operating mode	HS (high-speed main) mode	f _{IH} = 24 MHz ^{Note 3} , T _A = -40 to +105°C	Basic operation	V _{DD} = 3.0 V			1.4		mA
			HS (high-speed main) mode	f _{IH} = 24 MHz ^{Note 3} , T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			3.2	6.3	mA
				f _{IH} = 24 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				6.7	
				$f_{IH} = 16 \text{ MHz Note 3},$ $T_A = -40 \text{ to } +85^{\circ}\text{C}$	Normal operation	V _{DD} = 3.0 V			2.4	4.6	
				f _{IH} = 16 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				4.9	
			LS (low-speed main)	fiH = 8 MHz Note 3,	Normal	V _{DD} = 3.0 V			1.1	2.0	mA
			mode (MCSEL = 0)	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			1.1	2.0	
			LS (low-speed main)	fin = 4 MHz Note 3,	Normal	V _{DD} = 3.0 V			0.72	1.30	mA
			mode (MCSEL = 1)	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			0.72	1.30	
				f _{IM} = 4 MHz ^{Note 7} , T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			0.58	1.10	
						V _{DD} = 2.0 V		0.58	1.10		
			LV (low-voltage main)	f _{IH} = 3 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V		1.2	1.8	mA	
			mode	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			1.2	1.8	
		LP (low-power main)	$f_{\rm H} = 1 \text{ MHz} \frac{\text{Note 3}}{100000000000000000000000000000000000$	Normal	V _{DD} = 3.0 V			290	480	μA	
			(MCSEL = 1)	$T_A = -40 \text{ to } +85^{\circ}\text{C}$ $f_{IM} = 1 \text{ MHz Note 5},$ $T_A = -40 \text{ to } +85^{\circ}\text{C}$	Normal operation	V _{DD} = 2.0 V			290	480	ļ
						V _{DD} = 3.0 V			124	230	
					operation	V _{DD} = 2.0 V	1		124	230	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		2.7	5.3	mA
			node	$T_A = -40 \text{ to } +85^{\circ}\text{C}$ $f_{MX} = 20 \text{ MHz Note } 2,$ $T_{MX} = -40^{\circ}\text{ to } +40^{\circ}\text{C}^{\circ}$	operation		Resonator connection		2.8	5.5	
					Normal	V _{DD} = 3.0 V	Square wave input			5.7	
				TA = +85 to +105°C	operation		Resonator connection			5.8]
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		1.8	3.1	
				TA = -40 to +85°C	operation		Resonator connection		1.9	3.2	
				f _{MX} = 10 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input			3.4	
				TA = +85 to +105°C	operation		Resonator connection			3.5	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input		0.9	1.9	mA
			(MCSEL = 0)	$I_A = -40 \text{ to } +85^{\circ}\text{C}$	operation		Resonator connection		1.0	2.0	
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.9	1.9	
				$I_A = -40 \text{ to } +85^{\circ}\text{C}$	operation		Resonator connection		1.0	2.0	
			LS (low-speed main)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		0.6	1.1	mA
			(MCSEL = 1)	T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2	
			(MOOLE - I)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.6	1.1	
				T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2	
			LP (low-power main)	f _{MX} = 1 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input		100	190	μA
		r (mode T _A = (MCSEL = 1)	T _A = -40 to +85°C ope	operation		Resonator connection		136	250	l
			. ,	f _{MX} = 1 MHz Note 2, N	^{ite 2} , Normal	V _{DD} = 2.0 V	Square wave input		100	190	
				T _A = -40 to +85°C	operation		Resonator connection		136	250	

(Notes and Remarks are listed on the next page.)

RL	78/I	1D
----	------	----

<r></r>	Note 1.	Total cu	urrent flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or
		Vss. Th	ne MAX values include the peripheral operating current. However, these values do not include the current flowing
		into the	A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors,
		and the	e current flowing during data flash rewrite.
	Note 2.	When t	the HALT instruction is executed in the flash memory.
	Note 3.	When t and su	the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, b clock are stopped.
	Note 4.	When t clock a	the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub re stopped.
	Note 5.	When t speed (AMPH	the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and high- on-chip oscillator clock are stopped. When RTCLPC = 1 and ultra-low-power consumption oscillation is set IS1, AMPHS0) = (1, 0). The values include the current flowing into the real-time clock. However, the values do not the current flowing into the 12-bit interval timer and watchdog timer.
	Noto 6	M/bon f	the birth aread on abin application clock middle aread on abin application clock high aread overtem clock, and out
	Note 6.	clock a	re stopped.
	Note 7.	When t are sto	the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock pped.
	Remark 1.	fмх:	High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
	Remark 2.	fiн:	High-speed on-chip oscillator clock frequency (24 MHz max.)
	Remark 3.	fıм:	Middle-speed on-chip oscillator clock frequency (4 MHz max.)
	Remark 4.	fı∟:	Low-speed on-chip oscillator clock frequency
	Remark 5.	fsx:	Sub clock frequency (XT1 clock oscillation frequency)
	Remark 6.	fsue:	Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)
	Remark 7.	Except	subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/2)

Parameter	Symbol		MIN.	TYP.	MAX.	Unit		
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA	
RTC operating current	IRTC Notes 1, 2, 3	fsx = 32.768 kHz			0.02		μA	
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsx = 32.768 kHz	fsx = 32.768 kHz					
8-bit interval timer operating current	ITMT Notes 1, 9	fsx = 32.768 kHz	8-bit counter mode \times 2-channel operation		0.12		μA	
		fmain stopped (per unit)	MAIN stopped (per unit) 16-bit counter mode operation				μA	
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA	
A/D converter operating current	I _{ADC} Notes 6, 10	During maximum-speed conversion	AV _{DD} = 3.0 V		420	720	μA	
Avref(+) current	IAVREF Note 11	AVREFP = 3.0 V, ADREFP1	= 0, ADREFP0 = 1		14.0	25.0	μA	
Internal reference voltage (1.45 V) current	J _{ADREF} Notes 1, 12				85.0		μA	
Temperature sensor operating current	ITMPS Note 1				85.0		μA	
Comparator operating current	ICMP Notes 8, 10	AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		12.5		μA	
		= 2.1 V	Comparator low-speed mode Window mode		3.0			
			Comparator high-speed mode Standard mode		6.5			
			Comparator low-speed mode Standard mode		1.7			
		AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		8.0			
		= 1.8 V	Comparator low-speed mode Window mode		2.2			
			Comparator high-speed mode Standard mode		4.0			
			Comparator low-speed mode Standard mode		1.3			
Operational amplifier operating current	IAMP Notes 10, 13	Low-power consumption	One operational amplifier unit operates Note 14		2.5	4.0	μA	
		mode	Two operational amplifier units operate Note 14		4.5	8.0		
			Three operational amplifier units operate Note 14		6.5	11.0		
			Four operational amplifier units operate Note 14		8.5	14.0		
		High-speed mode	One operational amplifier unit operates Note 14		140	220		
			Two operational amplifier units operate Note 14		280	410	1	
			Three operational amplifier units operate Note 14		420	600		
			Four operational amplifier units operate Note 14		560	780		
LVD operating current	ILVD Notes 1, 7				0.10		μA	

(Notes and Remarks are listed on the next page.)

Items	Symbol	Condition	MIN	TYP	MAX	Unit	
	Gymbol	Condition	IVIIIN.		WIFVA.	Onic	
TO00 to TO03 output frequency	fто	HS (high-speed main) mode	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$			8	MHz
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			4	
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$			4	
		LP (low-power main) mode	$1.6 \vee \le VDD \le 3.6 \vee$ 4 $1.8 \vee \le VDD \le 3.6 \vee$ 0.5 $1.6 \vee \le VDD \le 3.6 \vee$ 2 $2.7 \vee \le VDD \le 3.6 \vee$ 8 $2.4 \vee \le VDD \le 2.7 \vee$ 4 $1.8 \vee \le VDD \le 3.6 \vee$ 4 $1.8 \vee \le VDD \le 3.6 \vee$ 1				
		LV (low-voltage main) mode	$1.6~V \le V_{DD} \le 3.6~V$			2	
PCLBUZ0, PCLBUZ1 output fPCL		HS (high-speed main) mode	$2.7~V \leq V_{DD} \leq 3.6~V$			8	MHz
frequency			$2.4~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$			4	
		LS (low-speed main) mode	$1.8~V \le V \text{DD} \le 3.6~V$			4	
		LP (low-power main) mode	$1.8~V \le V \text{DD} \le 3.6~V$			1	
		LV (low-voltage main) mode	$1.8~V \le V \text{DD} \le 3.6~V$			4	
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			2	
Interrupt input high-level width,	tinth,	INTP0 to INTP6	$1.6~V \le V_{DD} \le 3.6~V$	1			μs
low-level width	t INTL						
Key interrupt input low-level width	tĸĸ	KR0 to KR3	$1.8~V \le V \text{DD} \le 3.6~V$	250			ns
			$1.6 \text{ V} \le \text{Vdd} < 1.8 \text{ V}$	1			μs
RESET low-level width	trsl		-	10			μs

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Viн/Voн VIH/VOH Test points VIL/VOL VIL/VOL .

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	C	onditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY1	tксү1 ≥ fc∟к/4	$2.7~V \leq V_{DD} \leq 3.6~V$	167		500		4000		1000		ns
time			$2.4~V \leq V_{DD} \leq 3.6~V$	250								
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$	—								
			$1.7~V \leq V_{DD} \leq 3.6~V$	—		—		—				
			$1.6~V \leq V \text{DD} \leq 3.6~V$	—		—		—				
SCKp high-/ low-level	tкн1, tк∟1	$2.7 \text{ V} \leq \text{V}_{DD} \leq 3$	3.6 V	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
width		$2.4 \text{ V} \leq \text{V}_{DD} \leq 3$	3.6 V	tксү1/2 - 38								
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	—							2 -	
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	—		_		—		tксү1/2 -		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	_		_		—		100		
SIp setup	tsik1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	58		110		110		110		ns
time (to SCKn↑)		$2.4~V \leq V_{DD} \leq$	3.6 V	75								
Note 1		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	—								
		$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	—		—		—		220		1
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 1.6 \text{ V}$	3.6 V	—		—		—				
SIp hold	tksi1	$2.4~V \leq V_{DD} \leq$	3.6 V	19		19		19		19		ns
time (from SCKp↑)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	—								
Note 2		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$	3.6 V	—		—		-				
Delay time	tkso1	C = 30 pF	$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		33.4		33.4		33.4		33.4	ns
from SCKp↓		Note 4	$1.8~V \leq V_{DD} \leq 3.6~V$		_							
output Note 3			$1.6~\text{V} \leq \text{V}_\text{DD} \leq 3.6~\text{V}$		—		—		—			

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Paramotor	Symbol		Conditions	HS (high-spee	Unit	
Falanielei	Symbol		onduions	MIN.	MAX.	Unit
SCKp cycle time	tKCY1	tkcy1 \ge fclk/4 2.7 V \le Vdd \le 3.6 V		250		ns
			$2.4~V \leq V_{DD} \leq 3.6~V$	500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	tксү1/2 - 36		ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$	6 V	tксү1/2 - 7 6		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	66		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	133		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp \downarrow to SOp output $^{\rm Note\;3}$	tkso1	C = 30 pF Note 4			50	ns

(TA = +85 to +105°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Condi	tions	HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode	LP (Lov main)	v-power mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	fмск > 16 MHz	8/fмск		—	—	—	—	—	_	ns
Note 5			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		6/fмск		
		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		6/fмск and 500		6/fмск		6/fмск		6/fмск		
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—		6/fмск		6/fмск		6/fмск		
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		-		-		_				
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		-		-		_				
SCKp high-/ low-level width	tкн2, tкL2	$2.7~V \leq V_{DD} \leq 3.6~V$		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$2.4~V \le V_{\text{DD}} \le 3.6~V$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		
		$1.8~V \leq V_{DD} \leq 3.6~V$		—								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		-		—		—		tксү2/2		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		-		-		_		- 66		
SIp setup time (to SCKp↑)	tsık2	$2.7~V \leq V_{DD} \leq 3.6~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30	к)	ns
Note 1		$2.4 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$		1/fмск + 30								
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		-								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		_		_		_		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		—		+ 40		
SIp hold time (from SCKp↑)	tĸsı2	$2.4~V \leq V_{DD} \leq 3.6~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Note 2		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		-								
		$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		—		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		_		—		_		+ 250		
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		2/fмск + 44		2/fмск + 110		2/fмск + 110		2/fмск + 110	ns
output Note 3			$2.4~V \leq V_{DD} \leq 3.6~V$		2/fмск + 75							
			$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		—	1						
			$1.7~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—		2/fмск	
			$1.6~V \leq V_{\text{DD}} \leq 3.6~V$		—		—		—	1	+ 220	

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Parameter Symbol		Conditions	HS (hi main	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
Notes 1, 2			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.1		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.1		0.6	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $V_{DD} \ge Vb$.

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:}$

 $\begin{array}{lll} \text{HS (high-speed main) mode:} & 24 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LP (low-power main) mode:} & 1 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \end{array}$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

- **Remark 2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(3) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 3.6 V, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter Symbol Conditions		MIN.	TYP.	MAX.	Unit		
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	8		10 Note 1	
		$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			8 Note 2	2	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±7.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AVREFP} \le \text{AVDD} \le 3.6 \text{ V}$	4.125			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	9.5			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	57.5			
		ADTYP = 1,	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.3125			
		8-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	7.875			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	54.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6~\text{V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4~\text{V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6~\text{V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN			0		AVREFP	V
		Internal reference volta	age (1.8 $V \leq V$ DD $\leq 3.6 V$)		VBGR Not	e 4	
		Temperature sensor output voltage (1.8 V \leq VDD \leq 3.6 V)			/TMP25 No	ite 4	

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

Note 3. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(9) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0)

Parameter	Symbol	Conc	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			12	bit
Overall error Note 1	AINL	12-bit resolution	2-bit resolution $2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.5	LSB
Conversion time	tCONV	ADTYP = 0, $2.4 \text{ V} \le \text{AV}_{DD} \le 3.6 \text{ V}$ 412-bit resolution 4		4.125			μs
Zero-scale error Note 1	Ezs	12-bit resolution	2-bit resolution $2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±8.0	LSB
Full-scale error Note 1	Efs	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±8.0	LSB
Integral linearity error Note 1	ILE	12-bit resolution	$2.4~V \le AV \text{DD} \le 3.6~V$			±3.5	LSB
Differential linearity error Note 1	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.5	LSB
Analog input voltage	VAIN			0		AVDD	V
		Internal reference voltage	VBGR Note 2				
		Temperature sensor outp $(2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$	V	TMP25 Note	2		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

(10) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = +85 to +105°C, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	solution RES		8			bit
Conversion time tconv Zero-scale error Note Ezs Integral linearity error Note ILE		8-bit resolution	16.0			μs
		8-bit resolution			±4.0	LSB
		8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	rature sensor output voltage V_{TMPS25} Setting ADS register = 80H, TA = +25°C			1.05		V
Internal reference voltage VBG		Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$	5			μs
		$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$	10			

2.6.3 Comparator

 $(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V) \\ (TA = +85 \ to \ +105^{\circ}C, \ 2.4 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V)$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit												
Input voltage range	lvref0	IVREF0 pin	VREF0 pin VREF1 pin			VDD - 1.4 Note	V												
	lvref1	IVREF1 pin				Vdd	V												
	lvcmp	IVCMP0, IVCMP1 pins		-0.3		VDD + 0.3	V												
Output delay	td	AV _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs												
			Comparator high-speed mode, window mode			2.0	μs												
																Comparator low-speed mode, standard mode		3.0	
			Comparator low-speed mode, window mode		4		μs												
Operation stabilization wait time	tсмр			100			μs												

Note In window mode, make sure that Vref1 - Vref0 \ge 0.2 V.

2.6.6 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

F	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse widt	h	tlw		300			μs
Detection delay time)					300	μs

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		Vlvd5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		tlw		300			μs
Detection delay time						300	μs

2.7 **RAM Data Retention Characteristics**

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage VDDDR		TA = -40 to +85°C	1.46 Note		3.6	V
		TA = +85 to +105°C	1.44 Note		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.8 **Flash Memory Programming Characteristics**

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)				
$ (TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V}) \\ (TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V}) \\ Parameter \qquad Symbol \qquad Conditions \\ Parameter \qquad Symbol \qquad Symbol \qquad Conditions \\ Parameter \qquad Symbol \ Symbol \qquad $				
Parameter	Symbol	Conditions		

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years T _A = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C ^{Note 4}		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Note 3. Corporation.

Note 4. This temperature is the average value at which data are retained.

<R>

<R>

32-pin products 3.4

R5F117BCGNA, R5F117BAGNA

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HVQFN32-5x5-0.50	PVQN0032KE-A	P32K9-50B-BAH	0.058

 \subset

C

Π

17

е

-b 🕀 x 🕅 S AB

16

DETAIL OF (A) PART

Beferance	Dimension in Millimeters		
Symbol	Min	Nom	Max
D		4.75	
E		4.75	
A			0.90
A ₁	0.00		
b	0.20	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.10
у			0.05
HD	4.95	5.00	5.05
HE	4.95	5.00	5.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.19	0.20	0.21
D ₂		3.30	
E ₂		3.30	

ר

24

25

-Lp