

Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

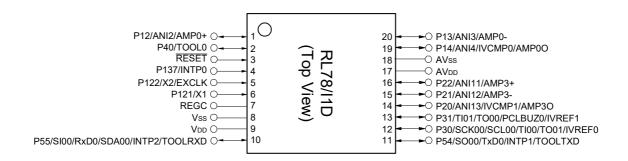
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, UART/USART                                               |
| Peripherals                | LVD, POR, WDT                                                                   |
| Number of I/O              | 19                                                                              |
| Program Memory Size        | 32KB (32K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 3K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 3.6V                                                                     |
| Data Converters            | A/D 12x8/12b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 30-LSSOP (0.240", 6.10mm Width)                                                 |
| Supplier Device Package    | 30-LSSOP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117acgsp-30 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


RL78/I1D 1. OUTLINE

## 1.3 Pin Configuration (Top View)

### 1.3.1 **20-pin products**

<R>

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)



- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1  $\mu$ F).
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.

**Remark** For pin identification, see **1.4 Pin Identification**.

# (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

(5/5)

| Items                          | Symbol | Cond                                                                  | itions       |                                       | MIN. | TYP. | MAX. | Unit |
|--------------------------------|--------|-----------------------------------------------------------------------|--------------|---------------------------------------|------|------|------|------|
| Input leakage<br>current, high | ILIH1  | P00 to P04, P30 to P33, P40,<br>P50 to P57, P60 to P63, P130,<br>P137 | VI = VDD     |                                       |      |      | 1    | μА   |
|                                | ILIH2  | RESET                                                                 | VI = VDD     |                                       |      |      | 1    | μА   |
|                                | Ішнз   | P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)                        | VI = VDD     | In input port or external clock input |      |      | 1    | μА   |
|                                |        |                                                                       |              | In resonator connection               |      |      | 10   | μΑ   |
|                                | ILIH4  | P10 to P17, P20 to P25                                                | Vı = AVDD    |                                       |      |      | 1    | μΑ   |
| Input leakage<br>current, low  | ILIL1  | P00 to P04, P30 to P33, P40,<br>P50 to P57, P60 to P63, P130,<br>P137 | Vı = Vss     |                                       |      |      | -1   | μΑ   |
|                                | ILIL2  | RESET                                                                 | Vı = Vss     |                                       |      |      | -1   | μА   |
|                                | ILIL3  | P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)                        | Vı = Vss     | In input port or external clock input |      |      | -1   | μА   |
|                                |        |                                                                       |              | In resonator connection               |      |      | -10  | μА   |
|                                | ILIL4  | P10 to P17, P20 to P25                                                | Vı = AVss    |                                       |      |      | -1   | μΑ   |
| On-chip pull-up resistance     | Rυ     | P00 to P04, P30 to P33, P40,<br>P50 to P57, P130                      | Vı = Vss, In | input port                            | 10   | 20   | 100  | kΩ   |

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

#### (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

(2/4)

| Parameter      | Symbol           |           |                 | Conditions                                               |                  |                      | MIN. | TYP. | MAX. | Unit |
|----------------|------------------|-----------|-----------------|----------------------------------------------------------|------------------|----------------------|------|------|------|------|
| Supply current | I <sub>DD1</sub> | Operating | Subsystem clock | fsx = 32.768 kHz,                                        | Normal operation | Square wave input    |      | 3.2  | 6.1  | μА   |
| Note 1         |                  | mode      | operation       | T <sub>A</sub> = -40°C Note 4                            |                  | Resonator connection |      | 3.3  | 6.1  |      |
|                |                  |           |                 | fsx = 32.768 kHz,                                        | Normal operation | Square wave input    |      | 3.4  | 6.1  |      |
|                |                  |           |                 | T <sub>A</sub> = +25°C Note 4                            |                  | Resonator connection |      | 3.6  | 6.1  |      |
|                |                  |           |                 | fsx = 32.768 kHz,<br>T <sub>A</sub> = +50°C Note 4       | Normal operation | Square wave input    |      | 3.5  | 6.7  |      |
|                |                  |           |                 | T <sub>A</sub> = +50°C Note 4                            |                  | Resonator connection |      | 3.7  | 6.7  |      |
|                |                  |           |                 | fsx = 32.768 kHz,                                        | Normal operation | Square wave input    |      | 3.7  | 7.5  |      |
|                |                  |           |                 | T <sub>A</sub> = +70°C Note 4                            |                  | Resonator connection |      | 3.9  | 7.5  |      |
|                |                  |           |                 | fsx = 32.768 kHz,                                        | Normal operation | Square wave input    |      | 4.0  | 8.9  |      |
|                |                  |           |                 | T <sub>A</sub> = +85°C Note 4                            | = +85°C Note 4   | Resonator connection |      | 4.2  | 8.9  |      |
|                |                  |           |                 | fsx = 32.768 kHz,                                        | Normal operation | Square wave input    |      | 4.5  | 21.0 |      |
|                |                  |           |                 | T <sub>A</sub> = +105°C Note 4                           |                  | Resonator connection |      | 4.7  | 21.1 |      |
|                |                  |           |                 | fil = 15 kHz, T <sub>A</sub> = -40°C Note 6              | Normal operation |                      |      | 1.8  | 5.9  |      |
|                |                  |           |                 | fil = 15 kHz, T <sub>A</sub> = +25°C Note 6              | Normal operation |                      |      | 1.9  | 5.9  |      |
|                |                  |           |                 | fil = 15 kHz, T <sub>A</sub> = +85°C Note 6              | Normal operation |                      |      | 2.3  | 8.7  |      |
|                |                  |           |                 | f <sub>IL</sub> = 15 kHz, T <sub>A</sub> = +105°C Note 6 | Normal operation |                      |      | 3.0  | 20.9 |      |

- <R>
- Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.
- **Note 2.** When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- **Note 3.** When the high-speed system clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Note 4. When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped. When ultra-low-power consumption oscillation is set (AMPHS1, AMPHS0) = (1, 0). The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.
- Note 5. When the high-speed system clock, high-speed on-chip oscillator clock, sub clock, and low-speed on-chip oscillator clock are stopped. The MAX values include the current of peripheral operation except BGO operation, and the STOP leakage current. However, the real time clock, watchdog timer, LVD circuit, and A/D converter are stopped.
- **Note 6.** When the high-speed system clock, high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock, and sub clock are stopped.
- **Note 7.** When the high-speed system clock, high-speed on-chip oscillator clock, low-speed on-chip oscillator clock, and sub clock are stopped.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fil: High-speed on-chip oscillator clock frequency (24 MHz max.)
- Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)
- Remark 4. fil: Low-speed on-chip oscillator clock frequency
- Remark 5. fsx: Sub clock frequency (XT1 clock oscillation frequency)
- Remark 6. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or low-speed on-chip oscillator clock frequency)
- Remark 7. Except subsystem clock operation, temperature condition of the TYP. value is Ta = 25°C

<R>

<R>

# (Ta = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V) (Ta = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

(3/4)

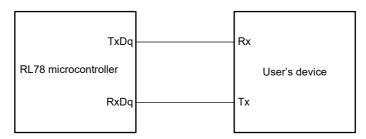
| Parameter      | Symbol           |      |                            | Conditions                                         |                                                      |                      | MIN. | TYP. | MAX.  | Unit       |
|----------------|------------------|------|----------------------------|----------------------------------------------------|------------------------------------------------------|----------------------|------|------|-------|------------|
| Supply current | I <sub>DD2</sub> | HALT | HS (high-speed main) mode  | fin = 24 MHz Note 4,                               | V <sub>DD</sub> = 3.0 V                              |                      |      | 0.37 | 1.83  | mA         |
| Note 1         | Note 2           | mode |                            | T <sub>A</sub> = -40 to +85°C                      |                                                      |                      |      |      |       |            |
|                |                  |      |                            | fih = 24 MHz Note 4,                               | V <sub>DD</sub> = 3.0 V                              |                      |      |      | 2.85  |            |
|                |                  |      |                            | T <sub>A</sub> = +85 to +105°C                     |                                                      |                      |      |      |       |            |
|                |                  |      |                            | fin = 16 MHz Note 4,                               | V <sub>DD</sub> = 3.0 V                              |                      |      | 0.36 | 1.38  |            |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      |                                                      |                      |      |      |       |            |
|                |                  |      |                            | fin = 16 MHz Note 4,                               | V <sub>DD</sub> = 3.0 V                              |                      |      |      | 2.08  |            |
|                |                  |      |                            | T <sub>A</sub> = +85 to +105°C                     |                                                      |                      |      |      |       |            |
|                |                  |      | LS (low-speed main) mode   | fin = 8 MHz Note 4,                                | V <sub>DD</sub> = 3.0 V                              |                      |      | 250  | 710   | μΑ         |
|                |                  |      | (MCSEL = 0)                | T <sub>A</sub> = -40 to +85°C                      | $V_{DD} = 2.0 \text{ V}$                             |                      |      | 250  | 710   |            |
|                |                  |      | LS (low-speed main) mode   | fin = 4 MHz Note 4,                                | V <sub>DD</sub> = 3.0 V                              |                      |      | 204  | 400   | μΑ         |
|                |                  |      | (MCSEL = 1)                | T <sub>A</sub> = -40 to +85°C                      | $V_{DD} = 2.0 \text{ V}$                             |                      |      | 204  | 400   |            |
|                |                  |      |                            | f <sub>IM</sub> = 4 MHz Note 7,                    | V <sub>DD</sub> = 3.0 V                              |                      |      | 40   | 250   |            |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      | V <sub>DD</sub> = 2.0 V                              |                      |      | 40   | 250   |            |
|                |                  |      | LV (low-voltage main) mode | fin = 3 MHz Note 4,                                | V <sub>DD</sub> = 3.0 V                              |                      |      | 425  | 800   | μΑ         |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      | V <sub>DD</sub> = 2.0 V                              |                      |      | 425  | 800   |            |
|                |                  |      | LP (low-power main) mode   | fin = 1 MHz Note 4,                                | V <sub>DD</sub> = 3.0 V                              |                      |      | 192  | 400   | μА         |
|                |                  |      | (MCSEL = 1)                | $T_A = -40 \text{ to } +85^{\circ}\text{C}$        | $V_{DD} = 3.0 \text{ V}$                             |                      |      | 192  | 400   | μΑ         |
|                |                  |      | (                          |                                                    | V <sub>DD</sub> = 3.0 V                              |                      |      | 27   | 100   |            |
|                |                  |      |                            | fim = 1 MHz Note 7,                                | $V_{DD} = 3.0 \text{ V}$<br>$V_{DD} = 2.0 \text{ V}$ |                      |      | 27   | 100   |            |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      |                                                      |                      |      |      |       |            |
|                |                  |      | HS (high-speed main) mode  | f <sub>MX</sub> = 20 MHz Note 3,                   | V <sub>DD</sub> = 3.0 V                              | Square wave input    |      | 0.20 | 1.55  | mA         |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      |                                                      | Resonator connection |      | 0.40 | 1.74  |            |
|                |                  |      |                            | $f_{MX} = 20 \text{ MHz} \text{ Note } 3,$         | $V_{DD} = 3.0 \text{ V}$                             | Square wave input    |      |      | 2.45  |            |
|                |                  |      |                            | T <sub>A</sub> = +85 to +105°C                     |                                                      | Resonator connection |      |      | 2.57  |            |
|                |                  |      |                            | $f_{MX} = 10 \text{ MHz }^{Note 3},$               | $V_{DD} = 3.0 \text{ V}$                             | Square wave input    |      | 0.15 | 0.86  |            |
|                |                  |      |                            | $T_A = -40 \text{ to } +85^{\circ}\text{C}$        |                                                      | Resonator connection |      | 0.30 | 0.93  |            |
|                |                  |      |                            | $f_{MX} = 10 \text{ MHz} \text{ Note } 3,$         | $V_{DD} = 3.0 \text{ V}$                             | Square wave input    |      |      | 1.28  |            |
|                |                  |      |                            | $T_A = +85 \text{ to } +105^{\circ}\text{C}$       |                                                      | Resonator connection |      |      | 1.36  |            |
|                |                  |      | LS (low-speed main) mode   | f <sub>MX</sub> = 8 MHz Note 3,                    | V <sub>DD</sub> = 3.0 V                              | Square wave input    |      | 68   | 550   | μΑ         |
|                |                  |      | (MCSEL = 0)                | T <sub>A</sub> = -40 to +85°C                      |                                                      | Resonator connection |      | 120  | 590   |            |
|                |                  |      |                            | f <sub>MX</sub> = 8 MHz Note 3,                    | V <sub>DD</sub> = 2.0 V                              | Square wave input    |      | 68   | 550   |            |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      |                                                      | Resonator connection |      | 120  | 590   |            |
|                |                  |      | LS (low-speed main) mode   | f <sub>MX</sub> = 4 MHz Note 3,                    | V <sub>DD</sub> = 3.0 V                              | Square wave input    |      | 23   | 128   | μΑ         |
|                |                  |      | (MCSEL = 1)                | T <sub>A</sub> = -40 to +85°C                      |                                                      | Resonator connection |      | 65   | 200   |            |
|                |                  |      |                            | f <sub>MX</sub> = 1 MHz Note 3,                    | V <sub>DD</sub> = 2.0 V                              | Square wave input    |      | 23   | 128   |            |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      |                                                      | Resonator connection |      | 65   | 200   |            |
|                |                  |      | LP (low-power main) mode   | f <sub>MX</sub> = 4 MHz Note 3,                    | V <sub>DD</sub> = 3.0 V                              | Square wave input    |      | 10   | 64    | μА         |
|                |                  |      | (MCSEL = 1)                | T <sub>A</sub> = -40 to +85°C                      |                                                      | Resonator connection |      | 48   | 150   |            |
|                |                  |      |                            | f <sub>MX</sub> = 1 MHz Note 3.                    | V <sub>DD</sub> = 2.0 V                              |                      |      | 10   | 64    |            |
|                |                  |      |                            | T <sub>A</sub> = -40 to +85°C                      |                                                      | Resonator connection |      | 48   | 150   |            |
|                |                  |      | Subsystem clock operation  | fsx = 32.768 kHz,                                  | 1                                                    | Square wave input    |      | 0.24 | 0.57  | μА         |
|                |                  |      | ,                          | T <sub>A</sub> = -40°C Note 5                      |                                                      | Resonator connection |      | 0.42 | 0.76  | ļ <i>1</i> |
|                |                  |      |                            | fsx = 32.768 kHz,                                  |                                                      | Square wave input    |      | 0.30 | 0.57  |            |
|                |                  |      |                            | $T_A = +25^{\circ}C$ Note 5                        |                                                      | Resonator connection |      | 0.54 | 0.76  |            |
|                |                  |      |                            | fsx = 32.768 kHz,                                  |                                                      | Square wave input    |      | 0.35 | 1.17  |            |
|                |                  |      |                            | TA = +50°C Note 5                                  |                                                      | Resonator connection |      | 1    | 1.17  |            |
|                |                  |      |                            |                                                    |                                                      |                      |      | 0.60 |       |            |
|                |                  |      |                            | fsx = 32.768 kHz,<br>T <sub>A</sub> = +70°C Note 5 |                                                      | Square wave input    |      | 0.42 | 1.97  |            |
|                |                  |      |                            |                                                    |                                                      | Resonator connection |      | 0.70 | 2.16  |            |
|                |                  |      |                            | fsx = 32.768 kHz,                                  |                                                      | Square wave input    |      | 0.80 | 3.37  |            |
|                |                  |      |                            | T <sub>A</sub> = +85°C Note 5                      |                                                      | Resonator connection |      | 0.95 | 3.56  |            |
|                |                  |      |                            | fsx = 32.768 kHz,                                  |                                                      | Square wave input    |      | 1.80 | 17.10 |            |
|                |                  |      |                            | T <sub>A</sub> = +105°C Note 5                     |                                                      | Resonator connection |      | 2.20 | 17.50 |            |
|                |                  |      |                            | fil = 15 kHz, TA = -40°0                           | Note 6                                               |                      |      | 0.40 | 1.22  | μΑ         |
|                |                  |      |                            | fil = 15 kHz, Ta = +25°                            | C Note 6                                             |                      |      | 0.47 | 1.22  |            |
|                |                  |      |                            | fil = 15 kHz, TA = +85°                            | C Note 6                                             |                      |      | 0.80 | 3.30  |            |
|                |                  |      |                            |                                                    |                                                      |                      |      |      |       |            |

(Notes and Remarks are listed on the next page.)

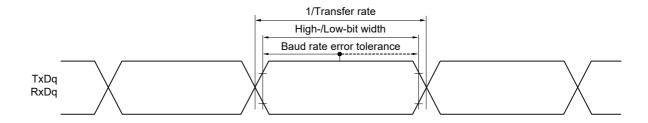


### 2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)


(1/2)

| Items                                                      | Symbol     |                                 | Conditions                  |                                                    | MIN.          | TYP. | MAX. | Unit |
|------------------------------------------------------------|------------|---------------------------------|-----------------------------|----------------------------------------------------|---------------|------|------|------|
| Instruction cycle                                          | Tcy        | Main system clock               | HS (high-speed main)        | $2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 0.04167       |      | 1    | μs   |
| (minimum instruction                                       |            | (fmain) operation               | mode                        | 2.4 V ≤ V <sub>DD</sub> < 2.7 V                    | 0.0625        |      | 1    | μs   |
| execution time)                                            |            |                                 | LS (low-speed main)         | 1.8 V ≤ VDD ≤ 3.6 V                                | 0.125         |      | 1    | μs   |
|                                                            |            |                                 | mode                        | PMMC. MCSEL = 0                                    |               |      |      |      |
|                                                            |            |                                 |                             | $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 0.25          |      | 1    |      |
|                                                            |            |                                 |                             | PMMC. MCSEL = 1                                    |               |      |      |      |
|                                                            |            |                                 | LP (low-power main)<br>mode | $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ |               | 1    |      | μs   |
|                                                            |            |                                 | LV (low-voltage main)       | $1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$ | 0.25          |      | 1    | μs   |
|                                                            |            |                                 | mode                        | 1.6 V ≤ V <sub>DD</sub> < 1.8 V                    | 0.34          |      | 1    |      |
|                                                            |            | Subsystem clock                 | fsx                         | $1.8 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$ | 28.5          | 30.5 | 31.3 | μs   |
|                                                            |            | (fsub) operation                | fıL                         | $1.8 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$ |               | 66.7 |      |      |
|                                                            |            | In the self-                    | HS (high-speed main)        | $2.7 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$ | 0.04167       |      | 1    | μs   |
|                                                            |            | programming                     | mode                        | 2.4 V ≤ V <sub>DD</sub> < 2.7 V                    | 0.0625        |      | 1    | μs   |
|                                                            |            | mode                            | LS (low-speed main) mode    | $1.8 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}$   | 0.125         |      | 1    | μs   |
|                                                            |            |                                 | LV (low-voltage main) mode  | $1.8 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}$   | 0.25          |      | 1    | μs   |
| External system                                            | fex        | 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 \ | /                           |                                                    | 1.0           |      | 20.0 | MHz  |
| clock frequency                                            |            | 2.4 V ≤ V <sub>DD</sub> <2.7 V  |                             |                                                    | 1.0           |      | 16.0 | MHz  |
|                                                            |            | 1.8 V ≤ V <sub>DD</sub> <2.4 V  |                             |                                                    | 1             |      | 8    | MHz  |
|                                                            |            | 1.6 V ≤ V <sub>DD</sub> <1.8 V  |                             |                                                    | 1             |      | 4    | MHz  |
|                                                            | fexs       |                                 |                             |                                                    | 32            |      | 35   | kHz  |
| External system                                            | texн,      | 2.7 V ≤ V <sub>DD</sub> ≤ 3.6 \ | /                           |                                                    | 24            |      |      | ns   |
| clock input high-level                                     | texL       | 2.4 V ≤ V <sub>DD</sub> <2.7 V  |                             |                                                    | 30            |      |      | ns   |
| width, low-level width                                     |            | 1.8 V ≤ V <sub>DD</sub> <2.4 V  |                             |                                                    | 60            |      |      | ns   |
|                                                            |            | 1.6 V ≤ V <sub>DD</sub> <1.8 V  |                             |                                                    | 120           |      |      | ns   |
|                                                            | texhs,     |                                 |                             |                                                    | 13.7          |      |      | μs   |
| TI00 to TI03 input<br>high-level width,<br>low-level width | tтін, tтіL |                                 |                             |                                                    | 1/fмск+<br>10 |      |      | ns   |


Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3))

#### **UART** mode connection diagram (during communication at same potential)



#### **UART** mode bit width (during communication at same potential) (reference)



**Remark 1.** q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01))

#### (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le AVDD = VDD \le 3.6 \text{ V}, \text{Vss} = AVss = 0 \text{ V})$ 

| Parameter                                  | Symbol                     | 0                                                   | Conditions                                       |              | HS (high-speed main) Mode |      |  |
|--------------------------------------------|----------------------------|-----------------------------------------------------|--------------------------------------------------|--------------|---------------------------|------|--|
| raiametei                                  | Tarameter Symbol Continuon |                                                     | onditions                                        | MIN.         | MAX.                      | Unit |  |
| SCKp cycle time                            | tKCY1                      | tkcy1 ≥ fcLk/4                                      | $2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}$ | 250          |                           | ns   |  |
|                                            |                            |                                                     | 2.4 V ≤ V <sub>DD</sub> ≤ 3.6 V                  | 500          |                           | ns   |  |
| SCKp high-/low-level width                 | tkh1, tkl1                 | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ |                                                  | tkcy1/2 - 36 |                           | ns   |  |
|                                            |                            | 2.4 V ≤ V <sub>DD</sub> ≤ 3.6                       | S V                                              | tkcy1/2 - 76 |                           | ns   |  |
| SIp setup time (to SCKp↑) Note 1           | tsıĸ1                      | 2.7 V ≤ V <sub>DD</sub> ≤ 3.6                       | S V                                              | 66           |                           | ns   |  |
|                                            |                            | 2.4 V ≤ VDD ≤ 3.6 V                                 |                                                  | 133          |                           | ns   |  |
| SIp hold time (from SCKp↑) Note 2          | tksıı                      |                                                     |                                                  | 38           |                           | ns   |  |
| Delay time from SCKp↓ to SOp output Note 3 | tkso1                      | C = 30 pF Note 4                                    |                                                  |              | 50                        | ns   |  |

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)
- Remark 2. fmck: Serial array unit operation clock frequency
  (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
  n: Channel number (mn = 00, 01))

- **Note 1.** The value must also be equal to or less than fMCK/4.
- Note 2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

#### (6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

#### (TA = -40 to +85°C, 1.8 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

(1/2)

| Parameter     | Symbol | Conditions |                                                                                                          | , | HS (high-speed main) Mode |      | LS (low-speed main) Mode |      | w-power<br>) mode    | LV (low-voltage<br>main) Mode |                      | Unit |
|---------------|--------|------------|----------------------------------------------------------------------------------------------------------|---|---------------------------|------|--------------------------|------|----------------------|-------------------------------|----------------------|------|
|               |        |            | _                                                                                                        |   | MAX.                      | MIN. | MAX.                     | MIN. | MAX.                 | MIN.                          | MAX.                 |      |
| Transfer rate |        | reception  | $2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V},$<br>$2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$     |   | fMCK/6<br>Note 1          |      | fMCK/6<br>Note 1         |      | fMCK/6<br>Note 1     |                               | fMCK/6<br>Note 1     | bps  |
| Notes 1, 2    |        |            | Theoretical value of the maximum transfer rate  fMCK = fCLK Note 3                                       |   | 4.0                       |      | 1.3                      |      | 0.1                  |                               | 0.6                  | Mbps |
|               |        |            | $1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$<br>$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$ |   | fMCK/6<br>Notes 1, 2      |      | fMCK/6<br>Notes 1, 2     |      | fMCK/6<br>Notes 1, 2 |                               | fMCK/6<br>Notes 1, 2 | bps  |
|               |        |            | Theoretical value of the maximum transfer rate fMCK = fCLK Note 3                                        |   | 4.0                       |      | 1.3                      |      | 0.1                  |                               | 0.6                  | Mbps |

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

**Note 2.** Use it with  $VDD \ge Vb$ .

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V  $\leq$  VDD  $\leq$  3.6 V)

16 MHz (2.4 V  $\leq$  VDD  $\leq$  3.6 V)

LS (low-speed main) mode: 8 MHz (1.8 V  $\leq$  VDD  $\leq$  3.6 V) LP (low-power main) mode: 1 MHz (1.8 V  $\leq$  VDD  $\leq$  3.6 V) LV (low-voltage main) mode: 4 MHz (1.6 V  $\leq$  VDD  $\leq$  3.6 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01)

#### (6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

#### $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

(2/2)

| Parameter            | Symbol   |              | Conditions                                                                                                 |  |      | speed main) Mode | Unit  |
|----------------------|----------|--------------|------------------------------------------------------------------------------------------------------------|--|------|------------------|-------|
| raiametei            | Syllibol |              | Conditions                                                                                                 |  | MIN. | MAX.             | Offic |
| Transfer rate Note 2 |          | Transmission | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ |  |      | Note 1           | bps   |
|                      |          |              | Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 2.7$ k $\Omega$ , $V_b = 2.3$ V       |  |      | 1.2 Note 2       | Mbps  |
|                      |          |              | $2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$<br>$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$   |  |      | Notes 3, 4       | bps   |
|                      |          |              | Theoretical value of the maximum $C_b$ = 50 pF, $R_b$ = 5.5 k $\Omega$ , $V_b$ = 1.6 V                     |  |      | 0.43 Note 5      | Mbps  |

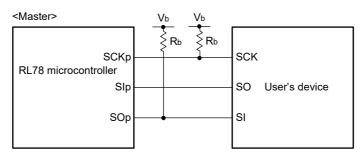
Note 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when  $2.7 \text{ V} \le \text{VdD} \le 3.6 \text{ V}$  and  $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$ 

Maximum transfer rate = 
$$\frac{1}{ \left\{ -C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b} \right) \right\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides
- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. Use it with  $VDD \ge Vb$ .
- Note 4. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when  $2.4 \text{ V} \le \text{VDD} < 3.3 \text{ V}$  and  $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

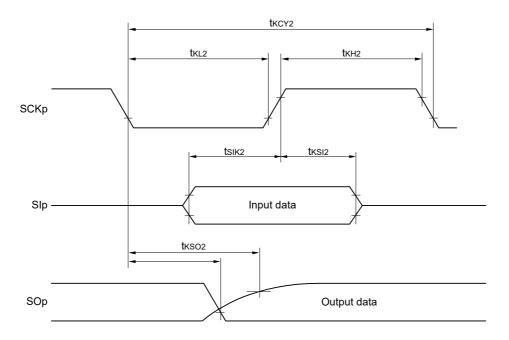

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{In } (1 - \frac{1.5}{\text{Vb}})\}}{\times 100 \text{ [\%]}}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

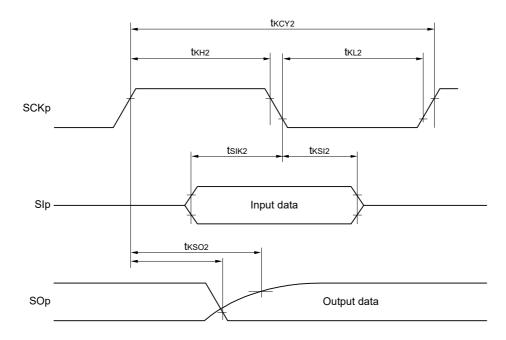
- \* This value is the theoretical value of the relative difference between the transmission and reception sides
- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



#### CSI mode connection diagram (during communication at different potential)




- **Remark 1.** Rb[ $\Omega$ ]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fmck: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01))

# CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



# CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

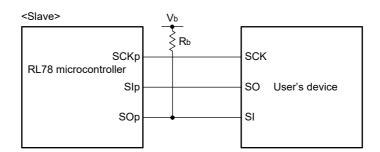


**Remark** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

### (9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

(TA = +85 to 105°C, 2.4 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

| Parameter                                  | Cumbal     | Con                                                                                                      | nditions                          | HS (high-spe  | ed main) Mode | Unit |
|--------------------------------------------|------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|---------------|------|
| Parameter                                  | Symbol     | Cor                                                                                                      | iditions                          | MIN.          | MAX.          | Unit |
| SCKp cycle time Note 1                     | tkcy2      | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$                                                     | 20 MHz < fмcк ≤ 24 MHz            | 32/fмск       |               | ns   |
|                                            |            | $2.3~V \leq V_b \leq 2.7~V$                                                                              | 16 MHz < fмcк ≤ 20 MHz            | 28/fмск       |               | ns   |
|                                            |            |                                                                                                          | 8 MHz < fмcк ≤ 16 MHz             | 24/fмск       |               | ns   |
|                                            |            |                                                                                                          | 4 MHz < fмcк ≤ 8 MHz              | 16/fмск       |               | ns   |
|                                            |            |                                                                                                          | fмcк ≤ 4 MHz                      | 12/fмск       |               | ns   |
|                                            |            | 2.4 V ≤ V <sub>DD</sub> < 3.3 V,                                                                         | 20 MHz < fмcк ≤ 24 MHz            | 72/fмск       |               | ns   |
|                                            |            | $1.6~V \leq V_b \leq 2.0~V~\text{Note 2}$                                                                | 16 MHz < fмcк ≤ 20 MHz            | 64/ƒмск       |               | ns   |
|                                            |            |                                                                                                          | 8 MHz < fмcк ≤ 16 MHz             | 52/fмск       |               | ns   |
|                                            |            |                                                                                                          | 4 MHz < fмcк ≤ 8 MHz              | 32/fмск       |               | ns   |
|                                            |            |                                                                                                          | fмcк ≤ 4 MHz                      | 20/fмск       |               | ns   |
| SCKp high-/low-level width                 | tkH2, tkL2 | $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}, 2.3 \text{ V}$                                          | tkcy2/2 - 36                      |               | ns            |      |
|                                            |            | 2.4 V ≤ V <sub>DD</sub> < 3.3 V, 1.6 V ≤ V <sub>b</sub> ≤ 2.0 V Note 2                                   |                                   | tксү2/2 - 100 |               | ns   |
| SIp setup time (to SCKp↑) Note 3           | tsık2      | $2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}, 2.3 \text{ V}$                                          | / ≤ V <sub>b</sub> ≤ 2.7 V        | 1/fмск + 40   |               | ns   |
|                                            |            | 2.4 V ≤ V <sub>DD</sub> < 3.3 V, 1.6 \                                                                   | / ≤ V <sub>b</sub> ≤ 2.0 V Note 2 | 1/fмск + 60   |               | ns   |
| SIp hold time (from SCKp↑) Note 4          | tks12      |                                                                                                          |                                   | 1/fмск + 62   |               | ns   |
| Delay time from SCKp↓ to SOp output Note 5 | tkso2      | $2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V}, 2.3 \text{ V}$<br>Cb = 30 pF, Rb = 2.7 k $\Omega$       | / ≤ V <sub>b</sub> ≤ 2.7 V        |               | 2/fmck + 428  | ns   |
|                                            |            | 2.4 V $\leq$ V <sub>DD</sub> $<$ 3.3 V, 1.6 V<br>C <sub>b</sub> = 30 pF, R <sub>b</sub> = 5.5 k $\Omega$ | / ≤ V <sub>b</sub> ≤ 2.0 V Note 2 |               | 2/fмск + 1146 | ns   |


(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with  $VDD \ge Vb$ .
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



#### CSI mode connection diagram (during communication at different potential)



- Remark 1.  $R_b[\Omega]$ : Communication line (SOp) pull-up resistance,  $C_b[F]$ : Communication line (SOp) load capacitance,  $V_b[V]$ : Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fmck: Serial array unit operation clock frequency
  (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
  n: Channel number (mn = 00, 01))

# 2.6 Analog Characteristics

### 2.6.1 A/D converter characteristics

#### Classification of A/D converter characteristics

| Reference Voltage Input Channel                                        | Reference voltage (+) = AVREFP<br>Reference voltage (-) = AVREFM | Reference voltage (+) = AVDD<br>Reference voltage (-) = AVss | Reference voltage (+) = Internal reference voltage  Reference voltage (-) = AVss |
|------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------|
| High-accuracy channel; ANI0 to ANI13 (input buffer power supply: AVDD) | Refer to <b>2.6.1 (1)</b> .                                      | Refer to <b>2.6.1 (2)</b> .                                  | Refer to <b>2.6.1 (5)</b> .                                                      |
|                                                                        | Refer to <b>2.6.1 (7)</b> .                                      | Refer to <b>2.6.1 (7)</b> .                                  | Refer to <b>2.6.1 (10)</b> .                                                     |
| Standard channel; ANI16 to ANI18 (input buffer power supply: VDD)      | Refer to <b>2.6.1 (3)</b> .<br>Refer to <b>2.6.1 (8)</b> .       | Refer to <b>2.6.1 (4)</b> .<br>Refer to <b>2.6.1 (9)</b> .   |                                                                                  |
| Internal reference voltage,                                            | Refer to <b>2.6.1 (3)</b> .                                      | Refer to <b>2.6.1 (4)</b> .                                  | _                                                                                |
| Temperature sensor output voltage                                      | Refer to <b>2.6.1 (8)</b> .                                      | Refer to <b>2.6.1 (9)</b> .                                  |                                                                                  |

(4) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

| Parameter                    | Symbol | Con                                              | ditions                                             | MIN.   | TYP.                    | MAX.      | Unit |
|------------------------------|--------|--------------------------------------------------|-----------------------------------------------------|--------|-------------------------|-----------|------|
| Resolution                   | Res    |                                                  | 2.4 V ≤ AVDD ≤ 3.6 V                                | 8      |                         | 12        | bit  |
|                              |        |                                                  | 1.8 V ≤ AVDD ≤ 3.6 V                                | 8      |                         | 10 Note 1 |      |
|                              |        |                                                  | 1.6 V ≤ AVDD ≤ 3.6 V                                |        | 8 Note 2                | 1         |      |
| Overall error Note 3         | AINL   | 12-bit resolution                                | 2.4 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±8.5      | LSB  |
|                              |        | 10-bit resolution                                | 1.8 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±6.0      |      |
|                              |        | 8-bit resolution                                 | 1.6 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±3.5      |      |
| Conversion time              | tconv  | ADTYP = 0,<br>12-bit resolution                  | $2.4 \text{ V} \le \text{AVDD} \le 3.6 \text{ V}$   | 4.125  |                         |           | μs   |
|                              |        | ADTYP = 0,<br>10-bit resolution Note 1           | 1.8 V ≤ AVDD ≤ 3.6 V                                | 9.5    |                         |           |      |
|                              |        | ADTYP = 0,<br>8-bit resolution Note 2            | 1.6 V ≤ AVDD ≤ 3.6 V                                | 57.5   |                         |           |      |
|                              |        | ADTYP = 1,                                       | 2.4 V ≤ AVDD ≤ 3.6 V                                | 3.3125 |                         |           |      |
|                              |        | 8-bit resolution                                 | 1.8 V ≤ AVDD ≤ 3.6 V                                | 7.875  |                         |           |      |
|                              |        |                                                  | $1.6 \text{ V} \leq \text{AVdd} \leq 3.6 \text{ V}$ | 54.25  |                         |           |      |
| Zero-scale error Note 3      | Ezs    | 12-bit resolution                                | 2.4 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±8.0      | LSB  |
|                              |        | 10-bit resolution                                | 1.8 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±5.5      |      |
|                              |        | 8-bit resolution                                 | 1.6 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±3.0      |      |
| Full-scale error Note 3      | Ers    | 12-bit resolution                                | 2.4 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±8.0      | LSB  |
|                              |        | 10-bit resolution                                | 1.8 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±5.5      |      |
|                              |        | 8-bit resolution                                 | 1.6 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±3.0      |      |
| Integral linearity error     | ILE    | 12-bit resolution                                | 2.4 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±3.5      | LSB  |
| Note 3                       |        | 10-bit resolution                                | 1.8 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±2.5      |      |
|                              |        | 8-bit resolution                                 | 1.6 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±1.5      |      |
| Differential linearity error | DLE    | 12-bit resolution                                | 2.4 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±2.5      | LSB  |
| Note 3                       |        | 10-bit resolution                                | 1.8 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±2.5      |      |
|                              |        | 8-bit resolution                                 | 1.6 V ≤ AVDD ≤ 3.6 V                                |        |                         | ±2.0      |      |
| Analog input voltage         | VAIN   |                                                  |                                                     | 0      |                         | AVDD      | V    |
|                              |        | Internal reference voltag                        | e (1.8 V ≤ VDD ≤ 3.6 V)                             | ,      | V <sub>BGR</sub> Note   | 4         |      |
|                              |        | Temperature sensor outp<br>(1.8 V ≤ VDD ≤ 3.6 V) | out voltage                                         | ٧      | 7 <sub>TMP25</sub> Note | 4         |      |

Note 1. Cannot be used for lower 2 bits of ADCR register

Note 2. Cannot be used for lower 4 bits of ADCR register

**Note 3.** Excludes quantization error ( $\pm 1/2$  LSB).

Note 4. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

 ${\bf Caution} \qquad {\bf Always} \ {\bf use} \ {\bf AVdd} \ pin \ with \ the \ {\bf same} \ potential \ {\bf as} \ the \ {\bf Vdd} \ pin.$ 



(9) When reference voltage (+) = AV<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0)

| Parameter                       | Symbol | Cond                                                       | ditions                                           | MIN.  | TYP.       | MAX. | Unit |
|---------------------------------|--------|------------------------------------------------------------|---------------------------------------------------|-------|------------|------|------|
| Resolution                      | Res    |                                                            | 2.4 V ≤ AVDD ≤ 3.6 V                              | 8     |            | 12   | bit  |
| Overall error Note 1            | AINL   | 12-bit resolution                                          | 2.4 V ≤ AVDD ≤ 3.6 V                              |       |            | ±8.5 | LSB  |
| Conversion time                 | tconv  | ADTYP = 0,<br>12-bit resolution                            | $2.4 \text{ V} \le \text{AVdd} \le 3.6 \text{ V}$ | 4.125 |            |      | μs   |
| Zero-scale error Note 1         | Ezs    | 12-bit resolution                                          | 2.4 V ≤ AVDD ≤ 3.6 V                              |       |            | ±8.0 | LSB  |
| Full-scale error Note 1         | Ers    | 12-bit resolution                                          | 2.4 V ≤ AVDD ≤ 3.6 V                              |       |            | ±8.0 | LSB  |
| Integral linearity error Note 1 | ILE    | 12-bit resolution                                          | 2.4 V ≤ AVDD ≤ 3.6 V                              |       |            | ±3.5 | LSB  |
| Differential linearity error    | DLE    | 12-bit resolution                                          | 2.4 V ≤ AVDD ≤ 3.6 V                              |       |            | ±2.5 | LSB  |
| Analog input voltage            | Vain   |                                                            |                                                   | 0     |            | AVDD | V    |
|                                 |        | Internal reference voltage                                 | e (2.4 V ≤ VDD ≤ 3.6 V)                           | '     | BGR Note   | 2    |      |
|                                 |        | Temperature sensor outp<br>(2.4 V $\leq$ VDD $\leq$ 3.6 V) | ut voltage                                        | V     | TMP25 Note | 2    |      |

**Note 1.** Excludes quantization error ( $\pm 1/2$  LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.

## 2.6.3 Comparator

(TA = -40 to +85°C, 1.6 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

| Parameter                         | Symbol | Conditions                                 |                                           | MIN.     | TYP. | MAX.                       | Unit |
|-----------------------------------|--------|--------------------------------------------|-------------------------------------------|----------|------|----------------------------|------|
| Input voltage range               | Ivref0 | IVREF0 pin                                 |                                           | 0        |      | V <sub>DD</sub> - 1.4 Note | V    |
|                                   | lvref1 | IVREF1 pin                                 |                                           | 1.4 Note |      | V <sub>DD</sub>            | V    |
|                                   | Ivcmp  | IVCMP0, IVCMP1 pins                        |                                           | -0.3     |      | V <sub>DD</sub> + 0.3      | V    |
| Output delay                      | td     | AVDD = 3.0 V<br>Input slew rate > 50 mV/μs | Comparator high-speed mode, standard mode |          |      | 1.2                        | μs   |
|                                   |        |                                            | Comparator high-speed mode, window mode   |          |      | 2.0                        | μs   |
|                                   |        |                                            | Comparator low-speed mode, standard mode  |          | 3.0  |                            | μs   |
|                                   |        |                                            | Comparator low-speed mode, window mode    |          | 4    |                            | μs   |
| Operation stabilization wait time | tсмР   |                                            |                                           | 100      |      |                            | μs   |

**Note** In window mode, make sure that  $Vref1 - Vref0 \ge 0.2 \text{ V}$ .

#### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.