

 \times FI

Welcome to E-XFL.COM

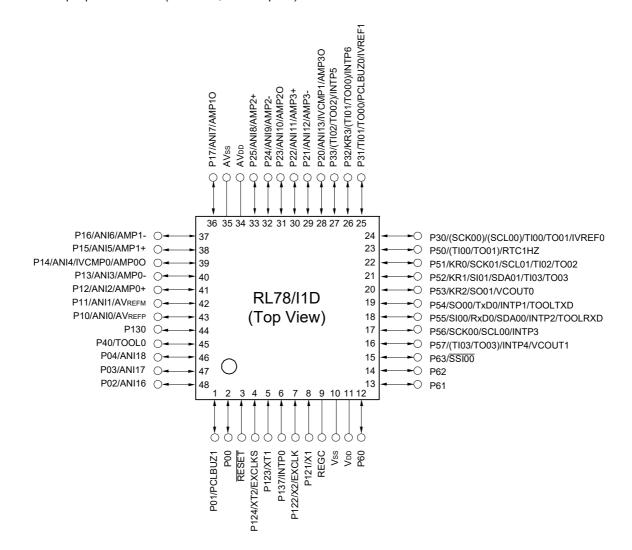
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117bagna-40

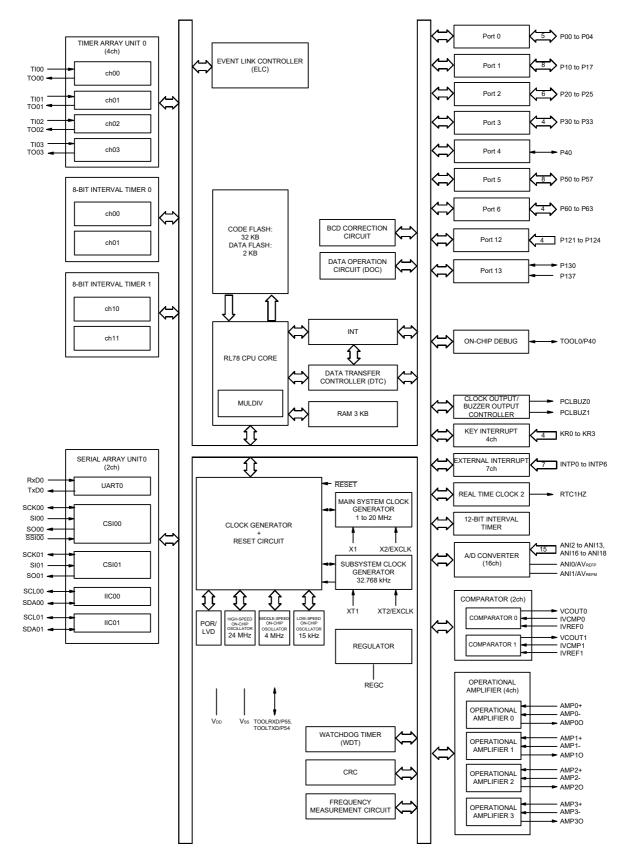

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.5 48-pin products

<R>

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)



- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AV $\ensuremath{\mathsf{DD}}$ pin the same potential as $\ensuremath{\mathsf{VDD}}$ pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

1.5 Block Diagram

1.5.1 48-pin products

(2/2)

			.	;		(2)					
		20-pin	24-pin	30-pin	32-pin	48-pin					
lter	n	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)					
Clock output/buzzer	output	1	1	1	1	2					
		 [20-pin, 24-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) [30-pin, 32-pin, 48-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (subsystem clock generator and RTC/other clock: fsxR = 32.768 kHz operation) 									
12-bit resolution A/D	converter	6 channels	6 channels	12 channels	12 channels	17 channels					
Comparator (Windov	v Comparator)	2 channels									
Operational amplifier		2 channels		4 channels							
Data Operation Circu	uit (DOC)	Comparison, addition	n, and subtraction of 1	6-bit data							
Serial interface		• CSI: 1 channel/UA [24-pin, 32-pin, 48-p	 [20-pin, 30-pin products] CSI: 1 channel/UART: 1 channel/simplified l²C: 1 channel [24-pin, 32-pin, 48-pin products] CSI: 2 channels/UART: 1 channel/simplified l²C: 2 channels 								
Data transfer control	ler (DTC)	16 sources	20 sources	19 sources	20 sources	22 sources					
Event link controller	(ELC)	Event input: 15 Event trigger output: 5	Event input: 17 Event trigger output: 5	Event input: 17 Event trigger output: 7	Event input: 17 Event trigger output: 7	Event input: 20 Event trigger output: 7					
Vectored interrupt	Internal	22	22	24	24	24					
sources	External	3	5	5	5	8					
Key interrupt		—	3	—	3	4					
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access									
Power-on-reset circu	it	 Power-on-reset: 1.51 ± 0.04V (T_A = -40 to +85°C) Power-down-reset: 1.50 ± 0.04 V (T_A = -40 to +85°C) 									
Voltage detector	Power on	1.67 V to 3.13 V (12	stages)								
	Power down	1.63 V to 3.06 V (12	stages)								
On-chip debug funct	ion	Provided (Enable to	Provided (Enable to tracing)								
Power supply voltage	e	V _{DD} = 1.6 to 3.6 V									
Operating ambient te	emperature	T _A = -40 to +105°C									

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Absolute Maximum Ratings

Absolute Maximum	Ratings				(2/2
Parameter	Symbols		Ratings	Unit	
Output current, high	Іон1	Per pin	P00 to P04, P30 to P33, P40, P50 to P57, P130	-40	mA
		Total of all pins	P00 to P04, P40, P130	-70	mA
		-170 mA	P30 to P33, P50 to P57	-100	mA
	Іон2	Per pin	P10 to P17, P20 to P25	-0.1	mA
		Total of all pins		-1.4	mA
Output current, low	IOL1	Per pin	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130	40	mA
		Total of all pins	P00 to P04, P40, P130	70	mA
		170 mA	P30 to P33, P50 to P57, P60 to P63	100	mA
	IOL2	Per pin	P10 to P17, P20 to P25	0.4	mA
		Total of all pins		5.6	mA
Operating ambient	Та	In normal operat	ion mode	-40 to +105	°C
temperature		In flash memory			
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

Items	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P04, P30 to P33, P40, P50 to P57, P130	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOH = -2.0 mA	Vdd - 0.6			V
			1.8 V \leq V _{DD} \leq 3.6 V ^{Note 3} , Іон = -1.5 mA	Vdd - 0.5			V
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ IOH = -1.0 mA	Vdd - 0.5			V
	Voh2	P10 to P17, P20 to P25	$\begin{array}{l} 1.6 \ V \leq AV_{DD} \leq 3.6 \ V \ ^{Note \ 2}, \\ I_{OH} = -100 \ \mu A \end{array}$	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P04, P30 to P33, P40, P50 to P57, P130	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ \text{I}_{\text{OL}} = 3.0 \ \text{mA} \end{array}$			0.6	V
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $\text{I}_{\text{OL}} = 1.5 \text{ mA}$			0.4	V
			$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V} \ \text{Note} \ 3, \\ \text{IoL} = 0.6 \ \text{mA} \end{array}$			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 0.3 \text{ mA}$			0.4	V
	Vol2	P10 to P17, P20 to P25	$\begin{array}{l} 1.6 \ \text{V} \leq \text{AV}_{\text{DD}} \leq 3.6 \ \text{V} \ \text{Note} \ 2, \\ \text{IOL} = 400 \ \mu\text{A} \end{array}$			0.4	V
	Vol3	P60 to P63	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $\text{IOL} = 3.0 \text{ mA}$			0.4	V
			$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V} \ ^{\text{Note 3}}, \\ \\ \text{IoL} = 2.0 \ \text{mA} \end{array}$			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 1.0 \text{ mA}$			0.4	V

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(4/5)

Note 1. Only $T_A = -40$ to $+85^{\circ}C$ is guaranteed.

Note 2. The condition that 2.4 V \leq AV_DD \leq 3.6 V is guaranteed when +85°C < TA \leq +105°C.

Note 3. The condition that 2.4 V \leq VDD \leq 3.6 V is guaranteed when +85°C < TA \leq +105°C.

Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V}) $							
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current	IDD3	STOP mode	TA = -40°C		0.16	0.51	μA
Note 1	Note 2	Note 3	TA = +25°C		0.22	0.51	
			TA = +50°C		0.27	1.10	
			TA = +70°C		0.37	1.90	
			TA = +85°C		0.60	3.30	
			TA = +105°C		1.50	17.00	

<R>

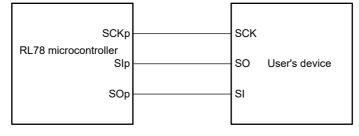
Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.

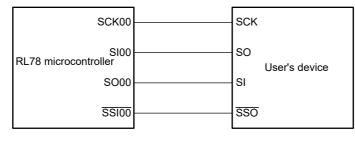
Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

12 - 40 to 100 c, $100 - 200 -$							(
Parameter	Symbol	mbol	Conditions		peed main) ode	LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Uni
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		
			$1.8 \text{ V} \leq V_{\text{DD}} < 2.4 \text{ V}$	-								
			$1.6~\text{V} \leq \text{V}_\text{DD} < 1.8~\text{V}$	-		_		_		400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск		1/fмск		1/fмск		1/fмск		n
				+ 120		+ 120		+ 120		+ 120		
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	-								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
SI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		n
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$	_								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		n
		$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		1	
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	-									
	1		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	_		_		_		400		1


(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter Symbol			Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		w-power) mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
Notes 1, 2			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.1		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.1		0.6	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $V_{DD} \ge Vb$.

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:}$

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 24 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LP (low-power main) mode:} & 1 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \end{array}$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01)

(2/2)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

Parameter Symbol	bol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer Transmission rate Note 2	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 1		Note 1		Note 1		Note 1	bps		
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega, \\ V_b = 2.3 \ V \end{array}$		1.2 Note 2		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps
			$1.8 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Notes 3, 4		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 5.5 \ k\Omega, \\ V_b = 1.6 \ V \end{array}$		0.43 Note 5		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1.The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

Maximum transfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

$$Baud rate error (theoretical value) = \frac{1}{(\frac{1}{Transfer rate \times 2} - {-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})} \times 100 [\%]} \times 100 [\%]$$

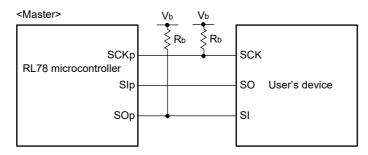
* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

1

- Note 3. Use it with $V_{DD} \ge V_b$.
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{\times 100 [\%]}$$

$$\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

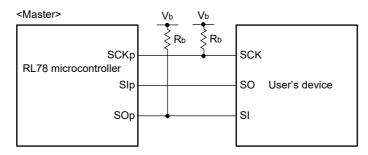
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)

Parameter	Symbol	Conditions		speed main) ode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 30 \; p\text{F}, \; \text{R}_b = 2.7 \; \text{k}\Omega \end{array}$	354		ns
		$\label{eq:VDD} \begin{split} 2.4 \; V \leq V_{DD} < 3.3 \; \text{V}, 1.6 \; \text{V} \leq V_b \leq 2.0 \; \text{V} \; \text{Note 3}, \\ C_b = 30 \; \text{pF}, \; \text{R}_b = 5.5 \; \text{k}\Omega \end{split}$	958		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 30 \; p\text{F}, \; \text{R}_b = 2.7 \; \text{k}\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{split} 2.4 \; V &\leq V_{DD} < 3.3 \; \text{V}, 1.6 \; \text{V} \leq V_b \leq 2.0 \; \text{V} \; \text{Note 3}, \\ C_b &= 30 \; \text{pF}, \; \text{R}_b = 5.5 \; \text{k} \Omega \end{split}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 2.7 \; {\sf V} \leq {\sf V}_{{\sf DD}} \leq 3.6 \; {\sf V}, 2.3 \; {\sf V} \leq {\sf V}_{{\sf b}} \leq 2.7 \; {\sf V}, \\ C_{{\sf b}} = 30 \; p{\sf F}, {\sf R}_{{\sf b}} = 2.7 \; {\sf k}\Omega \end{array}$		390	ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 3}, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		966	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsiĸ1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	88		ns
		$\label{eq:VDD} \begin{split} 2.4 \; V &\leq V_{DD} < 3.3 \; \text{V}, 1.6 \; \text{V} \leq V_b \leq 2.0 \; \text{V} \; ^{\text{Note 3}}, \\ C_b &= 30 \; \text{pF}, \; \text{R}_b = 5.5 \; \text{k} \Omega \end{split}$	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 2.7 \; {\sf V} \le {\sf V}_{{\sf D}{\sf D}} \le 3.6 \; {\sf V}, 2.3 \; {\sf V} \le {\sf V}_{{\sf b}} \le 2.7 \; {\sf V}, \\ C_{{\sf b}} = 30 \; {\sf p}{\sf F}, {\sf R}_{{\sf b}} = 2.7 \; {\sf k}\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; \text{V}, \; 1.6 \; \text{V} \leq V_b \leq 2.0 \; \text{V} \; \text{Note 3}, \\ C_b = 30 \; \text{pF}, \; R_b = 5.5 \; \text{k}\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 3}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 3. Use it with $V_{DD} \ge V_b$.

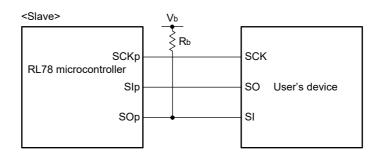
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))



- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	500		ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V} \ \text{Note} \ ^2, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5.5 \ \text{k}\Omega \end{array}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 340 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fMCK + 760 Note 3		ns
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fMCK + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_b = 100 \; pF, R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	0	1215	ns

(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

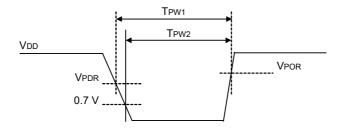
Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$	8		12	bit
			$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±7.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.0	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4~V \leq AV \text{dd} \leq 3.6~V$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6	·	0		AVdd	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

Caution Always use AVDD pin with the same potential as the VDD pin.



2.6.5 POR circuit characteristics

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	TA = -40 to +85°C	1.47	1.51	1.55	V
			TA = +85 to +105°C	1.45	1.51	1.57	V
	VPDR	Power supply fall time Note 1	TA = -40 to +85°C	1.46	1.50	1.54	V
			TA = +85 to +105°C	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW1	Other than STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs
	TPW2	STOP/SUB HALT/SUB RUN	TA = +40 to +105°C	300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

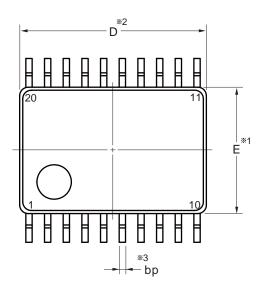
(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse width		tLW		300			μs
Detection delay time						300	μs

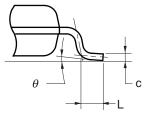
(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

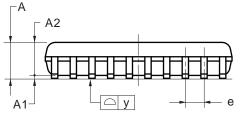
(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

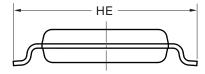
Р	arameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage Supply voltage level	VLVD2	Power supply rise time	3.01	3.13	3.25	V	
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		tLw		300			μs
Detection delay time						300	μs



3. PACKAGE DRAWINGS


3.1 20-pin products

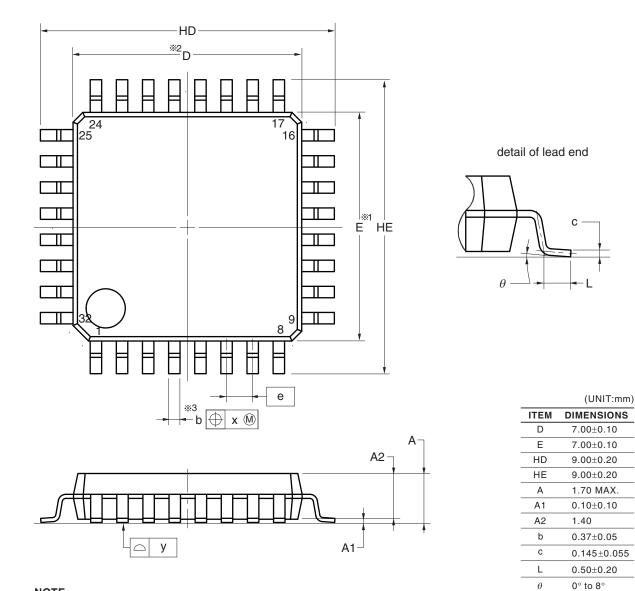

R5F1176AGSP, R5F11768GSP


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1	

detail of lead end

DIMENSIONS
6.50±0.10
4.40±0.10
6.40±0.20
1.45 MAX.
0.10±0.10
1.15
0.65±0.12
0.22 + 0.10 - 0.05
$0.15 \pm 0.05 \\ -0.02$
0.50±0.20
0.10
0° to 10°

© 2012 Renesas Electronics Corporation. All rights reserved.


NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "3" does not include trim offset.

R5F117BAGFP, R5F117BCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2	

NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

0.80

0.20

0.10

е

х

у