



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, UART/USART                                               |
| Peripherals                | LVD, POR, WDT                                                                   |
| Number of I/O              | 21                                                                              |
| Program Memory Size        | 32KB (32K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 3K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 3.6V                                                                     |
| Data Converters            | A/D 12x8/12b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 32-LQFP                                                                         |
| Supplier Device Package    | 32-LQFP (7x7)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117bcgfp-30 |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### ○ ROM, RAM capacities

| Flash | Data flash | RAM       | RL78/I1D                |          |          |          |          |  |  |  |
|-------|------------|-----------|-------------------------|----------|----------|----------|----------|--|--|--|
| ROM   | Data nash  |           | 20 pins 24 pins 30 pins |          | 32 pins  | 48 pins  |          |  |  |  |
| 32 KB | 2 KB       | 3 KB Note | _                       | _        | R5F117AC | R5F117BC | R5F117GC |  |  |  |
| 16 KB | 2 KB       | 2 KB      | R5F1176A                | R5F1177A | R5F117AA | R5F117BA | R5F117GA |  |  |  |
| 8 KB  | 2 KB       | 0.7 KB    | R5F11768                | R5F11778 | R5F117A8 | _        | —        |  |  |  |

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).



## **1.6 Outline of Functions**

**Remark** This outline describes the functions at the time when Peripheral I/O redirection register 0 (PIOR0) are set to 00H.

|                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                         |                            | (1/2)                  |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|------------------------|--|--|--|--|--|
|                                    |                                                           | 20-pin                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24-pin                                                          | 30-pin                                                                  | 32-pin                     | 48-pin                 |  |  |  |  |  |
|                                    | Item                                                      | R5F1176x<br>(x = 8, A)                                                                                                                                                                                                                                                                                                                                                                                                                        | R5F1177x<br>(x = 8, A)                                          | R5F117Ax<br>(x = 8, A, C)                                               | R5F117Bx<br>(x = A, C)     | R5F117Gx<br>(x = A, C) |  |  |  |  |  |
| Code flash me                      | emory (KB)                                                | 8 to 16 KB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 to 16 KB                                                      | 8 to 32 KB                                                              | 16 to 32 KB                | 16 to 32 KB            |  |  |  |  |  |
| Data flash mer                     | mory (KB)                                                 | 2 KB                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 KB                                                            | 2 KB                                                                    | 2 KB                       | 2 KB                   |  |  |  |  |  |
| RAM                                |                                                           | 0.7 to 2.0 KB                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7 to 2.0 KB                                                   | 0.7 to 3.0 KB Note                                                      | 2.0 to 3.0 KB Note         | 2.0 to 3.0 KB Note     |  |  |  |  |  |
| Address space                      | )                                                         | 1 MB                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
| Main system<br>clock               | High-speed system clock (fмx)                             | <ul> <li>X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)</li> <li>HS (High-speed main) mode:1 to 20 MHz (VDD = 2.7 to 3.6 V),</li> <li>HS (High-speed main) mode:1 to 16 MHz (VDD = 2.4 to 3.6 V),</li> <li>LS (Low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 3.6 V),</li> <li>LV (Low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 3.6 V),</li> <li>LP (Low-power main) mode:1 MHz (VDD = 1.8 to 3.6 V)</li> </ul> |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
|                                    | High-speed on-chip oscillator<br>clock (fiн) Max: 24 MHz  | HS (High-speed ma<br>HS (High-speed ma                                                                                                                                                                                                                                                                                                                                                                                                        | nin) mode: 1 to 24 M<br>nin) mode: 1 to 16 M                    | IHz (Vdd = 2.7 to 3.6<br>IHz (Vdd = 2.4 to 3.6                          | V),<br>V),                 |                        |  |  |  |  |  |
|                                    | Middle-speed on-chip oscillator<br>clock (fim) Max: 4 MHz | LS (Low-speed mai<br>LV (Low-voltage ma<br>LP (Low-power mai                                                                                                                                                                                                                                                                                                                                                                                  | n) mode: 1 to 8 MH<br>ain) mode: 1 to 4 MH<br>n) mode: 1 MHz (V | Hz (VDD = 1.8 to 3.6 \<br>Hz (VDD = 1.6 to 3.6 \<br>YDD = 1.8 to 3.6 V) | /),<br>/),                 |                        |  |  |  |  |  |
| Subsystem<br>clock                 | Subsystem clock oscillator<br>(fsx, fsxr)                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                               | XT1 (crystal) oscilla<br>32.768 kHz (TYP.):                             | tion<br>Vdd = 1.6 to 3.6 V |                        |  |  |  |  |  |
|                                    | Low-speed on-chip oscillator clock (fiL)                  | 15 kHz (TYP.): VDD = 1.6 to 3.6 V                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
| General-purpo                      | se register                                               | 8 bits $\times$ 32 registers                                                                                                                                                                                                                                                                                                                                                                                                                  | $(8 \text{ bits} \times 8 \text{ registers})$                   | imes4 banks)                                                            |                            |                        |  |  |  |  |  |
| Minimum instruction execution time |                                                           | 0.04167 μs (High-s                                                                                                                                                                                                                                                                                                                                                                                                                            | peed on-chip oscillat                                           | tor clock: fiн = 24 MH                                                  | z operation)               |                        |  |  |  |  |  |
|                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               | d system clock: fмx =                                           | = 20 MHz operation)                                                     |                            |                        |  |  |  |  |  |
|                                    |                                                           | — 30.5 μs<br>(Subsystem clock oscillator clock: fsx = 32.768 kHz<br>operation)                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
| Instruction set                    |                                                           | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits)</li> <li>Multiplication and Accumulation (16 bits × 16 bits + 32 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul>                                            |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
| I/O port                           | Total                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                              | 24                                                                      | 26                         | 42                     |  |  |  |  |  |
|                                    | CMOS I/O                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                              | 19                                                                      | 21                         | 33                     |  |  |  |  |  |
|                                    | CMOS input                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                               | 5                                                                       | 5                          | 5                      |  |  |  |  |  |
|                                    | N-ch open-drain I/O<br>(6 V tolerance)                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                               | _                                                                       |                            | 4                      |  |  |  |  |  |
| Timer                              | 16-bit timer                                              | 4 channels                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
|                                    | Watchdog timer                                            | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
|                                    | Real-time clock                                           | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
|                                    | 12-bit interval timer                                     | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                         |                            |                        |  |  |  |  |  |
|                                    | 8/16-bit interval timer                                   | 4 channels (8 bit) /                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 channels (16 bit)                                             |                                                                         |                            |                        |  |  |  |  |  |
|                                    | Timer output                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                               | 3                                                                       | 4                          | 4                      |  |  |  |  |  |
|                                    | RTC output                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                               | 1 channel<br>• 1 Hz<br>(subsystem clock<br>fsx = 32.768 kHz)            | generator and RTC/         | other clock:           |  |  |  |  |  |

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).



## 2.3 DC Characteristics

## 2.3.1 Pin characteristics

### (Ta = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V) (Ta = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

(1/5)

| Items                          | Symbol                                                                                | Conditions                                                | MIN.                                                     | TYP. | MAX. | Unit            |    |
|--------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|------|------|-----------------|----|
| Output current, high<br>Note 1 | rent, high IOH1 Per pin for P00 to P04, P30 to P33, P40, TA = -40<br>P50 to P57, P130 |                                                           | TA = -40 to +85°C                                        |      |      | -10.0<br>Note 2 | mA |
|                                |                                                                                       |                                                           | TA = +85 to +105°C                                       |      |      | -3.0<br>Note 2  | mA |
|                                |                                                                                       | Total of P00 to P04, P40, P130                            | $2.7~V \leq V\text{DD} \leq 3.6~V$                       |      |      | -10.0           | mA |
|                                |                                                                                       | (When duty $\leq$ 70% <sup>Note 3</sup> )                 | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$        |      |      | -5.0            | mA |
|                                |                                                                                       |                                                           | $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$ |      |      | -2.5            | mA |
| Total                          |                                                                                       | Total of P30 to P33, P50 to P57                           | $2.7~V \leq V \text{DD} \leq 3.6~V$                      |      |      | -19.0           | mA |
|                                |                                                                                       | (When duty $\leq$ 70% <sup>Note 3</sup> )                 | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$        |      |      | -10.0           | mA |
|                                |                                                                                       |                                                           | $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$ |      |      | -5.0            | mA |
|                                |                                                                                       | Total of all pins<br>(When duty ≤ 70% <sup>Note 3</sup> ) |                                                          |      |      | -29.0           | mA |
|                                | Іон2                                                                                  | Per pin for P10 to P17, P20 to P25                        |                                                          |      |      | -0.1<br>Note 2  | mA |
|                                |                                                                                       | Total of all pins<br>(When duty ≤ 70% <sup>Note 3</sup> ) | $1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$         |      |      | -1.4            | mA |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

**Note 2.** Do not exceed the total current value.

**Note 3.** Specification under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins =  $(IOH \times 0.7)/(n \times 0.01)$ 

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins =  $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

#### Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Items                         | Symbol | Conditions                                                   | MIN.                                               | TYP. | MAX. | Unit           |    |
|-------------------------------|--------|--------------------------------------------------------------|----------------------------------------------------|------|------|----------------|----|
| Output current, low<br>Note 1 | IOL1   | Per pin for P00 to P04, P30 to P33, P40,<br>P50 to P57, P130 | TA = -40 to +85°C                                  |      |      | 20.0<br>Note 2 | mA |
|                               |        |                                                              | TA = +85 to +105°C                                 |      |      | 8.5<br>Note 2  | mA |
|                               |        | Per pin for P60 to P63                                       |                                                    |      |      | 15.0<br>Note 2 | mA |
|                               |        | Total of P00 to P04, P40, P130                               | $2.7~V \leq V_{DD} \leq 3.6~V$                     |      |      | 15.0           | mA |
|                               |        | (When duty $\leq$ 70% <sup>Note 3</sup> )                    | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$  |      |      | 9.0            | mA |
|                               |        |                                                              | $1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V}$  |      |      | 4.5            | mA |
|                               |        | Total of P30 to P33, P50 to P57, P60 to P63                  | $2.7~V \leq V_{DD} \leq 3.6~V$                     |      |      | 35.0           | mA |
|                               |        | (When duty $\leq$ 70% <sup>Note 3</sup> )                    | $1.8 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$    |      |      | 20.0           | mA |
|                               |        |                                                              | $1.6 \text{ V} \le \text{Vdd} < 1.8 \text{ V}$     |      |      | 10.0           | mA |
|                               |        | Total of all pins<br>(When duty ≤ 70% <sup>Note 3</sup> )    |                                                    |      |      | 50.0           | mA |
|                               | IOL2   | Per pin for P10 to P17, P20 to P25                           |                                                    |      |      | 0.4<br>Note 2  | mA |
|                               |        | Total of all pins<br>(When duty ≤ 70% <sup>Note 3</sup> )    | $1.6 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$ |      |      | 5.6            | mA |

(TA = -40 to +85°C, 1.6 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. Do not exceed the total current value.

**Note 3.** Specification under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins =  $(IOL \times 0.7)/(n \times 0.01)$ 

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins =  $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$ 

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



<R> <R> <R>

<R>

<R>

## 2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

(1/4)

| Parameter                | Symbol |                     |                                                                                | Conditions                                                                           | 5                                               |                         |                      |      | TYP. | MAX. | Unit |
|--------------------------|--------|---------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|----------------------|------|------|------|------|
| Supply current<br>Note 1 | Idd1   | Operating mode      | HS (high-speed main)<br>mode                                                   | f <sub>IH</sub> = 24 MHz <sup>Note 3</sup> ,<br>T <sub>A</sub> = -40 to +105°C       | Basic operation                                 | V <sub>DD</sub> = 3.0 V |                      |      | 1.4  |      | mA   |
|                          |        |                     | HS (high-speed main)<br>mode                                                   | f <sub>IH</sub> = 24 MHz <sup>Note 3</sup> ,<br>T <sub>A</sub> = -40 to +85°C        | Normal operation                                | V <sub>DD</sub> = 3.0 V |                      |      | 3.2  | 6.3  | mA   |
|                          |        |                     |                                                                                | f <sub>IH</sub> = 24 MHz <sup>Note 3</sup> ,<br>T <sub>A</sub> = +85 to +105°C       | Normal operation                                | V <sub>DD</sub> = 3.0 V |                      |      |      | 6.7  |      |
|                          |        |                     |                                                                                | $f_{IH} = 16 \text{ MHz Note 3},$<br>$T_A = -40 \text{ to } +85^{\circ}\text{C}$     | Normal operation                                | V <sub>DD</sub> = 3.0 V |                      |      | 2.4  | 4.6  |      |
|                          |        |                     |                                                                                | f <sub>IH</sub> = 16 MHz <sup>Note 3</sup> ,<br>T <sub>A</sub> = +85 to +105°C       | Normal operation                                | V <sub>DD</sub> = 3.0 V |                      |      |      | 4.9  |      |
|                          |        |                     | LS (low-speed main)                                                            | fiH = 8 MHz Note 3,                                                                  | Normal                                          | V <sub>DD</sub> = 3.0 V |                      |      | 1.1  | 2.0  | mA   |
|                          |        |                     | mode<br>(MCSEL = 0)                                                            | T <sub>A</sub> = -40 to +85°C                                                        | operation                                       | V <sub>DD</sub> = 2.0 V |                      |      | 1.1  | 2.0  |      |
|                          | I      | LS (low-speed main) | fiH = 4 MHz Note 3,                                                            | Normal                                                                               | V <sub>DD</sub> = 3.0 V                         |                         |                      | 0.72 | 1.30 | mA   |      |
|                          |        |                     | mode<br>(MCSEL = 1)                                                            | T <sub>A</sub> = -40 to +85°C                                                        | operation                                       | V <sub>DD</sub> = 2.0 V |                      |      | 0.72 | 1.30 |      |
|                          |        |                     |                                                                                | f <sub>IM</sub> = 4 MHz <sup>Note 7</sup> ,<br>T <sub>A</sub> = -40 to +85°C         | Normal operation                                | V <sub>DD</sub> = 3.0 V |                      |      | 0.58 | 1.10 |      |
|                          |        |                     |                                                                                |                                                                                      |                                                 | V <sub>DD</sub> = 2.0 V |                      |      | 0.58 | 1.10 |      |
|                          |        |                     | LV (low-voltage main)                                                          | f <sub>IH</sub> = 3 MHz <sup>Note 3</sup> ,                                          | Normal                                          | V <sub>DD</sub> = 3.0 V |                      |      | 1.2  | 1.8  | mA   |
|                          |        |                     | mode                                                                           | T <sub>A</sub> = -40 to +85°C                                                        | operation                                       | V <sub>DD</sub> = 2.0 V |                      |      | 1.2  | 1.8  |      |
|                          |        | LP (low-power main) | fiH = 1 MHz Note 3,                                                            | Normal                                                                               | V <sub>DD</sub> = 3.0 V                         |                         |                      | 290  | 480  | μA   |      |
|                          |        | (MCSEL = 1)         | $T_A = -40 \text{ to } +85^{\circ}\text{C}$ operation $V_{DD} = 2.0 \text{ V}$ |                                                                                      |                                                 |                         | 290                  | 480  | ļ    |      |      |
|                          |        |                     |                                                                                | $f_{IM} = 1 \text{ MHz }^{Note 5},$<br>$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$ | Normal<br>operation                             | V <sub>DD</sub> = 3.0 V |                      |      | 124  | 230  |      |
|                          |        |                     |                                                                                | $T_A = -40 \text{ to } +85^{\circ}\text{C}$ operation                                |                                                 | V <sub>DD</sub> = 2.0 V | 1                    |      | 124  | 230  |      |
|                          |        |                     | HS (high-speed main)                                                           | f <sub>MX</sub> = 20 MHz <sup>Note 2</sup> ,                                         | Iz Note 2, Normal VDD = 3.0 V Square wave input |                         | Square wave input    |      | 2.7  | 5.3  | mA   |
|                          |        |                     | mode                                                                           | $T_A = -40 \text{ to } +85^{\circ}\text{C}$<br>f <sub>MX</sub> = 20 MHz Note 2,      | Normal                                          | V <sub>DD</sub> = 3.0 V | Resonator connection |      | 2.8  | 5.5  |      |
|                          |        |                     |                                                                                |                                                                                      |                                                 |                         | Square wave input    |      |      | 5.7  |      |
|                          |        |                     |                                                                                | TA = +85 to +105°C                                                                   | operation                                       |                         | Resonator connection |      |      | 5.8  |      |
|                          |        |                     |                                                                                | f <sub>MX</sub> = 10 MHz <sup>Note 2</sup> ,                                         | Normal                                          | V <sub>DD</sub> = 3.0 V | Square wave input    |      | 1.8  | 3.1  |      |
|                          |        |                     |                                                                                | TA = -40 to +85°C                                                                    | operation                                       |                         | Resonator connection |      | 1.9  | 3.2  |      |
|                          |        |                     |                                                                                | f <sub>MX</sub> = 10 MHz Note 2,                                                     | Normal                                          | V <sub>DD</sub> = 3.0 V | Square wave input    |      |      | 3.4  |      |
|                          |        |                     |                                                                                | TA = +85 to +105°C                                                                   | operation                                       |                         | Resonator connection |      |      | 3.5  |      |
|                          |        |                     | LS (low-speed main)                                                            | f <sub>MX</sub> = 8 MHz Note 2,                                                      | Normal                                          | V <sub>DD</sub> = 3.0 V | Square wave input    |      | 0.9  | 1.9  | mA   |
|                          |        |                     | (MCSEL = 0)                                                                    | $I_A = -40 \text{ to } +85^{\circ}\text{C}$                                          | operation                                       |                         | Resonator connection |      | 1.0  | 2.0  |      |
|                          |        |                     |                                                                                | f <sub>MX</sub> = 8 MHz <sup>Note 2</sup> ,                                          | Normal                                          | V <sub>DD</sub> = 2.0 V | Square wave input    |      | 0.9  | 1.9  |      |
|                          |        |                     |                                                                                | $I_A = -40 \text{ to } +85^{\circ}\text{C}$                                          | operation                                       |                         | Resonator connection |      | 1.0  | 2.0  |      |
|                          |        | LS (low-speed main) | f <sub>MX</sub> = 4 MHz <sup>Note 2</sup> ,                                    | Normal                                                                               | V <sub>DD</sub> = 3.0 V                         | Square wave input       |                      | 0.6  | 1.1  | mA   |      |
|                          |        | (MCSEL = 1)         | T <sub>A</sub> = -40 to +85°C                                                  | operation                                                                            |                                                 | Resonator connection    |                      | 0.6  | 1.2  |      |      |
|                          |        | (MOOLE - I)         | f <sub>MX</sub> = 4 MHz <sup>Note 2</sup> ,                                    | Normal                                                                               | V <sub>DD</sub> = 2.0 V                         | Square wave input       |                      | 0.6  | 1.1  |      |      |
|                          |        |                     |                                                                                | T <sub>A</sub> = -40 to +85°C                                                        | operation                                       |                         | Resonator connection |      | 0.6  | 1.2  |      |
|                          |        |                     | LP (low-power main)                                                            | f <sub>MX</sub> = 1 MHz Note 2,                                                      | Normal                                          | V <sub>DD</sub> = 3.0 V | Square wave input    |      | 100  | 190  | μA   |
|                          |        |                     | mode TA<br>(MCSEL = 1)                                                         | T <sub>A</sub> = -40 to +85°C ope                                                    | operation                                       |                         | Resonator connection |      | 136  | 250  | l    |
|                          |        |                     | (MCSEL = 1)                                                                    | f <sub>MX</sub> = 1 MHz Note 2,                                                      | Normal                                          | V <sub>DD</sub> = 2.0 V | Square wave input    |      | 100  | 190  |      |
|                          |        |                     |                                                                                | T <sub>A</sub> = -40 to +85°C                                                        | operation                                       |                         | Resonator connection |      | 136  | 250  |      |

(Notes and Remarks are listed on the next page.)

### (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

| $TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V}) $ (4/4) |        |           |             |      |      |       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|------|------|-------|------|
| Parameter                                                                                                                                                 | Symbol |           | Conditions  | MIN. | TYP. | MAX.  | Unit |
| Supply current                                                                                                                                            | Idd3   | STOP mode | TA = -40°C  |      | 0.16 | 0.51  | μA   |
| Note 1                                                                                                                                                    | Note 2 | Note 3    | TA = +25°C  |      | 0.22 | 0.51  |      |
|                                                                                                                                                           |        |           | TA = +50°C  |      | 0.27 | 1.10  |      |
|                                                                                                                                                           |        |           | TA = +70°C  |      | 0.37 | 1.90  |      |
|                                                                                                                                                           |        |           | TA = +85°C  |      | 0.60 | 3.30  |      |
|                                                                                                                                                           |        |           | TA = +105°C |      | 1.50 | 17.00 |      |

#### <R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.

**Note 3.** For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.



#### (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

| Parameter                | Symbol        | Conditions                                                   |                                                           | HS (hig<br>main) | h-speed<br>Mode | LS (low<br>main) | /-speed<br>Mode | LP (Lov<br>main) | v-power<br>mode | LV (low-<br>main) | -voltage<br>Mode | Unit |
|--------------------------|---------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|-------------------|------------------|------|
|                          |               |                                                              |                                                           | MIN.             | MAX.            | MIN.             | MAX.            | MIN.             | MAX.            | MIN.              | MAX.             |      |
| SCKp cycle               | <b>t</b> КСҮ1 | tксү1 ≥ fc∟к/4                                               | $2.7~V \leq V_{DD} \leq 3.6~V$                            | 167              |                 | 500              |                 | 4000             |                 | 1000              |                  | ns   |
| time                     |               |                                                              | $2.4~V \leq V_{DD} \leq 3.6~V$                            | 250              |                 |                  |                 |                  |                 |                   |                  |      |
|                          |               |                                                              | $1.8 \text{ V} \leq \text{V}\text{DD} \leq 3.6 \text{ V}$ | —                |                 |                  |                 |                  |                 |                   |                  |      |
|                          |               |                                                              | $1.7~V \leq V_{DD} \leq 3.6~V$                            | —                |                 | —                |                 | —                |                 |                   |                  |      |
|                          |               |                                                              | $1.6~V \leq V \text{DD} \leq 3.6~V$                       | —                |                 | —                |                 | —                |                 |                   |                  |      |
| SCKp high-/<br>low-level | tкн1,<br>tк∟1 | $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$ |                                                           | tксү1/2 -<br>18  |                 | tксү1/2 -<br>50  |                 | tксү1/2 -<br>50  |                 | tксү1/2 -<br>50   |                  | ns   |
| width                    |               | $2.4 \text{ V} \leq \text{V}_{DD} \leq 3$                    | tксү1/2 -<br>38                                           |                  |                 |                  |                 |                  |                 |                   |                  |      |
|                          |               | $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$             | 3.6 V                                                     | —                |                 |                  |                 |                  |                 |                   |                  |      |
|                          |               | $1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$             | 3.6 V                                                     | —                |                 | _                |                 | —                |                 | tксү1/2 -         |                  |      |
|                          |               | $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$             | 3.6 V                                                     | _                |                 | _                |                 | —                |                 | 100               |                  |      |
| SIp setup                | tsik1         | $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$             | 3.6 V                                                     | 58               |                 | 110              |                 | 110              |                 | 110               |                  | ns   |
| time<br>(to SCKn↑)       |               | $2.4~V \leq V_{DD} \leq$                                     | 3.6 V                                                     | 75               |                 |                  |                 |                  |                 |                   |                  |      |
| Note 1                   |               | $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$             | 3.6 V                                                     | —                |                 |                  |                 |                  |                 |                   |                  |      |
|                          |               | $1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$             | 3.6 V                                                     | —                |                 | —                |                 | —                |                 | 220               |                  | 1    |
|                          |               | $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 1.6 \text{ V}$ | 3.6 V                                                     | —                |                 | —                |                 | —                |                 |                   |                  |      |
| SIp hold                 | tksi1         | $2.4~V \leq V_{DD} \leq$                                     | 3.6 V                                                     | 19               |                 | 19               |                 | 19               |                 | 19                |                  | ns   |
| time (from<br>SCKp↑)     |               | $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3$             | 3.6 V                                                     | —                |                 |                  |                 |                  |                 |                   |                  |      |
| Note 2                   |               | $1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$ |                                                           | —                |                 | —                |                 | -                |                 |                   |                  |      |
| Delay time               | tkso1         | C = 30 pF                                                    | $2.4~V \leq V_{\text{DD}} \leq 3.6~V$                     |                  | 33.4            |                  | 33.4            |                  | 33.4            |                   | 33.4             | ns   |
| from SCKp↓               |               | Note 4                                                       | $1.8~V \leq V_{DD} \leq 3.6~V$                            |                  | _               |                  |                 |                  |                 |                   |                  |      |
| output Note 3            |               |                                                              | $1.6~\text{V} \leq \text{V}\text{DD} \leq 3.6~\text{V}$   |                  | —               |                  | —               |                  | —               |                   |                  |      |

## (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))



#### (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

| Paramotor                                                        | Symbol     |                                                    | Conditions                     | HS (high-spee        | Unit |      |
|------------------------------------------------------------------|------------|----------------------------------------------------|--------------------------------|----------------------|------|------|
| Falanielei                                                       | Symbol     |                                                    | onduions                       | MIN.                 | MAX. | Unit |
| SCKp cycle time                                                  | tKCY1      | tксү1 ≥ fcLк/4                                     | $2.7~V \leq V_{DD} \leq 3.6~V$ | 250                  |      | ns   |
|                                                                  |            |                                                    | $2.4~V \leq V_{DD} \leq 3.6~V$ | 500                  |      | ns   |
| SCKp high-/low-level width                                       | tĸнı, tĸ∟ı | $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$   | 6 V                            | tксү1/2 <b>-</b> 36  |      | ns   |
|                                                                  |            | $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6$ | 6 V                            | tксү1/2 <b>- 7</b> 6 |      | ns   |
| SIp setup time (to SCKp↑) Note 1                                 | tsıĸ1      | $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$   | 6 V                            | 66                   |      | ns   |
|                                                                  |            | $2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$ |                                | 133                  |      | ns   |
| SIp hold time (from SCKp↑) Note 2                                | tksi1      |                                                    |                                | 38                   |      | ns   |
| Delay time from SCKp $\downarrow$ to SOp output $^{\rm Note\;3}$ | tkso1      | C = 30 pF Note 4                                   |                                |                      | 50   | ns   |

#### (TA = +85 to +105°C, 2.7 V $\leq$ AVDD = VDD $\leq$ 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))





## CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark 1. p: CSI number (p = 00, 01) Remark 2. m: Unit number, n: Channel number (mn = 00, 01)



### (5) During communication at same potential (simplified I<sup>2</sup>C mode)

| Parameter                        | Symbol   | Conditions                                                                                                                                                                         | HS (high-s<br>Mo         | HS (high-speed main)<br>Mode |                           | beed main)<br>bde | LP (Lov<br>main)          | w-power<br>mode | LV (low<br>main)          | -voltage<br>Mode | Unit |
|----------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|---------------------------|-------------------|---------------------------|-----------------|---------------------------|------------------|------|
|                                  |          |                                                                                                                                                                                    | MIN.                     | MAX.                         | MIN.                      | MAX.              | MIN.                      | MAX.            | MIN.                      | MAX.             |      |
| SCLr clock frequency             | fscL     | $\label{eq:def_def_def_def} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$           |                          | 1000<br>Note 1               |                           | 400<br>Note 1     |                           | 250<br>Note 1   |                           | 400<br>Note 1    | kHz  |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$                 |                          | -                            |                           |                   |                           |                 |                           |                  |      |
|                                  |          | $\label{eq:def_def_def} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                   |                          | _                            |                           | 300<br>Note 1     |                           | 250<br>Note 1   |                           | 300<br>Note 1    |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                          |                          | -                            |                           | —                 |                           | -               |                           | 250<br>Note 1    |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                   |                          | -                            |                           | —                 |                           | —               |                           |                  |      |
| Hold time<br>when SCLr = "L"     | t∟ow     | $\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} \leq 3.6 \; V, \\ C_{\text{b}} = 50 \; p\text{F}, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$                       | 475                      |                              | 1150                      |                   | 1150                      |                 | 1150                      |                  | ns   |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3  k\Omega \end{array}$                        | -                        |                              |                           |                   |                           |                 |                           |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                          | -                        |                              | 1550                      |                   | 1550                      |                 | 1550                      |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                          | -                        |                              | -                         |                   | _                         |                 | 1850                      |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                          | -                        |                              | —                         |                   | _                         |                 |                           |                  |      |
| Hold time<br>when SCLr = "H"     | tніgн    | $\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$ | 475                      |                              | 1150                      |                   | 1150                      |                 | 1150                      |                  | ns   |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$                | -                        |                              |                           |                   |                           |                 |                           |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                   | -                        |                              | 1550                      |                   | 1550                      |                 | 1550                      |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                          | -                        |                              | —                         |                   | —                         |                 | 1850                      |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                          | -                        |                              | _                         |                   | —                         |                 |                           |                  |      |
| Data setup time<br>(reception)   | tsu: dat | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                                                                           | 1/fмск<br>+ 85<br>Note 2 |                              | 1/fмск<br>+ 145<br>Note 2 |                   | 1/fмск<br>+ 145<br>Note 2 |                 | 1/fмск<br>+ 145<br>Note 2 |                  | ns   |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$                        | -                        |                              |                           |                   |                           |                 |                           |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                           | -                        |                              | 1/fмск<br>+ 230<br>Note 2 |                   | 1/fмск<br>+ 230<br>Note 2 |                 | 1/fмск<br>+ 230<br>Note 2 |                  |      |
|                                  |          | $\label{eq:VD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                            | -                        |                              | -                         |                   | _                         |                 | 1/fмск<br>+ 290           |                  |      |
|                                  |          | $\label{eq:VD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                            | -                        |                              | -                         |                   | —                         |                 | Note 2                    |                  |      |
| Data hold time<br>(transmission) | thd: dat | $\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$        | 0                        | 305                          | 0                         | 305               | 0                         | 305             | 0                         | 305              | ns   |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$                 | _                        | —                            |                           | 355               |                           | 355             |                           | 355              |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                           | -                        | -                            |                           |                   |                           |                 |                           |                  |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                          | -                        | -                            | -                         | —                 | -                         | —               |                           | 405              |      |
|                                  |          | $\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$                           | -                        | _                            | -                         | -                 | _                         | -               |                           |                  |      |

## (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

(Notes and Caution are listed on the next page.)



(2/2)

#### (6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

| Parameter            | Symbol |              |            | Conditions                                                                                           | HS (high- | Llnit       |      |
|----------------------|--------|--------------|------------|------------------------------------------------------------------------------------------------------|-----------|-------------|------|
| Falalletei           | Symbol |              |            | Conditions                                                                                           | MIN.      | MAX.        | Unit |
| Transfer rate Note 2 |        | Transmission | 2.7<br>2.3 | $V \le V_{DD} \le 3.6 V,$<br>$V \le V_b \le 2.7 V$                                                   |           | Note 1      | bps  |
|                      |        |              |            | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 2.7 k $\Omega$ , $V_b$ = 2.3 V |           | 1.2 Note 2  | Mbps |
|                      |        |              | 2.4<br>1.6 | $V \leq V_{DD} < 3.3 V,$<br>$V \leq V_b \leq 2.0 V$                                                  |           | Notes 3, 4  | bps  |
|                      |        |              |            | Theoretical value of the maximum transfer rate $C_b$ = 50 pF, $R_b$ = 5.5 kΩ, $V_b$ = 1.6 V          |           | 0.43 Note 5 | Mbps |

#### $(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V})$

**Note 1.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when  $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$  and  $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ 

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

~ ~

\* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** Use it with  $V_{DD} \ge V_b$ .
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when  $2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$  and  $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
Baud rate error (theoretical value) = 
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{Transfer rate}) \times 100 [\%]}$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides

- Note 5.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RENESAS

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

| 1 | $T_{A} = +85 \text{ to } 105^{\circ}\text{C}$ |                              | V = 22V = 22V       |
|---|-----------------------------------------------|------------------------------|---------------------|
|   | IA - 103 10 103 0                             | , Z.4 V > AVDD - VDD > 3.0 V | , voo - Avoo - U vj |

(1/2)

| Deremeter             | arameter Symbol Conditions |                                                                                   | Conditions                                                                                                                                      | HS (high-speed main) Mode |      | Lipit |
|-----------------------|----------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|-------|
| Farameter             | Symbol                     |                                                                                   | Conditions                                                                                                                                      |                           | MAX. | Unit  |
| SCKp cycle time       | <b>t</b> КСҮ1              | tксү1 ≥ fc∟к/4                                                                    | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V,  2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$ | 1000                      |      | ns    |
|                       |                            |                                                                                   | $\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$  | 2300                      |      | ns    |
| SCKp high-level width | tкнı                       | $2.7 \text{ V} \leq \text{V}_{DD} \leq$<br>Cb = 30 pF, Rb                         | 3.6 V, 2.3 V $\leq$ V <sub>b</sub> $\leq$ 2.7 V,<br>= 2.7 kΩ                                                                                    | tксү1/2 - 340             |      | ns    |
|                       |                            | 2.4 V $\leq$ Vdd $<$ 3.3 V, 1.6 V $\leq$ Vb $\leq$ 2.0 V, Cb = 30 pF, Rb = 5.5 kΩ |                                                                                                                                                 | tксү1/2 - 916             |      | ns    |
| SCKp low-level width  | tĸ∟1                       | $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$<br>Cb = 30 pF, Rb                  | 3.6 V, 2.3 V $\leq$ Vb $\leq$ 2.7 V, = 2.7 k\Omega                                                                                              | tkcy1/2 - 36              |      | ns    |
|                       |                            | $\begin{array}{l} 2.4 \ V \leq V_{DD} < \\ C_b = 30 \ pF, \ R_b \end{array}$      | 3.3 V, 1.6 V $\leq$ Vb $\leq$ 2.0 V, = 5.5 k\Omega                                                                                              | tkcy1/2 - 100             |      | ns    |

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)





## CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





**Remark** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)





## CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





**Remark** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

# 2.6 Analog Characteristics

## 2.6.1 A/D converter characteristics

### Classification of A/D converter characteristics

| Reference Voltage                                                      | Reference voltage (+) = AV <sub>REFP</sub><br>Reference voltage (-) = AV <sub>REFM</sub> | Reference voltage (+) = AV <sub>DD</sub><br>Reference voltage (-) = AV <sub>SS</sub> | Reference voltage (+) = Internal reference<br>voltage<br>Reference voltage (-) = AV <sub>SS</sub> |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| High-accuracy channel; ANI0 to ANI13 (input buffer power supply: AVDD) | Refer to <b>2.6.1 (1)</b> .                                                              | Refer to <b>2.6.1 (2)</b> .                                                          | Refer to <b>2.6.1 (5)</b> .                                                                       |
|                                                                        | Refer to <b>2.6.1 (7</b> ).                                                              | Refer to <b>2.6.1 (7)</b> .                                                          | Refer to <b>2.6.1 (10)</b> .                                                                      |
| Standard channel; ANI16 to ANI18                                       | Refer to <b>2.6.1 (3)</b> .                                                              | Refer to <b>2.6.1 (4)</b> .                                                          |                                                                                                   |
| (input buffer power supply: Voo)                                       | Refer to <b>2.6.1 (8)</b> .                                                              | Refer to <b>2.6.1 (9)</b> .                                                          |                                                                                                   |
| Internal reference voltage,                                            | Refer to <b>2.6.1 (3)</b> .                                                              | Refer to <b>2.6.1 (4)</b> .                                                          | _                                                                                                 |
| Temperature sensor output voltage                                      | Refer to <b>2.6.1 (8)</b> .                                                              | Refer to <b>2.6.1 (9)</b> .                                                          |                                                                                                   |



### (2) LVD Detection Voltage of Interrupt & Reset Mode

| Parameter     | Symbol | Conditions |                               |                              | MIN. | TYP. | MAX. | Unit |
|---------------|--------|------------|-------------------------------|------------------------------|------|------|------|------|
| Interrupt and | VLVDA0 | VPOC0,     | VPOC1, VPOC2 = 0, 0, 0, falli | ng reset voltage             | 1.60 | 1.63 | 1.66 | V    |
| reset mode    | VLVDA1 |            | LVIS0, LVIS1 = 1, 0           | Rising release reset voltage | 1.74 | 1.77 | 1.81 | V    |
|               |        |            |                               | Falling interrupt voltage    | 1.70 | 1.73 | 1.77 | V    |
|               | VLVDA2 |            | LVIS0, LVIS1 = 0, 1           | Rising release reset voltage | 1.84 | 1.88 | 1.91 | V    |
|               |        |            |                               | Falling interrupt voltage    | 1.80 | 1.84 | 1.87 | V    |
|               | VLVDA3 |            | LVIS0, LVIS1 = 0, 0           | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V    |
|               |        |            |                               | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|               | VLVDB0 | VPOC0,     | VPOC1, VPOC2 = 0, 0, 1, falli | ng reset voltage             | 1.80 | 1.84 | 1.87 | V    |
|               | VLVDB1 |            | LVIS0, LVIS1 = 1, 0           | Rising release reset voltage | 1.94 | 1.98 | 2.02 | V    |
|               |        |            |                               | Falling interrupt voltage    | 1.90 | 1.94 | 1.98 | V    |
|               | VLVDB2 |            | LVIS0, LVIS1 = 0, 1           | Rising release reset voltage | 2.05 | 2.09 | 2.13 | V    |
|               |        |            |                               | Falling interrupt voltage    | 2.00 | 2.04 | 2.08 | V    |
|               | VLVDB3 |            | LVIS0, LVIS1 = 0, 0           | Rising release reset voltage | 3.07 | 3.13 | 3.19 | V    |
|               |        |            |                               | Falling interrupt voltage    | 3.00 | 3.06 | 3.12 | V    |
|               | VLVDC0 | VPOC0,     | VPOC1, VPOC2 = 0, 1, 0, falli | ng reset voltage             | 2.40 | 2.45 | 2.50 | V    |
|               | VLVDC1 |            | LVIS0, LVIS1 = 1, 0           | Rising release reset voltage | 2.56 | 2.61 | 2.66 | V    |
|               |        |            |                               | Falling interrupt voltage    | 2.50 | 2.55 | 2.60 | V    |
|               | VLVDC2 |            | LVIS0, LVIS1 = 0, 1           | Rising release reset voltage | 2.66 | 2.71 | 2.76 | V    |
|               |        |            |                               | Falling interrupt voltage    | 2.60 | 2.65 | 2.70 | V    |
|               | VLVDD0 | VPOC0,     | VPOC1, VPOC2 = 0, 1, 1, falli | ng reset voltage             | 2.70 | 2.75 | 2.81 | V    |
|               | VLVDD1 |            | LVIS0, LVIS1 = 1, 0           | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V    |
|               |        |            |                               | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|               | VLVDD2 |            | LVIS0, LVIS1 = 0, 1           | Rising release reset voltage | 2.96 | 3.02 | 3.08 | V    |
|               |        |            |                               | Falling interrupt voltage    | 2.90 | 2.96 | 3.02 | V    |

(TA = -40 to +85°C, VPDR  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

### (TA = +85 to +105°C, VPDR $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

| Parameter     | Symbol | Conditions |                                                      | MIN.                         | TYP. | MAX. | Unit |   |
|---------------|--------|------------|------------------------------------------------------|------------------------------|------|------|------|---|
| Interrupt and | VLVDD0 | VPOC0,     | VPOC0, VPOC1, VPOC2 = 0, 1, 1, falling reset voltage |                              | 2.64 | 2.75 | 2.86 | V |
| reset mode    | VLVDD1 |            | LVIS0, LVIS1 = 1, 0                                  | Rising release reset voltage | 2.81 | 2.92 | 3.03 | V |
|               |        |            |                                                      | Falling interrupt voltage    | 2.75 | 2.86 | 2.97 | V |
|               | VLVDD2 |            | LVIS0, LVIS1 = 0, 1                                  | Rising release reset voltage | 2.90 | 3.02 | 3.14 | V |
|               |        |            |                                                      | Falling interrupt voltage    | 2.85 | 2.96 | 3.07 | V |

## 2.6.7 Power supply voltage rising slope characteristics

| Parameter                         | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|------------|------|------|------|------|
| Power supply voltage rising slope | SVDD   |            |      |      | 54   | V/ms |

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.



## 2.9 Dedicated Flash Memory Programmer Communication (UART)

(Ta = -40 to +85°C, 1.8 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

| (TA = +85 to +105°C, 2.4 V | ′ ≤ <b>AV</b> DD <b>=</b> | $VDD \leq$ 3.6 V, Vss = AVss = 0 V) |      |  |
|----------------------------|---------------------------|-------------------------------------|------|--|
| Deremeter                  | Symbol                    | Conditions                          | MINI |  |

| Parameter     | Symbol | Conditions                | MIN.    | TYP. | MAX.      | Unit |
|---------------|--------|---------------------------|---------|------|-----------|------|
| Transfer rate |        | During serial programming | 115,200 |      | 1,000,000 | bps  |

## 2.10 Timing of Entry to Flash Memory Programming Modes

(TA = -40 to +85°C, 1.8 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = AVss = 0 V)

| Parameter                                                                                                                                                                                    | Symbol  | Conditions                                                 | MIN. | TYP. | MAX. | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------|------|------|------|------|
| How long from when an external reset ends until the initial communication settings are specified <sup>Note 1</sup>                                                                           | tsuinit | POR and LVD reset must end before the external reset ends. |      |      | 100  | ms   |
| How long from when the TOOL0 pin is placed at the low level until an external reset ends Note 1                                                                                              | tsu     | POR and LVD reset must end before the external reset ends. | 10   |      |      | μs   |
| How long the TOOL0 pin must be kept at the low<br>level after an external reset ends<br>(excluding the processing time of the firmware to<br>control the flash memory) <sup>Notes 1, 2</sup> | thd     | POR and LVD reset must end before the external reset ends. | 1    |      |      | ms   |

Note 1. Deassertion of the POR and LVD reset signals must precede deassertion of the pin reset signal.

Note 2. This excludes the flash firmware processing time (723  $\mu$ s).



<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

**Remark** tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

- tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

RENESAS

# **3. PACKAGE DRAWINGS**

## 3.1 20-pin products

### R5F1176AGSP, R5F11768GSP

| JEITA Package Code     | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|------------------------|--------------|----------------|-----------------|
| P-LSSOP20-4.4x6.5-0.65 | PLSP0020JB-A | P20MA-65-NAA-1 | 0.1             |



detail of lead end







|      | (UNIT:mm)          |
|------|--------------------|
| ITEM | DIMENSIONS         |
| D    | 6.50±0.10          |
| E    | 4.40±0.10          |
| HE   | 6.40±0.20          |
| A    | 1.45 MAX.          |
| A1   | 0.10±0.10          |
| A2   | 1.15               |
| е    | 0.65±0.12          |
| bp   | 0.22 + 0.10 - 0.05 |
| с    | 0.15 + 0.05 - 0.02 |
| L    | 0.50±0.20          |
| У    | 0.10               |
| θ    | 0° to 10°          |

© 2012 Renesas Electronics Corporation. All rights reserved.

#### NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "3" does not include trim offset.



| REVISION HISTORY RL78/I1D Datasheet |
|-------------------------------------|
|-------------------------------------|

| Rev. | Date         | Description |                                                                             |
|------|--------------|-------------|-----------------------------------------------------------------------------|
|      |              | Page        | Summary                                                                     |
| 1.00 | Aug 29, 2014 | —           | First Edition issued                                                        |
| 2.00 | Jan 16, 2015 | 24, 25, 27  | Addition of note 7 in 2.3.2 Supply current characteristics                  |
|      |              | 24, 26      | Addition of description in 2.3.2 Supply current characteristics             |
|      |              | 26, 28      | Modification of description in 2.3.2 Supply current characteristics         |
|      |              | 28          | Correction of error in 2.3.2 Supply current characteristics                 |
|      |              | 95          | Modification of package drawing in 3.2 24-pin products                      |
| 2.20 | Feb 20, 2017 | ALL         | The function name changed from real-time clock to real-time clock 2         |
|      |              | 5           | Addition of product name in 1.3.1 20-pin products                           |
|      |              | 6           | Addition of product name in 1.3.2 24-pin products                           |
|      |              | 7           | Addition of product name in 1.3.3 30-pin products                           |
|      |              | 8           | Addition of product name in 1.3.4 32-pin products                           |
|      |              | 9           | Change of description and addition of product name in 1.3.4 32-pin products |
|      |              | 10          | Addition of product name in 1.3.5 48-pin products                           |
|      |              | 13, 14      | Change of description in 1.6 Outline of Functions                           |
|      |              | 16          | Change of 2.1 Absolute Maximum Ratings                                      |
|      |              | 22          | Change of 2.3.1 Pin characteristics                                         |
|      |              | 24          | Change of conditions in 2.3.2 Supply current characteristics                |
|      |              | 25, 27, 28  | Change of note 1 in 2.3.2 Supply current characteristics                    |
|      |              | 26          | Change of conditions and unit in 2.3.2 Supply current characteristics       |
|      |              | 30          | Change of note 3 in 2.3.2 Supply current characteristics                    |
|      |              | 31          | Addition of note 5 in 2.3.2 Supply current characteristics                  |
|      |              | 92          | Change of table in 2.8 Flash Memory Programming Characteristics             |
|      |              | 92          | Addition of note 4 in 2.8 Flash Memory Programming Characteristics          |
|      |              | 99          | Change of package drawing in 3.5 48-pin products                            |

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.