



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Active                                                                          |
|---------------------------------------------------------------------------------|
| RL78                                                                            |
| 16-Bit                                                                          |
| 24MHz                                                                           |
| CSI, I <sup>2</sup> C, UART/USART                                               |
| LVD, POR, WDT                                                                   |
| 21                                                                              |
| 32KB (32K x 8)                                                                  |
| FLASH                                                                           |
| 2K x 8                                                                          |
| 3K x 8                                                                          |
| 1.6V ~ 3.6V                                                                     |
| A/D 12x8/12b                                                                    |
| Internal                                                                        |
| -40°C ~ 105°C (TA)                                                              |
| Surface Mount                                                                   |
| 32-LQFP                                                                         |
| 32-LQFP (7x7)                                                                   |
| https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117bcgfp-50 |
|                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<R>

## 1.3 Pin Configuration (Top View)

### 1.3.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)



- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1  $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark For pin identification, see 1.4 Pin Identification.



## **1.6 Outline of Functions**

**Remark** This outline describes the functions at the time when Peripheral I/O redirection register 0 (PIOR0) are set to 00H.

|                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |                                                                         |                            | (1/2)                  |  |  |  |  |  |  |
|----------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|------------------------|--|--|--|--|--|--|
|                      |                                                           | 20-pin                                                                                                                                                                                                                                                                                                                                                                                             | 24-pin                                                          | 30-pin                                                                  | 32-pin                     | 48-pin                 |  |  |  |  |  |  |
|                      | Item                                                      | R5F1176x<br>(x = 8, A)                                                                                                                                                                                                                                                                                                                                                                             | R5F1177x<br>(x = 8, A)                                          | R5F117Ax<br>(x = 8, A, C)                                               | R5F117Bx<br>(x = A, C)     | R5F117Gx<br>(x = A, C) |  |  |  |  |  |  |
| Code flash me        | emory (KB)                                                | 8 to 16 KB                                                                                                                                                                                                                                                                                                                                                                                         | 8 to 16 KB                                                      | 8 to 32 KB                                                              | 16 to 32 KB                | 16 to 32 KB            |  |  |  |  |  |  |
| Data flash mer       | mory (KB)                                                 | 2 KB                                                                                                                                                                                                                                                                                                                                                                                               | 2 KB                                                            | 2 KB                                                                    | 2 KB                       | 2 KB                   |  |  |  |  |  |  |
| RAM                  |                                                           | 0.7 to 2.0 KB                                                                                                                                                                                                                                                                                                                                                                                      | 0.7 to 2.0 KB                                                   | 0.7 to 3.0 KB Note                                                      | 2.0 to 3.0 KB Note         | 2.0 to 3.0 KB Note     |  |  |  |  |  |  |
| Address space        | )                                                         | 1 MB                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
| Main system<br>clock | High-speed system clock (fмx)                             | X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)<br>HS (High-speed main) mode:1 to 20 MHz (VDD = 2.7 to 3.6 V),<br>HS (High-speed main) mode:1 to 16 MHz (VDD = 2.4 to 3.6 V),<br>LS (Low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 3.6 V),<br>LV (Low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 3.6 V),<br>LP (Low-power main) mode:1 MHz (VDD = 1.8 to 3.6 V)        |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
|                      | High-speed on-chip oscillator<br>clock (fiн) Max: 24 MHz  | HS (High-speed ma<br>HS (High-speed ma                                                                                                                                                                                                                                                                                                                                                             | nin) mode: 1 to 24 M<br>nin) mode: 1 to 16 M                    | IHz (Vdd = 2.7 to 3.6<br>IHz (Vdd = 2.4 to 3.6                          | V),<br>V),                 |                        |  |  |  |  |  |  |
|                      | Middle-speed on-chip oscillator<br>clock (fim) Max: 4 MHz | LS (Low-speed mai<br>LV (Low-voltage ma<br>LP (Low-power mai                                                                                                                                                                                                                                                                                                                                       | n) mode: 1 to 8 MH<br>ain) mode: 1 to 4 MH<br>n) mode: 1 MHz (V | Hz (VDD = 1.8 to 3.6 \<br>Hz (VDD = 1.6 to 3.6 \<br>YDD = 1.8 to 3.6 V) | /),<br>/),                 |                        |  |  |  |  |  |  |
| Subsystem<br>clock   | Subsystem clock oscillator<br>(fsx, fsxr)                 | -                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                               | XT1 (crystal) oscilla<br>32.768 kHz (TYP.):                             | tion<br>Vdd = 1.6 to 3.6 V |                        |  |  |  |  |  |  |
|                      | Low-speed on-chip oscillator clock (fiL)                  | 15 kHz (TYP.): V <sub>DD</sub>                                                                                                                                                                                                                                                                                                                                                                     | 5 kHz (TYP.): V <sub>DD</sub> = 1.6 to 3.6 V                    |                                                                         |                            |                        |  |  |  |  |  |  |
| General-purpo        | se register                                               | 8 bits $\times$ 32 registers                                                                                                                                                                                                                                                                                                                                                                       | $(8 \text{ bits} \times 8 \text{ registers})$                   | imes4 banks)                                                            |                            |                        |  |  |  |  |  |  |
| Minimum instr        | uction execution time                                     | 0.04167 μs (High-s                                                                                                                                                                                                                                                                                                                                                                                 | peed on-chip oscillat                                           | tor clock: fiн = 24 MH                                                  | z operation)               |                        |  |  |  |  |  |  |
|                      |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                    | d system clock: fмx =                                           | = 20 MHz operation)                                                     |                            |                        |  |  |  |  |  |  |
|                      |                                                           | — 30.5 μs<br>(Subsystem clock oscillator clock: fsx = 32.768 kHz<br>operation)                                                                                                                                                                                                                                                                                                                     |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
| Instruction set      |                                                           | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits)</li> <li>Multiplication and Accumulation (16 bits × 16 bits + 32 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul> |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
| I/O port             | Total                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                              | 24                                                                      | 26                         | 42                     |  |  |  |  |  |  |
|                      | CMOS I/O                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                              | 19                                                                      | 21                         | 33                     |  |  |  |  |  |  |
|                      | CMOS input                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                               | 5                                                                       | 5                          | 5                      |  |  |  |  |  |  |
|                      | N-ch open-drain I/O<br>(6 V tolerance)                    | _                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                               | _                                                                       |                            | 4                      |  |  |  |  |  |  |
| Timer                | 16-bit timer                                              | 4 channels                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
|                      | Watchdog timer                                            | 1 channel                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
|                      | Real-time clock                                           | 1 channel                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
|                      | 12-bit interval timer                                     | 1 channel                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                                                                         |                            |                        |  |  |  |  |  |  |
|                      | 8/16-bit interval timer                                   | 4 channels (8 bit) /                                                                                                                                                                                                                                                                                                                                                                               | 2 channels (16 bit)                                             |                                                                         |                            |                        |  |  |  |  |  |  |
|                      | Timer output                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                               | 3                                                                       | 4                          | 4                      |  |  |  |  |  |  |
|                      | RTC output                                                | -                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                               | 1 channel<br>• 1 Hz<br>(subsystem clock<br>fsx = 32.768 kHz)            | generator and RTC/         | other clock:           |  |  |  |  |  |  |

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).



(2/2)

|                          |             | 20-nin                                                                | 24-nin                            | 30-nin                           | 32-nin                | 48-nin          |  |  |  |  |  |
|--------------------------|-------------|-----------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------|-----------------|--|--|--|--|--|
| ltom                     |             | 20-pill                                                               | 24-pin                            |                                  | 52-pin                | 40-pill         |  |  |  |  |  |
| lien                     |             | R5F1176x                                                              | R5F1177x                          | R5F117Ax                         | R5F117Bx              | R5F117Gx        |  |  |  |  |  |
|                          |             | (X = 8, A)                                                            | (X = 8, A)                        | (X = 8, A, C)                    | (x = A, C)            | (x = A, C)      |  |  |  |  |  |
| Clock output/buzzer o    | output      | 1                                                                     | 1                                 | 1                                | 1                     | 2               |  |  |  |  |  |
|                          |             | [20-pin, 24-pin produ                                                 | icts]                             |                                  |                       |                 |  |  |  |  |  |
|                          |             | • 2.44 kHz, 4.88 kHz                                                  | z, 9.76 kHz, 1.25 MHz,            | 2.5 MHz, 5 MHz, 10               | MHz                   |                 |  |  |  |  |  |
|                          |             | (Main system clock                                                    | : fmain = 20 MHz operation        | ation)                           |                       |                 |  |  |  |  |  |
|                          |             | [30-pin, 32-pin, 48-pi                                                | [30-pin, 32-pin, 48-pin products] |                                  |                       |                 |  |  |  |  |  |
|                          |             | • 2.44 kHz, 4.88 kHz                                                  | z, 9.76 kHz, 1.25 MHz,            | 2.5 MHz, 5 MHz, 10               | MHz                   |                 |  |  |  |  |  |
|                          |             | (Main system clock                                                    | : fmain = 20 MHz opera            | ation)                           | 40.004.111 00.700.11  |                 |  |  |  |  |  |
|                          |             | • 256 HZ, 512 HZ, 1.                                                  | 024 KHZ, 2.048 KHZ, 4             | 096 KHZ, 8.192 KHZ,              | 16.384 KHZ, 32.768 KH | ٦Z              |  |  |  |  |  |
|                          |             | (Subsystem Clock g                                                    |                                   | IEI CIUCK. ISAR - 32.70          |                       | T               |  |  |  |  |  |
| 12-bit resolution A/D of | converter   | 6 channels                                                            | 6 channels                        | 12 channels                      | 12 channels           | 17 channels     |  |  |  |  |  |
| Comparator (Window       | Comparator) | 2 channels                                                            |                                   | 1                                |                       |                 |  |  |  |  |  |
| Operational amplifier    |             | 2 channels                                                            |                                   | 4 channels                       |                       |                 |  |  |  |  |  |
| Data Operation Circui    | t (DOC)     | Comparison, addition                                                  | n, and subtraction of 1           | 6-bit data                       |                       |                 |  |  |  |  |  |
| Serial interface         |             | [20-pin, 30-pin produ                                                 | icts]                             |                                  |                       |                 |  |  |  |  |  |
|                          |             | CSI: 1 channel/UART: 1 channel/simplified I <sup>2</sup> C: 1 channel |                                   |                                  |                       |                 |  |  |  |  |  |
|                          |             | [24-pin, 32-pin, 48-pi                                                | [24-pin, 32-pin, 48-pin products] |                                  |                       |                 |  |  |  |  |  |
|                          |             | CSI: 2 channels/U/                                                    | ART: 1 channel/simplifi           | ied I <sup>2</sup> C: 2 channels |                       |                 |  |  |  |  |  |
| Data transfer controlle  | er (DTC)    | 16 sources                                                            | 20 sources                        | 19 sources                       | 20 sources            | 22 sources      |  |  |  |  |  |
| Event link controller (  | ELC)        | Event input: 15                                                       | Event input: 17                   | Event input: 17                  | Event input: 17       | Event input: 20 |  |  |  |  |  |
|                          |             | Event trigger Event trigger Event trigger Event trigger               |                                   |                                  |                       |                 |  |  |  |  |  |
|                          |             | output: 5                                                             | output: 5                         | output: 7                        | output: 7             |                 |  |  |  |  |  |
| Vectored interrupt       | Internal    | 22                                                                    | 22                                | 24                               | 24                    | 24              |  |  |  |  |  |
| sources                  | External    | 3                                                                     | 5                                 | 5                                | 5                     | 8               |  |  |  |  |  |
| Key interrupt            |             | —                                                                     | 3                                 | —                                | 3                     | 4               |  |  |  |  |  |
| Reset                    |             | Reset by RESET p                                                      | in                                |                                  |                       |                 |  |  |  |  |  |
|                          |             | <ul> <li>Internal reset by water</li> </ul>                           | atchdog timer                     |                                  |                       |                 |  |  |  |  |  |
|                          |             | <ul> <li>Internal reset by po</li> </ul>                              | ower-on-reset                     |                                  |                       |                 |  |  |  |  |  |
|                          |             | <ul> <li>Internal reset by vol</li> </ul>                             | oltage detector                   |                                  |                       |                 |  |  |  |  |  |
|                          |             | <ul> <li>Internal reset by ille</li> </ul>                            | egal instruction execut           | ion <sup>Note</sup>              |                       |                 |  |  |  |  |  |
|                          |             | Internal reset by R                                                   | AM parity error                   |                                  |                       |                 |  |  |  |  |  |
|                          |             | <ul> <li>Internal reset by Internal</li> </ul>                        | egal-memory access                |                                  |                       |                 |  |  |  |  |  |
| Power-on-reset circuit   | t           | • Power-on-reset: 1.51 ± 0.04V (T <sub>A</sub> = -40 to +85°C)        |                                   |                                  |                       |                 |  |  |  |  |  |
|                          |             | • Power-down-reset: 1.50 ± 0.04 V (T <sub>A</sub> = -40 to +85°C)     |                                   |                                  |                       |                 |  |  |  |  |  |
| voltage detector         | Power on    | 1.67 V to 3.13 V (12                                                  | stages)                           |                                  |                       |                 |  |  |  |  |  |
| On abin dabua fur -4     | Power down  | 1.03 V to 3.06 V (12                                                  | stages)                           |                                  |                       |                 |  |  |  |  |  |
|                          | )( I        | Provided (Enable to tracing)                                          |                                   |                                  |                       |                 |  |  |  |  |  |
| Power supply voltage     |             | $v_{DD} = 1.6 \text{ to } 3.6 \text{ V}$                              |                                   |                                  |                       |                 |  |  |  |  |  |
| Operating ambient ter    | nperature   | $IA = -40 \text{ to } +105^{\circ}\text{C}$                           |                                   |                                  |                       |                 |  |  |  |  |  |

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.



## 2.2 Oscillator Characteristics

## 2.2.1 X1, XT1 characteristics

# (Ta = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

| Resonator                                  | Resonator          | Conditions                          | MIN. | TYP.   | MAX. | Unit |
|--------------------------------------------|--------------------|-------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency (fx) Note   | Ceramic resonator/ | $2.7~V \leq V \text{DD} \leq 3.6~V$ | 1.0  |        | 20.0 | MHz  |
|                                            | crystal resonator  | $2.4~V \leq V \text{DD} < 2.7~V$    | 1.0  |        | 16.0 |      |
|                                            |                    | $1.8~V \leq V \text{DD} < 2.4~V$    | 1.0  |        | 8.0  |      |
|                                            |                    | $1.6~V \leq V \text{DD} < 1.8~V$    | 1.0  |        | 4.0  |      |
| XT1 clock oscillation frequency (fxT) Note | Crystal resonator  |                                     | 32   | 32.768 | 35   | kHz  |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

## 2.2.2 On-chip oscillator characteristics

### (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

#### (TA = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

| Oscillators                                                    | Parameters | C                                          | onditions                      | MIN. | TYP. | MAX. | Unit |
|----------------------------------------------------------------|------------|--------------------------------------------|--------------------------------|------|------|------|------|
| High-speed on-chip oscillator clock frequency Notes 1, 2       | fін        |                                            | 1                              |      | 24   | MHz  |      |
| High-speed on-chip oscillator clock frequency accuracy         |            | -20 to +85°C 1.8 V $\leq$ VDD $\leq$ 3.6 V |                                | -1.0 |      | +1.0 | %    |
|                                                                |            |                                            | $1.6~V \leq V_{DD} < 1.8~V$    | -5.0 |      | +5.0 |      |
|                                                                |            | -40 to -20°C                               | $1.8~V \le V_{DD} \le 3.6~V$   | -1.5 |      | +1.5 | %    |
|                                                                |            |                                            | $1.6~V \leq V_{DD} < 1.8~V$    | -5.5 |      | +5.5 |      |
|                                                                |            | +85 to +105°C                              | $2.4~V \leq V_{DD} \leq 3.6~V$ | -2.0 |      | +2.0 | %    |
| Middle-speed on-chip oscillator oscillation frequency Note 2   | fім        |                                            |                                | 1    |      | 4    | MHz  |
| Middle-speed on-chip oscillator oscillation frequency accuracy |            | $1.8V \leq V_{DD} \leq 3.6$                | -12                            |      | +12  | %    |      |
| Low-speed on-chip oscillator clock frequency Note 2            | fı∟        |                                            |                                |      | 15   |      | kHz  |
| Low-speed on-chip oscillator clock frequency accuracy          |            |                                            |                                | -15  |      | +15  | %    |

**Note 1.** High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/I1D User's Manual.

## 2.3 DC Characteristics

### 2.3.1 Pin characteristics

#### (Ta = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V) (Ta = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

(1/5)

| Items                          | Symbol | Conditions                                                   |                                                          | MIN. | TYP. | MAX.            | Unit |
|--------------------------------|--------|--------------------------------------------------------------|----------------------------------------------------------|------|------|-----------------|------|
| Output current, high<br>Note 1 | Іон1   | Per pin for P00 to P04, P30 to P33, P40,<br>P50 to P57, P130 | TA = -40 to +85°C                                        |      |      | -10.0<br>Note 2 | mA   |
|                                |        |                                                              | TA = +85 to +105°C                                       |      |      | -3.0<br>Note 2  | mA   |
|                                |        | Total of P00 to P04, P40, P130                               | $2.7~V \leq V \text{DD} \leq 3.6~V$                      |      |      | -10.0           | mA   |
|                                |        | (When duty $\leq$ 70% <sup>Note 3</sup> )                    | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$        |      |      | -5.0            | mA   |
|                                |        |                                                              | $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$ |      |      | -2.5            | mA   |
|                                |        | Total of P30 to P33, P50 to P57                              | $2.7~V \leq V \text{DD} \leq 3.6~V$                      |      |      | -19.0           | mA   |
|                                |        | (When duty $\leq$ 70% <sup>Note 3</sup> )                    | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$        |      |      | -10.0           | mA   |
|                                |        |                                                              | $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$ |      |      | -5.0            | mA   |
|                                |        | Total of all pins<br>(When duty ≤ 70% <sup>Note 3</sup> )    |                                                          |      |      | -29.0           | mA   |
|                                | Іон2   | Per pin for P10 to P17, P20 to P25                           |                                                          |      |      | -0.1<br>Note 2  | mA   |
|                                |        | Total of all pins<br>(When duty ≤ 70% <sup>Note 3</sup> )    | $1.6 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$         |      |      | -1.4            | mA   |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

**Note 2.** Do not exceed the total current value.

**Note 3.** Specification under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins =  $(IOH \times 0.7)/(n \times 0.01)$ 

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins =  $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

#### Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Items                          | Symbol                                                                                               | Cond                                                                  | itions                                |                                       | MIN. | TYP. | MAX. | Unit |
|--------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------------------------|------|------|------|------|
| Input leakage<br>current, high | Ilih1                                                                                                | P00 to P04, P30 to P33, P40,<br>P50 to P57, P60 to P63, P130,<br>P137 | VI = VDD                              |                                       |      | 1    | μA   |      |
|                                | Ilih2                                                                                                | RESET                                                                 | VI = VDD                              |                                       |      |      | 1    | μA   |
|                                | ILIH3 P121 to P124 (X1, X2, EXCLK, VI = VDD In inpu<br>XT1, XT2, EXCLKS) VI = VDD externa            |                                                                       | In input port or external clock input |                                       |      | 1    | μA   |      |
|                                |                                                                                                      |                                                                       |                                       | In resonator connection               |      |      | 10   | μA   |
|                                | ILIH4                                                                                                | P10 to P17, P20 to P25                                                | VI = AVDD                             |                                       |      |      | 1    | μA   |
| Input leakage<br>current, low  | ILIL1         P00 to P04, P30 to P33, P40,<br>P50 to P57, P60 to P63, P130,<br>P137         VI = Vss |                                                                       |                                       |                                       |      | -1   | μA   |      |
|                                | ILIL2                                                                                                | RESET                                                                 | VI = Vss                              |                                       |      |      | -1   | μΑ   |
|                                | Ilil3                                                                                                | P121 to P124 (X1, X2, EXCLK,<br>XT1, XT2, EXCLKS)                     | VI = Vss                              | In input port or external clock input |      |      | -1   | μA   |
|                                |                                                                                                      |                                                                       |                                       | In resonator connection               |      |      | -10  | μA   |
|                                | ILIL4                                                                                                | P10 to P17, P20 to P25                                                | VI = AVss                             |                                       |      |      | -1   | μA   |
| On-chip pull-up<br>resistance  | Ru                                                                                                   | P00 to P04, P30 to P33, P40,<br>P50 to P57, P130                      | VI = Vss, In                          | 10                                    | 20   | 100  | kΩ   |      |

### 

(5/5)

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



<R>

<R>

# (TA = -40 to +85°C, 1.6 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

| (TA = +85 to +105°C | , 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V | /, Vss = AVss = 0 V) |
|---------------------|----------------------------------------|----------------------|
|---------------------|----------------------------------------|----------------------|

(3/4)

| Parameter      | Symbol         |      |                              | Conditions                                                                  |                         |                       | MIN. | TYP. | MAX.  | Unit |
|----------------|----------------|------|------------------------------|-----------------------------------------------------------------------------|-------------------------|-----------------------|------|------|-------|------|
| Supply current | IDD2<br>Note 2 | HALT | HS (high-speed main) mode    | $f_{\rm IH} = 24 \text{ MHz} \frac{\text{Note 4}}{10 + 85^{\circ}\text{C}}$ | V <sub>DD</sub> = 3.0 V |                       |      | 0.37 | 1.83  | mA   |
|                |                | mode |                              |                                                                             | V                       |                       |      |      | 0.05  |      |
|                |                |      |                              | $f_{\rm H} = 24 \text{ MHz} + 1000^{\circ} \text{ MHz}$                     | VDD = 3.0 V             |                       |      |      | 2.00  |      |
|                |                |      |                              | TA = +63 (0 + 103 C                                                         | Voo = 3.0 V             |                       |      | 0.36 | 1 38  | -    |
|                |                |      |                              | IIH = 10 MHZ 1000 +,                                                        | VDD - 3.0 V             |                       |      | 0.30 | 1.50  |      |
|                |                |      |                              | fw = 16 MH - Note 4                                                         | $V_{DD} = 3.0 V$        |                       |      |      | 2.08  |      |
|                |                |      |                              | $T_{A} = +85 \text{ to } +105^{\circ}\text{C}$                              | VDD - 3.0 V             |                       |      |      | 2.00  |      |
|                |                |      | IS (low-speed main) mode     | fu = 8 MHz Note 4                                                           | $V_{DD} = 3.0 V$        |                       |      | 250  | 710   | ıιΔ  |
|                |                |      | (MCSEL = 0)                  | $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$                               | $V_{DD} = 2.0 V$        |                       |      | 250  | 710   | μΑ   |
|                |                |      | LS (low-speed main) mode     | fu = 4 MHz Note 4                                                           | Vpp = 3.0 V             |                       |      | 200  | 400   | μА   |
|                |                |      | (MCSEL = 1)                  | $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$                               | $V_{DD} = 2.0 V$        |                       |      | 204  | 400   | μι   |
|                |                |      | (MOSEL = 1)                  | fw = 4 MHz Note 7                                                           | VDD = 2.0 V             |                       |      | 40   | 250   |      |
|                |                |      |                              | $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$                               | $V_{DD} = 2.0 V$        |                       |      | 40   | 250   |      |
|                |                |      | I.V. (low-voltage main) mode |                                                                             | Vpp = 3.0 V             |                       |      | 425  | 800   | пΑ   |
|                |                |      | EV (low-voltage main) mode   | $f_{\rm H} = 3  \text{MHz}  \text{Note 4},$                                 | $V_{DD} = 2.0 V$        |                       |      | 425  | 800   | μΛ   |
|                |                |      |                              | $I_A = -40 \text{ to } +85^{\circ}\text{C}$                                 | V. 0.0.V                |                       |      | 100  | 400   | •    |
|                |                |      | LP (low-power main) mode     | $f_{\rm H} = 1 \text{ MHz} \log^{4} 4$ ,                                    | VDD = 3.0 V             |                       |      | 192  | 400   | μΑ   |
|                |                |      |                              | TA = -40 to +65 C                                                           | VDD = 2.0 V             |                       |      | 192  | 400   |      |
|                |                |      |                              | fim = 1 MHz Note 7,                                                         | $V_{DD} = 3.0 V$        |                       |      | 27   | 100   |      |
|                |                |      |                              | T <sub>A</sub> = -40 to +85°C                                               | VDD = 2.0 V             | •                     |      | 27   | 100   |      |
|                |                |      | HS (high-speed main) mode    | f <sub>MX</sub> = 20 MHz Note 3,                                            | V <sub>DD</sub> = 3.0 V | Square wave input     |      | 0.20 | 1.55  | mA   |
|                |                |      |                              | T <sub>A</sub> = -40 to +85°C                                               |                         | Resonator connection  |      | 0.40 | 1.74  |      |
|                |                |      |                              | f <sub>MX</sub> = 20 MHz Note 3,                                            | VDD = 3.0 V             | Square wave input     |      |      | 2.45  |      |
|                |                |      |                              | T <sub>A</sub> = +85 to +105°C                                              |                         | Resonator connection  |      |      | 2.57  |      |
|                |                |      |                              | f <sub>MX</sub> = 10 MHz Note 3,                                            | VDD = 3.0 V             | Square wave input     |      | 0.15 | 0.86  |      |
|                |                |      |                              | T <sub>A</sub> = -40 to +85°C                                               |                         | Resonator connection  |      | 0.30 | 0.93  |      |
|                |                |      |                              | f <sub>MX</sub> = 10 MHz <sup>Note 3</sup> ,                                | Vdd = 3.0 V             | Square wave input     |      |      | 1.28  |      |
|                |                |      |                              | $I_A = +85 \text{ to } +105^{\circ}\text{C}$                                | _                       | Resonator connection  |      |      | 1.36  |      |
|                |                |      | LS (low-speed main) mode     | f <sub>MX</sub> = 8 MHz Note 3,                                             | Vdd = 3.0 V             | Square wave input     |      | 68   | 550   | μA   |
|                |                |      | (MCSEL = 0)                  | T <sub>A</sub> = -40 to +85°C                                               |                         | Resonator connection  |      | 120  | 590   |      |
|                |                |      |                              | f <sub>MX</sub> = 8 MHz Note 3,                                             | VDD = 2.0 V             | Square wave input     |      | 68   | 550   |      |
|                |                |      |                              | T <sub>A</sub> = -40 to +85°C                                               |                         | Resonator connection  |      | 120  | 590   |      |
|                |                |      | LS (low-speed main) mode     | $f_{MX} = 4 \text{ MHz } \text{Note } 3,$                                   | VDD = 3.0 V             | Square wave input     |      | 23   | 128   | μΑ   |
|                |                |      | (MCSEL = 1)                  | $I_A = -40 \text{ to } +85^{\circ}\text{C}$                                 |                         | Resonator connection  |      | 65   | 200   |      |
|                |                |      |                              | $f_{MX} = 1 \text{ MHz } Note 3,$                                           | VDD = 2.0 V             | Square wave input     |      | 23   | 128   |      |
|                |                |      |                              | $I_A = -40 \text{ to } +85^{\circ}\text{C}$                                 |                         | Resonator connection  |      | 65   | 200   |      |
|                |                |      | LP (low-power main) mode     | $f_{MX} = 4 \text{ MHz} \text{ Note 3},$                                    | VDD = 3.0 V             | Square wave input     |      | 10   | 64    | μΑ   |
|                |                |      | (INICSEL = T)                | $I_A = -40 \text{ to } +85^{\circ}\text{C}$                                 | N 0.0 V                 | Resonator connection  |      | 48   | 150   |      |
|                |                |      |                              | $f_{MX} = 1 \text{ MHz} \text{ Note 3},$                                    | VDD = 2.0 V             | Square wave input     |      | 10   | 64    |      |
|                |                |      | Outerrate and all an emotion | IA = -40 10 +65 C                                                           |                         | Resonator connection  |      | 48   | 150   |      |
|                |                |      | Subsystem clock operation    | ISX = 32.700 KHZ,                                                           |                         | Square wave input     |      | 0.24 | 0.57  | μΑ   |
|                |                |      |                              | fax = 22 769 kHz                                                            |                         | Squara waya input     |      | 0.42 | 0.70  | -    |
|                |                |      |                              | ISX = 32.700  KHZ,                                                          |                         | Square wave input     |      | 0.30 | 0.57  |      |
|                |                |      |                              | TA = +23 C Hele e                                                           |                         | Resonator connection  |      | 0.34 | 0.76  | -    |
|                |                |      |                              | ISX = 32.700  KHZ,                                                          |                         | Square wave input     |      | 0.35 | 1.17  | -    |
|                |                |      |                              | fox = 32 768 kHz                                                            |                         | Square wave input     |      | 0.00 | 1.30  | -    |
|                |                |      |                              | $T_{A} = \pm 70^{\circ}C$ Note 5                                            |                         | Square wave input     |      | 0.42 | 2.16  | -    |
|                |                |      |                              | fox = 32 768 kHz                                                            |                         | Square wave input     |      | 0.70 | 2.10  | -    |
|                |                |      |                              | $T_{A} = +85^{\circ}$ C. Note 5                                             |                         | Resonator connection  |      | 0.00 | 3.56  | 1    |
|                |                |      |                              | fsy = 32 768 kHz                                                            |                         | Square wave input     |      | 1 80 | 17 10 | 1    |
|                |                |      |                              | $T_{A} = +105^{\circ}$ C Note 5                                             |                         | Resonator connection  |      | 2.20 | 17.10 | 1    |
|                |                |      |                              | fu = 15 kH= T. = 40%                                                        | Note 6                  | . coonator connection |      | 0.40 | 1.00  | μA   |
|                |                |      |                              | $f_{\rm H} = 15 \text{ km}^2$ , $IA = -40^{\circ}$                          | C Note 6                |                       |      | 0.40 | 1.22  | μΑ   |
|                |                |      | fiL =                        | fiL = 15 kHz, T <sub>A</sub> = +25°C Note 6                                 |                         |                       |      | 0.47 | 1.22  | 1    |
|                |                |      |                              | τι∟ = 15 KHz, IA = +85°                                                     |                         |                       |      | 0.80 | 3.30  | 1    |
|                |                |      |                              | ti∟ = 15 kHz, Ta = +105                                                     | C NOTE P                |                       |      | 2.00 | 17.30 |      |

(Notes and Remarks are listed on the next page.)



(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

| Parameter                                                | Symbol | Symbol Conditions   |                 | HS (high-speed main)<br>Mode |                 | LS (low-speed main)<br>Mode |                 | LP (Low-power main)<br>mode |                 | LV (low-voltage main)<br>Mode |    |
|----------------------------------------------------------|--------|---------------------|-----------------|------------------------------|-----------------|-----------------------------|-----------------|-----------------------------|-----------------|-------------------------------|----|
|                                                          |        |                     | MIN.            | MAX.                         | MIN.            | MAX.                        | MIN.            | MAX.                        | MIN.            | MAX.                          |    |
| SCKp cycle time                                          | tkCY1  | tксү1≥fc∟к/2        | 83.3            |                              | 250             |                             | 2000            |                             | 500             |                               | ns |
| SCKp high-/low-level width                               | tĸ∟1   |                     | tксү1/2<br>- 10 |                              | tксү1/2<br>- 50 |                             | tксү1/2<br>- 50 |                             | tксү1/2<br>- 50 |                               | ns |
| SIp setup time (to SCKp↑)<br>Note 1                      | tsıĸı  |                     | 33              |                              | 110             |                             | 110             |                             | 110             |                               | ns |
| SIp hold time (from SCKp↑)<br>Note 2                     | tĸsı1  |                     | 10              |                              | 10              |                             | 10              |                             | 10              |                               | ns |
| Delay time from SCKp↓ to<br>SOp output <sup>Note 3</sup> | tkso1  | C = 20 pF<br>Note 4 |                 | 10                           |                 | 20                          |                 | 20                          |                 | 20                            | ns |

#### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))



#### Simplified I<sup>2</sup>C mode connection diagram (during communication at same potential)



#### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at same potential)



- Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- Remark 2. r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)



#### (6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

| Parameter        | Symbol |           | Conditions                                                                                          | HS (high-speed main) Mode |                      | LS (low-speed main) Mode |                      | LP (Low-power<br>main) mode |                      | LV (low-voltage<br>main) Mode |                      | Unit |
|------------------|--------|-----------|-----------------------------------------------------------------------------------------------------|---------------------------|----------------------|--------------------------|----------------------|-----------------------------|----------------------|-------------------------------|----------------------|------|
|                  |        |           |                                                                                                     | MIN.                      | MAX.                 | MIN.                     | MAX.                 | MIN.                        | MAX.                 | MIN.                          | MAX.                 |      |
| Transfer<br>rate |        | reception | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$ |                           | fмск/6<br>Note 1     |                          | fмск/6<br>Note 1     |                             | fмск/6<br>Note 1     |                               | fмск/6<br>Note 1     | bps  |
| Notes 1, 2       |        |           | Theoretical value of<br>the maximum transfer<br>rate<br>f <sub>MCK</sub> = f <sub>CLK</sub> Note 3  |                           | 4.0                  |                          | 1.3                  |                             | 0.1                  |                               | 0.6                  | Mbps |
|                  |        |           | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$      |                           | fмск/6<br>Notes 1, 2 |                          | fмск/6<br>Notes 1, 2 |                             | fмск/6<br>Notes 1, 2 |                               | fмск/6<br>Notes 1, 2 | bps  |
|                  |        |           | Theoretical value of<br>the maximum transfer<br>rate<br>fMCK = fCLK Note 3                          |                           | 4.0                  |                          | 1.3                  |                             | 0.1                  |                               | 0.6                  | Mbps |

#### (TA = -40 to +85°C, 1.8 V $\leq$ AVDD = VDD $\leq$ 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with  $V_{DD} \ge Vb$ .

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:}$ 

 $\begin{array}{lll} \text{HS (high-speed main) mode:} & 24 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LP (low-power main) mode:} & 1 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \end{array}$ 

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

**Remark 2.** q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01)



#### (6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

| Parameter                | Symbol           |           | Conditions                                                                                          |                                                                                                  | HS (high- | Unit               |      |
|--------------------------|------------------|-----------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|--------------------|------|
| raianetei                | Parameter Symbol |           | Conditions                                                                                          | MIN.                                                                                             | MAX.      | Cint               |      |
| Transfer rate Notes 1, 2 |                  | Reception | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$ |                                                                                                  |           | fмск/12 Note 1     | bps  |
|                          |                  |           |                                                                                                     | Theoretical value of the maximum transfer rate $f_{MCK}$ = $f_{CLK}$ $^{Note\;3}$                |           | 2.0                | Mbps |
|                          |                  |           | 2.4<br>1.6                                                                                          | $\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$ |           | fMCK/12 Notes 1, 2 | bps  |
|                          |                  |           |                                                                                                     | Theoretical value of the maximum transfer rate $f_{MCK}$ = $f_{CLK}$ $^{Note\;3}$                |           | 0.66               | Mbps |

#### (TA = +85 to +105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

**Note 2.** Use it with  $VDD \ge Vb$ .

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 24 MHz (2.7 V  $\leq$  VDD  $\leq$  3.6 V)

16 MHz (2.4 V  $\leq$  VDD  $\leq$  3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)





### CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)







### CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)





- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- $\label{eq:Note 2.} \qquad \text{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



#### (10) Communication at different potential (1.8 V, 2.5 V) (simplified I<sup>2</sup>C mode)

| Parameter Sym<br>bol                |             | Conditions                                                                                                                                                                                                                            | HS (high-speed main) Mode |                | LS (low-speed main) Mode  |               | LP (Low-power<br>main) mode |               | LV (low-voltage<br>main) Mode |               | Unit |
|-------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|---------------------------|---------------|-----------------------------|---------------|-------------------------------|---------------|------|
|                                     |             |                                                                                                                                                                                                                                       | MIN.                      | MAX.           | MIN.                      | MAX.          | MIN.                        | MAX.          | MIN.                          | MAX.          |      |
| SCLr clock<br>frequency             | fscL        | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                                                                                             |                           | 1000<br>Note 1 |                           | 300<br>Note 1 |                             | 250<br>Note 1 |                               | 300<br>Note 1 | kHz  |
|                                     |             | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 100 \; \text{pF}, \; \text{R}_b = 2.7 \; \text{k}\Omega \end{array}$                                             |                           | 400<br>Note 1  |                           | 300<br>Note 1 |                             | 250<br>Note 1 |                               | 300<br>Note 1 | kHz  |
|                                     |             | $\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ \text{Note} \ \text{2}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 5.5 \ \text{k}\Omega \end{array}$ |                           | 300<br>Note 1  |                           | 300<br>Note 1 |                             | 250<br>Note 1 |                               | 300<br>Note 1 | kHz  |
| Hold time<br>when SCLr              | t∟ow        | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \ 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$                                                   | 475                       |                | 1550                      |               | 1550                        |               | 1550                          |               | ns   |
| = "L"                               |             | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                                                                                            | 1150                      |                | 1550                      |               | 1550                        |               | 1550                          |               | ns   |
|                                     |             | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$                                                                                 | 1550                      |                | 1550                      |               | 1550                        |               | 1550                          |               | ns   |
| Hold time the<br>when SCLr<br>= "H" | tніgн       | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq V_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$                                             | 200                       |                | 610                       |               | 610                         |               | 610                           |               | ns   |
|                                     |             | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                                                                                            | 600                       |                | 610                       |               | 610                         |               | 610                           |               | ns   |
|                                     |             | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$                                                                                 | 610                       |                | 610                       |               | 610                         |               | 610                           |               | ns   |
| Data setup<br>time<br>(reception)   | tsu:<br>DAT | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                                                                                     | 1/fмск<br>+ 135<br>Note 3 |                | 1/fмск<br>+ 190<br>Note 2 |               | 1/fмск<br>+ 190<br>Note 3   |               | 1/fмск<br>+ 190<br>Note 3     |               | ns   |
|                                     |             | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                                                                                    | 1/fмск<br>+ 190<br>Note 3 |                | 1/fмск<br>+ 190<br>Note 3 |               | 1/fмск<br>+ 190<br>Note 3   |               | 1/fмск<br>+ 190<br>Note 3     |               | ns   |
|                                     |             | $\label{eq:linear} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$                                               | 1/fмск<br>+ 190<br>Note 3 |                | 1/fмск<br>+ 190<br>Note 3 |               | 1/fмск<br>+ 190<br>Note 3   |               | 1/fмск<br>+ 190<br>Note 3     |               | ns   |
| Data hold<br>time (transmission)    | thd:<br>DAT | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \; 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$                                                         | 0                         | 305            | 0                         | 305           | 0                           | 305           | 0                             | 305           | ns   |
|                                     |             | $\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$                       | 0                         | 355            | 0                         | 355           | 0                           | 355           | 0                             | 355           | ns   |
|                                     |             | $\label{eq:VDD} \hline $1.8 \mbox{ V} \leq V_{DD}$ < $3.3 \mbox{ V}, $1.6 \mbox{ V} \leq V_b \leq $2.0 \mbox{ V}$ Note $2$,} $$C_b$ = $100 \mbox{ pF}, $R_b$ = $5.5 \mbox{ k}\Omega$ }$                                               | 0                         | 405            | 0                         | 405           | 0                           | 405           | 0                             | 405           | ns   |

### (TA = -40 to 85°C, 1.8 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

**Note 1.** The value must also be equal to or less than  $f_{MCK}/4$ .

**Note 2.** Use it with  $V_{DD} \ge V_b$ .

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



#### (10) Communication at different potential (1.8 V, 2.5 V) (simplified I<sup>2</sup>C mode)

| Deremeter                     | Symbol  | Conditions                                                                                                                                                              | HS (high-speed      | HS (high-speed main) Mode |      |  |
|-------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|------|--|
| Parameter                     | Symbol  | Conditions                                                                                                                                                              | MIN.                | MAX.                      | Unit |  |
| SCLr clock frequency          | fsc∟    | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                       |                     | 400 Note 1                | kHz  |  |
|                               |         | $\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$       |                     | 100 Note 1                | kHz  |  |
|                               |         | $\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note $2$}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$ |                     | 100 Note 1                | kHz  |  |
| Hold time when SCLr = "L"     | tLOW    | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                               | 1200                |                           | ns   |  |
|                               |         | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                      | 4600                |                           | ns   |  |
|                               |         | $\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note $2$}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$ | 4650                |                           | ns   |  |
| Hold time when SCLr = "H"     | tніgн   | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                       | 500                 |                           | ns   |  |
|                               |         | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                      | 2400                |                           | ns   |  |
|                               |         | $\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note $2$}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$        | 1830                |                           | ns   |  |
| Data setup time (reception)   | tsu:dat | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                       | 1/fмск + 340 Note 3 |                           | ns   |  |
|                               |         | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                              | 1/fмск + 760 Note 3 |                           | ns   |  |
|                               |         | $\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note $2$}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$ | 1/fмск + 570 Note 3 |                           | ns   |  |
| Data hold time (transmission) | thd:dat | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                       | 0                   | 770                       | ns   |  |
|                               |         | $\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                      | 0                   | 1420                      | ns   |  |
|                               |         | $\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note $2$}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$        | 0                   | 1215                      | ns   |  |

### (TA = +85 to 105°C, 2.4 V $\leq$ AVDD = VDD $\leq$ 3.6 V, Vss = AVss = 0 V)

**Note 1.** The value must also be equal to or less than fMCK/4.

Note 2. Use it with  $V_{DD} \ge V_b$ .

Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



# 2.6 Analog Characteristics

## 2.6.1 A/D converter characteristics

#### Classification of A/D converter characteristics

| Reference Voltage                                                      | Reference voltage (+) = AV <sub>REFP</sub><br>Reference voltage (-) = AV <sub>REFM</sub> | Reference voltage (+) = AV <sub>DD</sub><br>Reference voltage (-) = AV <sub>SS</sub> | Reference voltage (+) = Internal reference<br>voltage<br>Reference voltage (-) = AV <sub>SS</sub> |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| High-accuracy channel; ANI0 to ANI13 (input buffer power supply: AVDD) | Refer to <b>2.6.1 (1)</b> .                                                              | Refer to <b>2.6.1 (2)</b> .                                                          | Refer to <b>2.6.1 (5)</b> .                                                                       |
|                                                                        | Refer to <b>2.6.1 (7)</b> .                                                              | Refer to <b>2.6.1 (7)</b> .                                                          | Refer to <b>2.6.1 (10)</b> .                                                                      |
| Standard channel; ANI16 to ANI18                                       | Refer to <b>2.6.1 (3)</b> .                                                              | Refer to <b>2.6.1 (4)</b> .                                                          |                                                                                                   |
| (input buffer power supply: Voo)                                       | Refer to <b>2.6.1 (8)</b> .                                                              | Refer to <b>2.6.1 (9)</b> .                                                          |                                                                                                   |
| Internal reference voltage,                                            | Refer to <b>2.6.1 (3)</b> .                                                              | Refer to <b>2.6.1 (4)</b> .                                                          | _                                                                                                 |
| Temperature sensor output voltage                                      | Refer to <b>2.6.1 (8)</b> .                                                              | Refer to <b>2.6.1 (9)</b> .                                                          |                                                                                                   |



(8) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target ANI16 to ANI18, internal reference voltage, temperature sensor output voltage

(TA = +85 to +105°C, 2.4 V  $\leq$  AVREFP  $\leq$  AVDD = VDD  $\leq$  3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

| Parameter                              | Symbol | Conditions                                                                                     |                                                                                         |       | TYP.       | MAX.   | Unit |
|----------------------------------------|--------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------|------------|--------|------|
| Resolution                             | Res    |                                                                                                | $2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$                                          | 8     |            | 12     | bit  |
| Overall error Note 1                   | AINL   | 12-bit resolution                                                                              | $2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$                  |       |            | ±7.0   | LSB  |
| Conversion time                        | tCONV  | ADTYP = 0,<br>12-bit resolution                                                                | $2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$                  | 4.125 |            |        | μs   |
| Zero-scale error Note 1                | Ezs    | 12-bit resolution                                                                              | $2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$                  |       |            | ±5.0   | LSB  |
| Full-scale error Note 1                | Efs    | 12-bit resolution                                                                              | $2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$                  |       |            | ±5.0   | LSB  |
| Integral linearity error Note 1        | ILE    | 12-bit resolution                                                                              | $2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$                  |       |            | ±3.0   | LSB  |
| Differential linearity error<br>Note 1 | DLE    | 12-bit resolution                                                                              | $2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$ |       |            | ±2.0   | LSB  |
| Analog input voltage                   | Vain   |                                                                                                |                                                                                         | 0     |            | AVREFP | V    |
|                                        |        | Internal reference voltage (2.4 V $\leq$ VDD $\leq$ 3.6 V)                                     |                                                                                         |       | BGR Note   | 2      |      |
|                                        |        | Temperature sensor output voltage $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V})$ |                                                                                         |       | TMP25 Note | e 2    |      |

**Note 1.** Excludes quantization error ( $\pm 1/2$  LSB).

Note 2. Refer to 2.6.2 Temperature sensor, internal reference voltage output characteristics.

Caution Always use AVDD pin with the same potential as the VDD pin.



## 3.2 24-pin products

R5F1177AGNA, R5F11778GNA

| JEITA Package code | RENESAS code | Previous code  | MASS(TYP.)[g] |  |
|--------------------|--------------|----------------|---------------|--|
| P-HWQFN24-4x4-0.50 | PWQN0024KE-A | P24K8-50-CAB-3 | 0.04          |  |

0

C

C

C

O



DETAIL OF A PART





| Referance      | Dimens | Dimension in Millimete |      |  |  |  |
|----------------|--------|------------------------|------|--|--|--|
| Symbol         | Min    | Nom                    | Max  |  |  |  |
| D              | 3.95   | 4.00                   | 4.05 |  |  |  |
| E              | 3.95   | 4.00                   | 4.05 |  |  |  |
| A              |        |                        | 0.80 |  |  |  |
| A <sub>1</sub> | 0.00   |                        |      |  |  |  |
| b              | 0.18   | 0.25                   | 0.30 |  |  |  |
| е              |        | 0.50                   |      |  |  |  |
| Lp             | 0.30   | 0.40                   | 0.50 |  |  |  |
| х              |        |                        | 0.05 |  |  |  |
| у              |        |                        | 0.05 |  |  |  |
| ZD             |        | 0.75                   |      |  |  |  |
| Z <sub>E</sub> |        | 0.75                   |      |  |  |  |
| C2             | 0.15   | 0.20                   | 0.25 |  |  |  |
| D <sub>2</sub> |        | 2.50                   |      |  |  |  |
| E <sub>2</sub> |        | 2.50                   |      |  |  |  |

©2013 Renesas Electronics Corporation. All rights reserved.



| REVISION HISTORY RL78/I1D Datasheet |
|-------------------------------------|
|-------------------------------------|

| Dav  | Dete         |            | Description                                                                 |
|------|--------------|------------|-----------------------------------------------------------------------------|
| Rev. | Dale         | Page       | Summary                                                                     |
| 1.00 | Aug 29, 2014 | —          | First Edition issued                                                        |
| 2.00 | Jan 16, 2015 | 24, 25, 27 | Addition of note 7 in 2.3.2 Supply current characteristics                  |
|      |              | 24, 26     | Addition of description in 2.3.2 Supply current characteristics             |
|      |              | 26, 28     | Modification of description in 2.3.2 Supply current characteristics         |
|      |              | 28         | Correction of error in 2.3.2 Supply current characteristics                 |
|      |              | 95         | Modification of package drawing in 3.2 24-pin products                      |
| 2.20 | Feb 20, 2017 | ALL        | The function name changed from real-time clock to real-time clock 2         |
|      |              | 5          | Addition of product name in 1.3.1 20-pin products                           |
|      |              | 6          | Addition of product name in 1.3.2 24-pin products                           |
|      |              | 7          | Addition of product name in 1.3.3 30-pin products                           |
|      |              | 8          | Addition of product name in 1.3.4 32-pin products                           |
|      |              | 9          | Change of description and addition of product name in 1.3.4 32-pin products |
|      |              | 10         | Addition of product name in 1.3.5 48-pin products                           |
|      |              | 13, 14     | Change of description in 1.6 Outline of Functions                           |
|      |              | 16         | Change of 2.1 Absolute Maximum Ratings                                      |
|      |              | 22         | Change of 2.3.1 Pin characteristics                                         |
|      |              |            | Change of conditions in 2.3.2 Supply current characteristics                |
|      |              | 25, 27, 28 | Change of note 1 in 2.3.2 Supply current characteristics                    |
|      |              | 26         | Change of conditions and unit in 2.3.2 Supply current characteristics       |
|      | 30           |            | Change of note 3 in 2.3.2 Supply current characteristics                    |
|      |              | 31         | Addition of note 5 in 2.3.2 Supply current characteristics                  |
|      |              | 92         | Change of table in 2.8 Flash Memory Programming Characteristics             |
|      |              | 92         | Addition of note 4 in 2.8 Flash Memory Programming Characteristics          |
|      |              | 99         | Change of package drawing in 3.5 48-pin products                            |

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.