

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

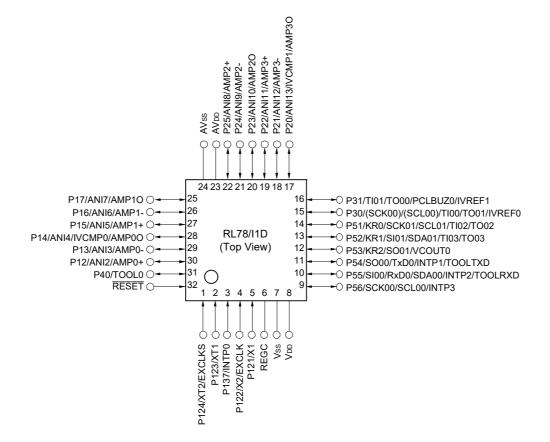
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

 \times FI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 12x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117bcgna-40

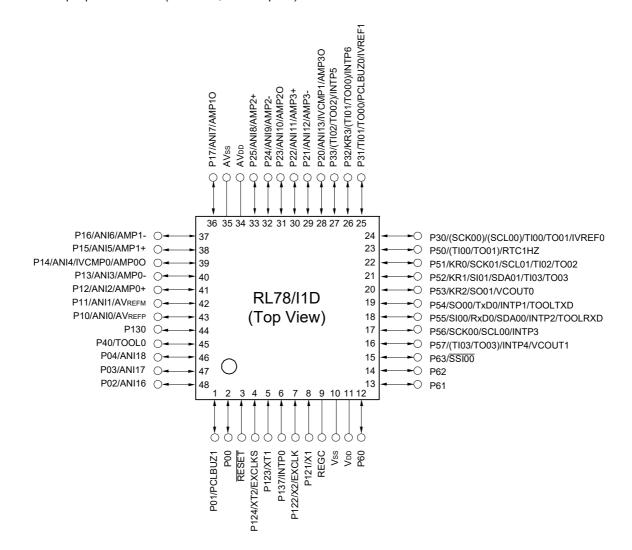
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin count	Package	Ordering Part Number
20 pins	20-pin plastic LSSOP (4.4 \times 6.5 mm, 0.65 mm pitch)	R5F11768GSP#30, R5F1176AGSP#30, R5F11768GSP#50, R5F1176AGSP#50
24 pins	24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)	R5F11778GNA#U0, R5F1177AGNA#U0, R5F11778GNA#W0, R5F1177AGNA#W0
30 pins	30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)	R5F117A8GSP#30, R5F117AAGSP#30, R5F117ACGSP#30, R5F117A8GSP#50, R5F117AAGSP#50, R5F117ACGSP#50
32 pins	32-pin plastic HVQFN (5 \times 5 mm, 0.5 mm pitch)	R5F117BAGNA#20, R5F117BCGNA#20, R5F117BAGNA#40, R5F117BCGNA#40
	32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)	R5F117BAGFP#30, R5F117BCGFP#30, R5F117BAGFP#50, R5F117BCGFP#50
48 pins	48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)	R5F117GAGFB#30, R5F117GCGFB#30, R5F117GAGFB#50, R5F117GCGFB#50

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)


- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

1.3.5 48-pin products

<R>

• 48-pin plastic LFQFP (7×7 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AV $\ensuremath{\mathsf{DD}}$ pin the same potential as $\ensuremath{\mathsf{VDD}}$ pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).

(2/2)

			.	;		(2)				
		20-pin	24-pin	30-pin	32-pin	48-pin				
lter	n	R5F1176x (x = 8, A)	R5F1177x (x = 8, A)	R5F117Ax (x = 8, A, C)	R5F117Bx (x = A, C)	R5F117Gx (x = A, C)				
Clock output/buzzer	output	1	1	1	1	2				
		(Main system clock [30-pin, 32-pin, 48-p • 2.44 kHz, 4.88 kHz (Main system clock • 256 Hz, 512 Hz, 1.	z, 9.76 kHz, 1.25 MHz k: fmain = 20 MHz ope in products] z, 9.76 kHz, 1.25 MHz k: fmain = 20 MHz ope	ration) , 2.5 MHz, 5 MHz, 10 ration) 4.096 kHz, 8.192 kHz	MHz , 16.384 kHz, 32.768 l	kHz				
12-bit resolution A/D	converter	6 channels	6 channels	12 channels	12 channels	17 channels				
Comparator (Windov	v Comparator)	2 channels								
Operational amplifier		2 channels		4 channels						
Data Operation Circu	uit (DOC)	Comparison, addition	n, and subtraction of 1	6-bit data						
Serial interface		• CSI: 1 channel/UA [24-pin, 32-pin, 48-p	 [20-pin, 30-pin products] CSI: 1 channel/UART: 1 channel/simplified l²C: 1 channel [24-pin, 32-pin, 48-pin products] CSI: 2 channels/UART: 1 channel/simplified l²C: 2 channels 							
Data transfer control	ler (DTC)	16 sources	20 sources	19 sources	20 sources	22 sources				
Event link controller	(ELC)	Event input: 15 Event trigger output: 5	Event input: 17 Event trigger output: 5	Event input: 17 Event trigger output: 7	Event input: 17 Event trigger output: 7	Event input: 20 Event trigger output: 7				
Vectored interrupt	Internal	22	22	24	24	24				
sources	External	3	5	5	5	8				
Key interrupt		—	3	—	3	4				
Reset		Internal reset by R	atchdog timer ower-on-reset oltage detector egal instruction execu	tion Note						
Power-on-reset circu	it	 Power-on-reset: 1.51 ± 0.04V (T_A = -40 to +85°C) Power-down-reset: 1.50 ± 0.04 V (T_A = -40 to +85°C) 								
Voltage detector	Power on	1.67 V to 3.13 V (12	stages)							
	Power down	1.63 V to 3.06 V (12	stages)							
On-chip debug funct	ion	Provided (Enable to	tracing)							
Power supply voltage	e	V _{DD} = 1.6 to 3.6 V								
Operating ambient te	emperature	T _A = -40 to +105°C								

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Items	Symbol	Con	ditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high						1	μA	
	ILIH2	RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
	ILIH4	P10 to P17, P20 to P25	VI = AVDD				1	μA
Input leakage current, low	ILIL1	P00 to P04, P30 to P33, P40, P50 to P57, P60 to P63, P130, P137	VI = Vss				-1	μA
	ILIL2	RESET	VI = Vss				-1	μA
	Ilil3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μΑ
	ILIL4	P10 to P17, P20 to P25	VI = AVss				-1	μA
On-chip pull-up resistance	Ru	P00 to P04, P30 to P33, P40, P50 to P57, P130	Vı = Vss, In	input port	10	20	100	kΩ

$(TA = -40 \text{ to } +85^{\circ}C, \ 1.6 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \ \text{Vss} = \text{AVss} = 0 \text{ V}) \\ (TA = +85 \text{ to } +105^{\circ}C, \ 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \ \text{Vss} = \text{AVss} = 0 \text{ V}) \\$

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +10	05°C, 2.4	$V \leq AVDD = VD$	D ≤ 3.6 V, Vss = AVss = 0 V)				(4/4)
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current	IDD3	STOP mode	TA = -40°C		0.16	0.51	μA
Note 1	Note 2	Note 3	TA = +25°C		0.22	0.51	
			TA = +50°C		0.27	1.10	
			TA = +70°C		0.37	1.90	
			TA = +85°C		0.60	3.30	
			TA = +105°C		1.50	17.00	

<R>

Note 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, operational amplifier, comparator, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the real-time clock, 12-bit interval timer, and watchdog timer.

Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Viн/Voн VIH/VOH Test points VIL/VOL VIL/VOL .

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Parameter	Symbol	Conditions		speed main) ode	· ·	oeed main) ode	· ·	ower main) ode	-	ltage main) ode	Unit		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.			
Transfer rate		$2.4~V \leq V_{DD} \leq 3.6~V$		fмск/6		fмск/6		fмск/6		fмск/6	bps		
Note 1		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		4.0		1.3		0.1		0.6	Mbps		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		fмск/6		fмск/6		fмск/6	bps		
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2		_		1.3		0.1		0.6	Mbps
		$1.7~V \leq V_{DD} \leq 3.6~V$		_	-	_	-	_		fмск/6	bps		
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2			-	_	-	_		0.6	Mbps		
		$1.6~V \leq V_{DD} \leq 3.6~V$		_	-	_	-	_		fмск/6	bps		
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		_	-	_	-	_		0.6	Mbps		

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2.The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
HS (high-speed main) mode: $24 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
 $16 \text{ MHz} (2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
LP (low-power main) mode: $1 \text{ MHz} (1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$
LV (low-voltage main) mode: $4 \text{ MHz} (1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) Mode		
Falanielei	Symbol	Conditions	MIN.	MAX.	Unit	
Transfer rate Note 1		$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$		fмск/12	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 2$		2.0	Mbps	

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

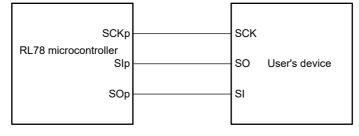
HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V \leq VDD \leq 3.6 V)

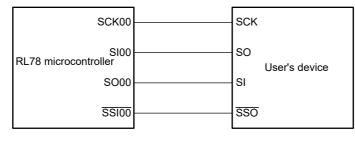
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

	,-		,			-,						(
Parameter	Symbol		Conditions		peed main) ode	• •	beed main) bde	• •	ower main) ode	LV (low-voltage main) Mode		Uni
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		
			$1.8 \text{ V} \leq V_{\text{DD}} < 2.4 \text{ V}$	-								
			$1.6~\text{V} \leq \text{V}_\text{DD} < 1.8~\text{V}$	-		_		_		400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск		1/fмск		1/fмск		1/fмск		n
				+ 120		+ 120		+ 120		+ 120		
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	-								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
SI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		n
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$	_								
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-		—		—		1/fмск + 400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		n
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		1
			$1.8~V \leq V_{\text{DD}} < 2.4~V$	-								
	1		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	_		_		_		400		1

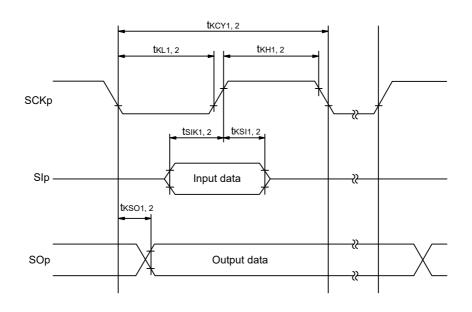

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)

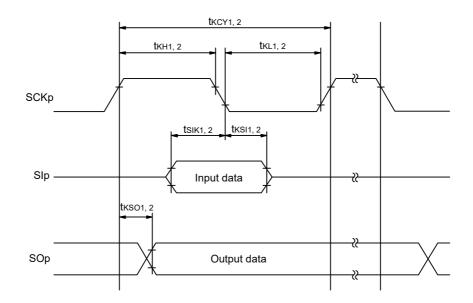

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at same potential)


CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)


Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01) Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions		peed main) ode		peed main) ode	-	w-power mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$		_							
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		_		300 Note 1		250 Note 1		300 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-				-		250 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		-		-			
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \; V \leq V_{\text{DD}} \leq 3.6 \; \text{V}, \\ C_{\text{b}} = 50 \; \text{pF}, \; \text{R}_{\text{b}} = 2.7 \; \text{k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{array}$	_		—		—		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		_				
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-		-		_		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_				
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:def-loss} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{array}$	-		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_		1/fмск + 290		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		-		Note 2		
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-	-		355		355		355	
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-	-							
		eq:def-def-def-def-def-def-def-def-def-def-	—	_	-	_	—	-		405	
		$\label{eq:VDD} \begin{array}{l} 1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega \end{array}$	_	_	_	-	—	—			

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(Notes and Caution are listed on the next page.)

(5) During communication at same potential (simplified I²C mode)

Devenuenten	Or mark at	Que ditions	HS (high-speed	main) Mode	1.1
Parameter	Symbol	Conditions	MIN.	MAX.	- Unit
SCLr clock frequency	fscL	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tнigн	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	1200		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ k}\Omega \end{array}$	1/fмск + 220 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	1/fмск + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{Vdd} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	770	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} \leq 3.6 \ V, \\ C_b = 100 \ pF, \ R_b = 3 \ k\Omega \end{array}$	0	1420	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter Symb			Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		w-power) mode	LV (low-voltage main) Mode		Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
Notes 1, 2			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		4.0		1.3		0.1		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.1		0.6	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $V_{DD} \ge Vb$.

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:}$

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 24 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ & 16 \ \text{MHz} \ (2.4 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LP (low-power main) mode:} & 1 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}\text{DD} \leq 3.6 \ \text{V}) \\ \end{array}$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb[V]: Communication line voltage

- **Remark 2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V) (UART mode) (dedicated baud rate generator output)

Parameter	Symbol		Conditions	HS (high-	HS (high-speed main) Mode		
i didineter	Gymbol		Conditions	MIN.	MAX.	Unit	
Transfer rate Notes 1, 2		Reception	$ \begin{array}{l} V \leq V_{DD} \leq 3.6 \; V, \\ V \leq V_{b} \leq 2.7 \; V \end{array} $		fмск/12 Note 1	bps	
			Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} $^{Note\ 3}$		2.0	Mbps	
			$ V \leq V_{DD} < 3.3 \text{ V}, \\ V \leq V_b \leq 2.0 \text{ V} $		fMCK/12 Notes 1, 2	bps	
			Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} $^{Note\;3}$		0.66	Mbps	

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

(1/2)

Note 1. Transfer rate in the SNOOZE mode is 4,800 bps only.

Note 2. Use it with $VDD \ge Vb$.

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:}$

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 3.6 V)

16 MHz (2.4 V \leq VDD \leq 3.6 V)

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(2/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter Sym bol		Conditions		h-speed Mode		v-speed Mode	LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		479		ns
(to SCKp↑) _{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		479		ns
SIp hold time (from SCKp↑)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↓	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195		195	ns
to SOp output ^{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		483		483		483		483	ns
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		110		ns
(to SCKp↓) Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		110		ns
SIp hold time (from SCKp↓)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 2		$\begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \mbox{ < } 3.3 \mbox{ V}, \ 1.6 \mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note } 3, \\ C_b \mbox{ = } 30 \mbox{ pF}, \ R_b \mbox{ = } 5.5 \Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↑	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		25		25		25		25	ns
to SOp output ^{Note 2}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b = 30 \ \mbox{pF}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		25		25		25		25	ns

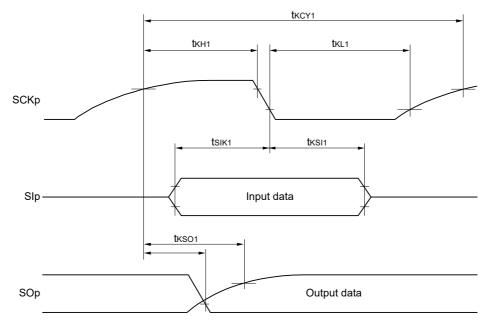
(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

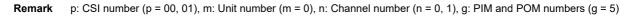
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.


Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(7) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV \text{DD} \leq 3.6~V$	8		12	bit
Overall error Note	AINL	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±7.5	LSB
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	3.375			μs
Zero-scale error Note	Ezs	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±6.0	LSB
Full-scale error Note	Efs	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±6.0	LSB
Integral linearity error Note	ILE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±3.0	LSB
Differential linearity error Note	DLE	12-bit resolution	$2.4~\text{V} \leq \text{AV}\text{DD} \leq 3.6~\text{V}$			±2.0	LSB
Analog input voltage	VAIN		÷	0		AVdd	V

Note Excludes quantization error ($\pm 1/2$ LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(10) When reference voltage (+) = Internal reference voltage (1.45 V) (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13, ANI16 to ANI18

(TA = +85 to +105°C, 2.4 V \leq VDD, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	16.0			μs
Zero-scale error Note	Ezs	8-bit resolution			±4.0	LSB
Integral linearity error Note	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note	DLE	8-bit resolution			±2.5	LSB
Analog input voltage	Vain		0		Vbgr	V

Note Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.2 Temperature sensor, internal reference voltage output characteristics

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)
(TA = +85 to 105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	conditions		TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	$2.4 \text{ V} \leq \text{Vdd} \leq 3.6 \text{ V}$	5			μs
		$1.8 \text{ V} \le \text{V}_{DD} \le 2.4 \text{ V}$	10			

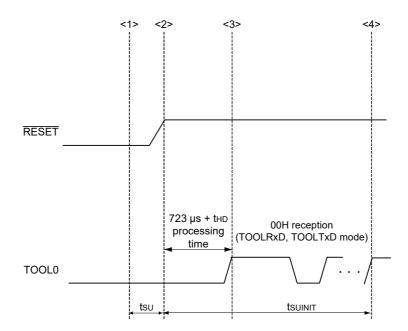
2.9 Dedicated Flash Memory Programmer Communication (UART)

(Ta = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)										
Paramotor	Symbol	Conditions	MIN							

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes


(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
initial communication settings are specified Note 1	tou	POR and LVD reset must end	10			
How long from when the TOOL0 pin is placed at the low level until an external reset ends ^{Note 1}	tsu	before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory) ^{Notes 1, 2}	thd	POR and LVD reset must end before the external reset ends.	1			ms

Note 1. Deassertion of the POR and LVD reset signals must precede deassertion of the pin reset signal.

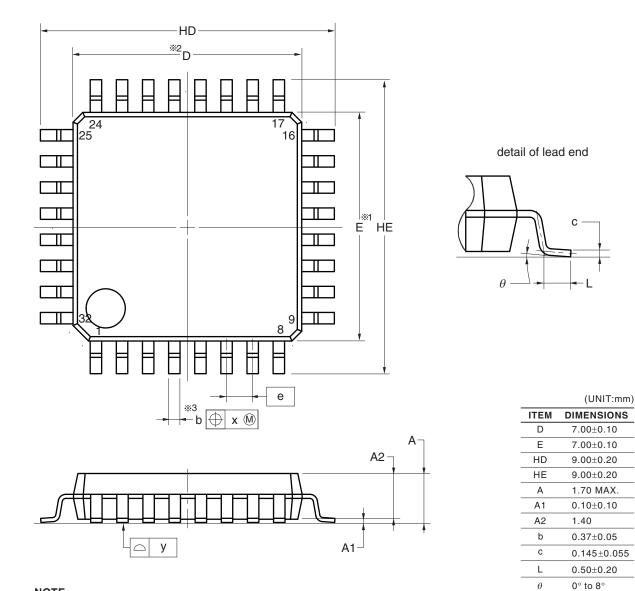
Note 2. This excludes the flash firmware processing time (723 μ s).

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.


Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

- tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
- tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

RENESAS

R5F117BAGFP, R5F117BCGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

0.80

0.20

0.10

е

х

у