

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 17x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117gagfb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

○ ROM, RAM capacities

Flash ROM Data flash	Data flash	DAM	RL78/I1D								
		20 pins	24 pins	30 pins	32 pins	48 pins					
32 KB	2 KB	3 KB Note	_	_	R5F117AC	R5F117BC	R5F117GC				
16 KB	2 KB	2 KB	R5F1176A	R5F1177A	R5F117AA	R5F117BA	R5F117GA				
8 KB	2 KB	0.7 KB	R5F11768	R5F11778	R5F117A8	_	—				

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F117xC (x = A, B, G): Start address FF300H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Pin count	Package	Ordering Part Number
20 pins	20-pin plastic LSSOP	R5F11768GSP#30, R5F1176AGSP#30,
	$(4.4 \times 6.5 \text{ mm}, 0.65 \text{ mm pitch})$	R5F11768GSP#50, R5F1176AGSP#50
24 pins	24-pin plastic HWQFN	R5F11778GNA#U0, R5F1177AGNA#U0,
	$(4 \times 4 \text{ mm}, 0.5 \text{ mm pitch})$	R5F11778GNA#W0, R5F1177AGNA#W0
30 pins	30-pin plastic LSSOP	R5F117A8GSP#30, R5F117AAGSP#30, R5F117ACGSP#30,
	(7.62 mm (300), 0.65 mm pitch)	R5F117A8GSP#50, R5F117AAGSP#50, R5F117ACGSP#50
32 pins	32-pin plastic HVQFN	R5F117BAGNA#20, R5F117BCGNA#20,
	$(5 \times 5 \text{ mm}, 0.5 \text{ mm pitch})$	R5F117BAGNA#40, R5F117BCGNA#40
	32-pin plastic LQFP	R5F117BAGFP#30, R5F117BCGFP#30,
	$(7 \times 7 \text{ mm}, 0.8 \text{ mm pitch})$	R5F117BAGFP#50, R5F117BCGFP#50
48 pins	48-pin plastic LFQFP	R5F117GAGFB#30, R5F117GCGFB#30,
	$(7 \times 7 \text{ mm}, 0.5 \text{ mm pitch})$	R5F117GAGFB#50, R5F117GCGFB#50

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

<R>

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark For pin identification, see 1.4 Pin Identification.

1.3.4 32-pin products

<R>

• 32-pin plastic HVQFN (5 × 5 mm, 0.5 mm pitch)

- Caution 1. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Caution 2. Make AVss pin the same potential as Vss pin.
- Caution 3. Make AVDD pin the same potential as VDD pin.
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 (PIOR0).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

1.5 Block Diagram

1.5.1 48-pin products

Г

<R>

Items	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1	P00 to P04, P30 to P33, P40, P50 to P57, P130	2.7 V ≤ VDD ≤ 3.6 V, Іон = -2.0 mA	Vdd - 0.6			V
			1.8 V \leq V _{DD} \leq 3.6 V ^{Note 3} , IOH = -1.5 mA	Vdd - 0.5			V
			$\begin{array}{l} 1.6 \ V \leq V_{DD} \leq 3.6 \ V \ ^{Note \ 1}, \\ \\ I_{OH} = -1.0 \ mA \end{array}$	Vdd - 0.5			V
	Voh2	P10 to P17, P20 to P25	1.6 V \leq AV _{DD} \leq 3.6 V ^{Note 2} , IOH = -100 μ A	AVDD - 0.5			V
Output voltage, low	VOL1	P00 to P04, P30 to P33, P40, P50 to P57, P130	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ IOL = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{Vdd} \le 3.6 \text{ V},$ lol = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}^{\text{Note 3}},$ IOL = 0.6 mA			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 0.3 \text{ mA}$			0.4	V
	Vol2	P10 to P17, P20 to P25	$\begin{array}{l} 1.6 \ V \leq AV_{DD} \leq 3.6 \ V \ ^{Note \ 2}, \\ I_{OL} = 400 \ \mu A \end{array}$			0.4	V
	Vol3	P60 to P63	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V},$ $\text{IOL} = 3.0 \text{ mA}$			0.4	V
			$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}^{\text{Note } 3}, \\ \text{IoL} = 2.0 \ \text{mA} \end{array}$			0.4	V
			$1.6 \text{ V} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}^{\text{Note 1}},$ $\text{IOL} = 1.0 \text{ mA}$			0.4	V

$(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V) \\ (TA = +85 \ to \ +105^{\circ}C, \ 2.4 \ V \le AVDD = VDD \le 3.6 \ V, \ Vss = AVss = 0 \ V)$

(4/5)

Note 1. Only $T_A = -40$ to $+85^{\circ}C$ is guaranteed.

 $\label{eq:Note 2.} \mbox{Note 2.} \mbox{The condition that } 2.4 \mbox{ V} \leq A \mbox{V} \mbox{DD} \leq 3.6 \mbox{ V} \mbox{ is guaranteed when } +85^{\circ}\mbox{C} < T_A \leq +105^{\circ}\mbox{C}.$

Note 3. The condition that 2.4 V \leq VDD \leq 3.6 V is guaranteed when +85°C < TA \leq +105°C.

Caution P30 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)
$(T_A = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

$(TA = +85 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AVDD} = \text{VDD} \le 3.6 \text{ V}, \text{Vss} = \text{AVss} = 0 \text{ V}) $ (1/2)										
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit		
Instruction cycle	Тсү	Main system clock	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 3.6~V$	0.04167		1	μs		
(minimum instruction		(fmain) operation	mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs		
execution time)			LS (low-speed main) mode	$1.8 V \le V_{DD} \le 3.6 V$ PMMC. MCSEL = 0	0.125		1	μs		
				1.8 V ≤ VDD ≤ 3.6 V PMMC. MCSEL = 1	0.25		1			
			LP (low-power main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		1		μs		
			LV (low-voltage main)	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.25		1	μs		
			mode	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	0.34		1			
		Subsystem clock	fsx	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	28.5	30.5	31.3	μs		
		(fs∪B) operation	fı∟	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$		66.7				
		In the self-	HS (high-speed main)	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.04167		1	μs		
		programming	mode	$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	0.0625		1	μs		
		mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.125		1	μs		
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	0.25		1	μs		
External system	fEX	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	/	1	1.0		20.0	MHz		
clock frequency		$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$,		1.0		16.0	MHz		
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$	1		1		8	MHz		
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$!		1		4	MHz		
	fexs				32		35	kHz		
External system	texн,	$2.7 \text{ V} \leq \text{VDD} \leq 3.6 \text{ V}$	/		24			ns		
clock input high-level	t EXL	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1		30			ns		
width, low-level width		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$	1		60			ns		
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1		120			ns		
	texhs, texls				13.7			μs		
TI00 to TI03 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10			ns		

Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3))

AC Timing Test Points

External System Clock Timing

TI/TO Timing

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Paramotor	Symbol		Conditions	HS (high-spee	Unit	
Falanielei	Symbol		onduions	MIN.	MAX.	Unit
SCKp cycle time	tKCY1	tксү1 ≥ fcLк/4	\geq fclk/4 2.7 V \leq Vdd \leq 3.6 V			ns
			$2.4~V \leq V_{DD} \leq 3.6~V$	500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	tксү1/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	tксү1/2 - 7 6		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	66		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6$	6 V	133		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp \downarrow to SOp output $^{\rm Note\;3}$	tkso1	C = 30 pF Note 4			50	ns

(TA = +85 to +105°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol		Conditions	HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode	LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	—								
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	—		-		-		400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
		$1.8~\text{V} \leq \text{V}_\text{DD} < 2.4~\text{V}$	_									
			$1.6~V \leq V_{DD} < 1.8~V$	-		—		—		1/fмск + 400		
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		1/fмск + 200		
			$1.8~V \leq V_{\text{DD}} < 2.4~V$	—								
			$1.6~V \leq V_{DD} < 1.8~V$	_		—		—		1/fмск + 400		
		DAPmn = 1	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	120		120		120		120		ns
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$	200		200		200		200		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	—									
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}$	—		-		—		400]

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(2/2)

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(2/2)

(6) Communication at different potential (1.8 V, 2.5V) (UART mode) (dedicated baud rate generator output)

Parameter Symbol		Conditions		HS (hi main	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Transfer rate ^{Note 2}		Transmission	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		Note 1		Note 1		Note 1		Note 1	bps
	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 2		1.2 Note 2		1.2 Note 2		1.2 Note 2	Mbps		
			$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 3, 4		Notes 3, 4		Notes 3, 4		Notes 3, 4	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \ pF, \ R_b = 5.5 \ k\Omega, \\ V_b = 1.6 \ V \end{array}$		0.43 Note 5		0.43 Note 5		0.43 Note 5		0.43 Note 5	Mbps

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1.The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.Expression for calculating the transfer rate when $2.7 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ and $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$

Maximum transfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

$$Baud rate error (theoretical value) = \frac{1}{(\frac{1}{Transfer rate \times 2} - {-C_b \times R_b \times ln (1 - \frac{2.0}{V_b})} \times 100 [\%]} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

1

1

- **Note 3.** Use it with $V_{DD} \ge V_b$.
- Note 4. The smaller maximum transfer rate derived by using fMcK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V}$

Baud rate error (theoretical value) =
$$\frac{1}{-\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(2/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter Sym	Sym	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		v-power mode	LV (low-voltage main) Mode		Unit
	501		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsıĸı	$\label{eq:VD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{ V}_{DD} \leq 3.6 \mbox{ V}, 2.3 \mbox{ V} \leq \mbox{ V}_{b} \leq 2.7 \mbox{ V}, \\ C_{b} = 30 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \end{array}$	177		479		479		479		ns
(to SCKp↑) Note 1		$\begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \mbox{ < } 3.3 \mbox{ V}, \mbox{ 1.6 }\mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note 3}, \\ C_b \mbox{ = } 30 \mbox{ pF}, \mbox{ R}_b \mbox{ = } 5.5 \Omega \end{array}$	479		479		479		479		ns
SIp hold time (from SCKp↑)	tksi1	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	19		19		19		19		ns
Note 1		$\label{eq:VD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note } ^3, \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \mbox{ k} \Omega \end{array}$	19		19		19		19		ns
Delay time tkso1 from SCKp↓	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195		195	ns	
output Note 1		$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ ^{\text{Note 3}}, \\ \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 5.5 \ \text{k}\Omega \end{array}$		483		483		483		483	ns
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		110		ns
(to SCKp↓) Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		110		ns
SIp hold time (from SCKp↓)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 2		$\begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 } \mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note 3}, \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↑	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25		25	ns
to SOp output ^{Note 2}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b = 30 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25		25	ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter Sym		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
	DOI			MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 100 \; \text{pF}, \; \text{R}_b = 2.7 \; \text{k}\Omega \end{array}$		400 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ \text{Note} \ \text{2}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 5.5 \ \text{k}\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
Hold time when SCLr	t∟ow	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \ 2.3 \; \text{V} \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	475		1550		1550		1550		ns
= "L"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		1550		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1550		1550		1550		1550		ns
Hold time thigh when SCLr	tніgн	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq V_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	200		610		610		610		ns
= "H"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		610		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	610		610		610		610		ns
Data setup time (reception)	tsu: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 190 Note 2		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; \text{V}, \; 2.3 \; V \leq V_b \leq 2.7 \; \text{V}, \\ C_b = 50 \; \text{pF}, \; R_b = 2.7 \; \text{k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{b} \leq 2.7 \ \text{V}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	0	355	0	355	0	355	0	355	ns
		$\label{eq:VDD} \hline $1.8 \mbox{ V} \leq V_{DD}$ < $3.3 \mbox{ V}, $1.6 \mbox{ V} \leq V_b \leq $2.0 \mbox{ V}$ Note 2,} $$C_b$ = $100 \mbox{ pF}, R_b = $5.5 \mbox{ k}\Omega$ }$	0	405	0	405	0	405	0	405	ns

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than $f_{MCK}/4$.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01), g: PIM and POM numbers (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

2.6.4 Operational amplifier characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	
(Ta = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Common mode input range	Vicm1	Low-power consumption mode				AVDD - 0.5	V
	Vicm2	High-speed mode				AVDD - 0.6	V
Output voltage range	Vo1	Low-power consumption mode				AVDD - 0.1	V
	Vo2	High-speed mode				AVDD - 0.1	V
Input offset voltage	Vioff			-10		10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mode			0.04		MHz
	GBW2	High-speed mode			1.7		MHz
Phase margin	PM	CL = 20 pF		50			deg
Gain margin	GM	CL = 20 pF					dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power		230		nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode		200		nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode		90		nV/√Hz
	Vnoise4	f = 2 kHz			70		nV/√Hz
Power supply reduction ratio	PSRR				90		dB
Common mode signal reduction ratio	CMRR				90		dB
Operation stabilization wait time	Tstd1	CL = 20 pF Only operational amplifier is	Low-power consumption mode	650			μs
	Tstd2	activated ^{Note}	High-speed mode	13			μs
	Tstd3	CL = 20 pF Operational amplifier and	Low-power consumption mode	650			μs
	Tstd4	reference current circuit are activated simultaneously	High-speed mode	13			μs
Settling time	Tset1	t1 CL = 20 pF	Low-power consumption mode			750	μs
	Tset2		High-speed mode			13	μs
Slew rate	Tslew1	CL = 20 pF	Low-power consumption mode		0.02		V/µs
	Tslew2		High-speed mode		1.1		V/µs
Load current	lload1	Low-power consumption mode		-100		100	μA
	lload2	High-speed mode				100	μA
Load capacitance	CL					20	pF

Note

When the operational amplifier reference current circuit is activated in advance.

(2) LVD Detection Voltage of Interrupt & Reset Mode

Parameter	Symbol		Condit	MIN.	TYP.	MAX.	Unit	
Interrupt and	VLVDA0	VPOC0, VPOC1, VPOC2 = 0, 0, 0, falling reset voltage			1.60	1.63	1.66	V
reset mode	VLVDA1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	.VDA2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, falli	ng reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC0,	POC0, VPOC1, VPOC2 = 0, 1, 0, falling reset voltage			2.45	2.50	V
	VLVDC1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDD0	VPOC0, VPOC1, VPOC2 = 0, 1, 1, falli		ng reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

(TA = -40 to +85°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(TA = +85 to +105°C, VPDR \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDD0	VPOC0,	/POC0, VPOC1, VPOC2 = 0, 1, 1, falling reset voltage			2.75	2.86	V
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVDD2	LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V

2.6.7 Power supply voltage rising slope characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

3.5 48-pin products

<R>

R5F117GCGFB, R5F117GAGFB

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Cent Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

and Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

p Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia