

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 17x8/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f117gcgfb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<R> <R> <R>

<R>

<R>

2.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

(1/4)

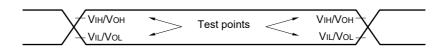
Parameter	Symbol			Conditions				MIN.	TYP.	MAX.	Uni
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode	f _{IH} = 24 MHz ^{Note 3} , T _A = -40 to +105°C	Basic operation	V _{DD} = 3.0 V			1.4		mA
			HS (high-speed main) mode	$f_{IH} = 24 \text{ MHz Note 3},$ $T_A = -40 \text{ to } +85^{\circ}\text{C}$	Normal operation	V _{DD} = 3.0 V			3.2	6.3	mA
				f _{IH} = 24 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				6.7	
				f_{IH} = 16 MHz Note 3, T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			2.4	4.6	
				f _{IH} = 16 MHz ^{Note 3} , T _A = +85 to +105°C	Normal operation	V _{DD} = 3.0 V				4.9	
			LS (low-speed main)	fiн = 8 MHz Note 3,	Normal	V _{DD} = 3.0 V			1.1	2.0	m
			mode (MCSEL = 0)	T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			1.1	2.0	
			LS (low-speed main) mode	f _{IH} = 4 MHz ^{Note 3} , T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			0.72	1.30	m
			(MCSEL = 1)			V _{DD} = 2.0 V			0.72	1.30 1.10	
				$f_{IM} = 4 \text{ MHz }^{Note 7},$ T _A = -40 to +85°C	Normal operation	V _{DD} = 3.0 V			0.58	1.10	
					Newsel	V _{DD} = 2.0 V					
			LV (low-voltage main) mode	$f_{IH} = 3 \text{ MHz }^{Note 3}$, $T_A = -40 \text{ to } +85^{\circ}\text{C}$	Normal operation	V _{DD} = 3.0 V V _{DD} = 2.0 V			1.2 1.2	1.8 1.8	m
			LP (low-power main)	fi⊢ = 1 MHz ^{Note 3} ,	Normal	V _{DD} = 3.0 V			290	480	μ
			mode Note 5	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$	operation	V _{DD} = 2.0 V			290	480	
			(MCSEL = 1)	fi⊨ = 1 MHz ^{Note 5} ,	Normal	V _{DD} = 3.0 V			124	230	Ì
				T _A = -40 to +85°C	operation	V _{DD} = 2.0 V			124	230	
			HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input		2.7	5.3	m
			mode	T _A = -40 to +85°C	operation		Resonator connection		2.8	5.5	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input			5.7	
				T _A = +85 to +105°C	operation		Resonator connection			5.8	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		1.8	3.1	
				T _A = -40 to +85°C	operation		Resonator connection		1.9	3.2	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input			3.4	
				T _A = +85 to +105°C	operation		Resonator connection			3.5	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	V _{DD} = 3.0 V	Square wave input		0.9	1.9	n
			(MCSEL = 0)	T _A = -40 to +85°C	operation		Resonator connection		1.0	2.0	
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.9	1.9	
				T _A = -40 to +85°C	operation		Resonator connection		1.0	2.0	
			LS (low-speed main)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 3.0 V	Square wave input		0.6	1.1	n
			mode (MCSEL = 1)	T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2]
			(MOSEL - T)	f _{MX} = 4 MHz ^{Note 2} ,	Normal	V _{DD} = 2.0 V	Square wave input		0.6	1.1	
				T _A = -40 to +85°C	operation		Resonator connection		0.6	1.2	
			LP (low-power main)	$f_{MX} = 1 \text{ MHz }^{Note 2}$,	Normal operation	V _{DD} = 3.0 V	Square wave input		100	190	μ
		mode (MCSEL = 1)		T _A = -40 to +85°C			Resonator connection		136	250	ļ
				f _{MX} = 1 MHz ^{Note 2} , T _A = -40 to +85°C	Normal operation	V _{DD} = 2.0 V	Square wave input		100	190	
	1			1A = -40 10 +85 °C	operation		Resonator connection		136	250	1

(Notes and Remarks are listed on the next page.)

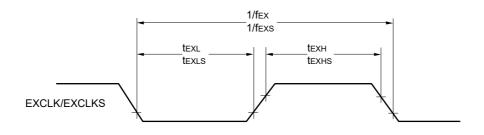
Peripheral Functions (Common to all products)

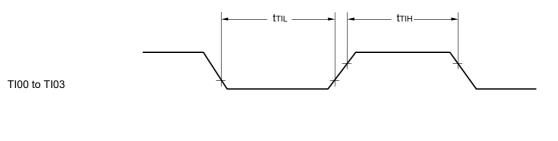
(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

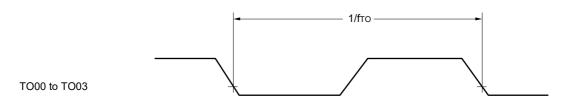
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)


(1/2)

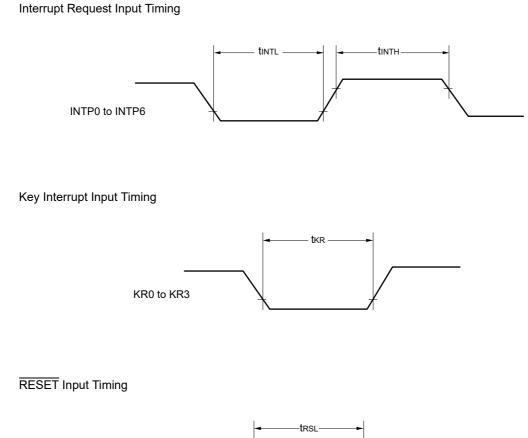
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3	fsx = 32.768 kHz			0.02		μΑ
12-bit interval timer operating current	ITMKA Notes 1, 2, 4	fsx = 32.768 kHz			0.04		μΑ
8-bit interval timer operating current	ITMT Notes 1, 9	fsx = 32.768 kHz	8-bit counter mode \times 2-channel operation		0.12		μΑ
		fmain stopped (per unit)	16-bit counter mode operation		0.10		μA
Watchdog timer operating current	1t IwDT Notes 1, 2, 5 fiL = 15 kHz			0.22		μΑ	
A/D converter operating current	J _{ADC} Notes 6, 10	During maximum-speed conversion	AV _{DD} = 3.0 V		420	720	μA
Avref(+) current	IAVREF Note 11	AVREFP = 3.0 V, ADREFP1	= 0, ADREFP0 = 1		14.0	25.0	μΑ
Internal reference voltage (1.45 V) current	ADREF Notes 1, 12				85.0		μA
Temperature sensor operating current	ITMPS Note 1				85.0		μA
Comparator operating current	I _{CMP} Notes 8, 10	AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		12.5		μΑ
		= 2.1 V	Comparator low-speed mode Window mode		3.0		
			Comparator high-speed mode Standard mode		6.5		
			Comparator low-speed mode Standard mode		1.7		
		AV _{DD} = 3.6 V, Regulator output voltage	Comparator high-speed mode Window mode		8.0		
		= 1.8 V	Comparator low-speed mode Window mode		2.2		
			Comparator high-speed mode Standard mode		4.0		
			Comparator low-speed mode Standard mode		1.3		
Operational amplifier operating current	IAMP Notes 10, 13	Low-power consumption	One operational amplifier unit operates Note 14		2.5	4.0	μΑ
		mode	Two operational amplifier units operate Note 14		4.5	8.0	
			Three operational amplifier units operate Note 14		6.5	11.0	
			Four operational amplifier units operate Note 14		8.5	14.0	1
		High-speed mode	One operational amplifier unit operates Note 14		140	220	1
			Two operational amplifier units operate Note 14		280	410	1
			Three operational amplifier units operate Note 14		420	600	
			Four operational amplifier units operate Note 14		560	780	1
LVD operating current	ILVD Notes 1, 7				0.10		μA

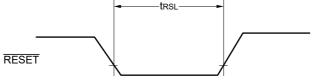

(Notes and Remarks are listed on the next page.)

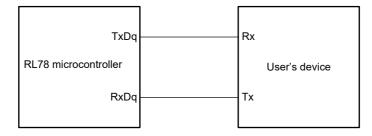

AC Timing Test Points



External System Clock Timing




TI/TO Timing





UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	HS (high-s	peed main)	LS (low-sp	beed main)	LP (Low-power main)		LV (low-voltage main)		Unit
			Mo	ode	Mode		mode		Mode		
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1≥fc∟к/2	83.3		250		2000		500		ns
SCKp high-/low-level width	tĸ∟1		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı		33		110		110		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1		10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note 4		10		20		20		20	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}\text{DD} = \text{V}\text{DD} \le 3.6 \text{ V}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sympol		Conditions	HS (high-spee	Unit	
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SCKp cycle time	tKCY1	tксү1 ≥ fcLк/4	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	250		ns
			$2.4~V \leq V_{DD} \leq 3.6~V$	500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		tксү1/2 - 36		ns
		$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		66		ns
		$2.4~V \leq V_{DD} \leq 3$.6 V	133		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4	1		50	ns

(TA = +85 to +105°C, 2.7 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(1/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cond	itiana	HS (high-speed	Unit	
Parameter	Symbol	Cond	luons	MIN.	MAX.	Unit
SCKp cycle time Note 5	tксү2	$2.7~V \leq V_{\text{DD}} < 3.6~V$	fмск > 16 MHz	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} < 2.7~V$	$V_{DD} \le 3.6 \text{ V}$ tkcy2/2 - 16	ns		
SCKp high-/low-level width	tkh2, tkl2	$2.7~V \leq V_{DD} \leq 3.6~V$		tксү2/2 - 16		ns
		$2.4~V \leq V_{\text{DD}} < 2.7~V$		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsik2	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		1/fмск + 40		ns
		$2.4~V \leq V_{DD} < 2.7~V$		1/fмск + 60		ns
SIp hold time (from SCKp [↑]) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 3.6~V$		2/fмск + 66	ns
			$2.4~V \leq V_{DD} < 2.7~V$		2/fмск + 113	ns

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

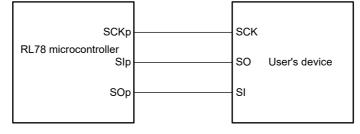
Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

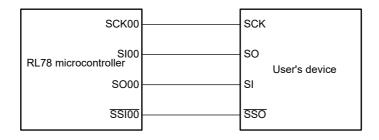
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2/2)

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


Parameter	Symbol		Conditions	HS (high-speed	HS (high-speed main) Mode			
Falameter	Parameter Symbol Conditions		Conditions	MIN.	MAX.	Unit		
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq V_{DD} \leq 3.6~V$	240		ns		
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	400		ns		
		DAPmn = 1	$2.7~V \leq V_{DD} \leq 3.6~V$	1/fмск + 240		ns		
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	1/fмск + 400		ns		
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq V_{DD} \leq 3.6~V$	1/fмск + 240		ns		
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	1/fмск + 400		ns		
		DAPmn = 1	$2.7~V \leq V \text{DD} \leq 3.6~V$	240		ns		
			$2.4~\text{V} \leq \text{V}\text{DD} < 2.7~\text{V}$	400		ns		

(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

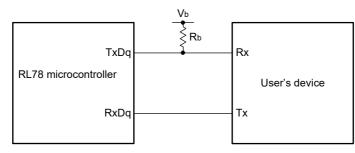
CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

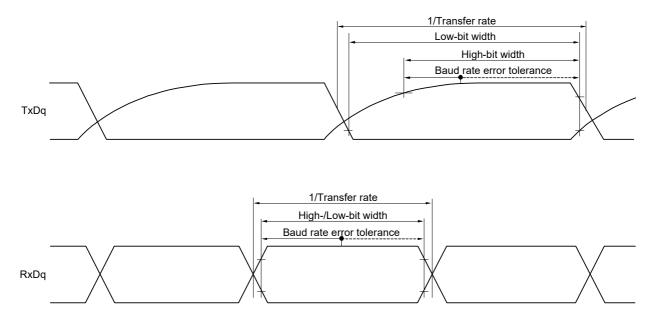
Remark 1. p: CSI number (p = 00, 01)

Remark 2. m: Unit number, n: Channel number (mn = 00, 01)

(5) During communication at same potential (simplified I²C mode)


Parameter	Symbol	Conditions		peed main) ode		peed main) ode	-	w-power mode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$		_							
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		_		300 Note 1		250 Note 1		300 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-				-		250 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		-		-		-			
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \\ \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{array}$	_		—		—		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_		_				
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-		_		_		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_				
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 3.6 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-								
		$\label{eq:def-loss} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{array}$	-		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_		1/fмск + 290		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq \mbox{V}_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		-		Note 2		
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \leq 3.6 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	-	-		355		355		355	
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-	-							
		$\label{eq:def_def_def} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	—	_	-	_	—	-		405	
		$\label{eq:VDD} \begin{array}{l} 1.6 \text{ V} \leq \text{V}_{\text{DD}} < 1.8 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega \end{array}$	_	_	_	-	—	—			

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)


(Notes and Caution are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0), g: PIM and POM number (g = 5)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2/2)

(8) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym bol	Conditions		h-speed Mode		v-speed Mode	``	v-power mode		-voltage Mode	Unit
	501		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsıĸ1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ p\text{F}, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		479		ns
(to SCKp↑) _{Note 1}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		479		ns
SIp hold time (from SCKp↑)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 1		$\begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b \mbox{ = } 30 \ \mbox{pF}, \ R_b \mbox{ = } 5.5 \ \mbox{k}\Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↓	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195		195	ns
to SOp output ^{Note 1}	Op 1.8	$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		483		483		483		483	ns
SIp setup time	tsıĸı	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		110		ns
(to SCKp↓) Note 2		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 3}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		110		ns
SIp hold time (from SCKp↓)	tksi1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		19		ns
Note 2		$\begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} \mbox{ < } 3.3 \mbox{ V}, \ 1.6 \mbox{ V} \leq \mbox{V}_b \leq 2.0 \mbox{ V} \mbox{ Note } 3, \\ C_b \mbox{ = } 30 \mbox{ pF}, \ R_b \mbox{ = } 5.5 \Omega \end{array}$	19		19		19		19		ns
Delay time from SCKp↑	tkso1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25		25	ns
to SOp output ^{Note 2}		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 3}, \\ C_b = 30 \ \mbox{pF}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		25		25		25		25	ns

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

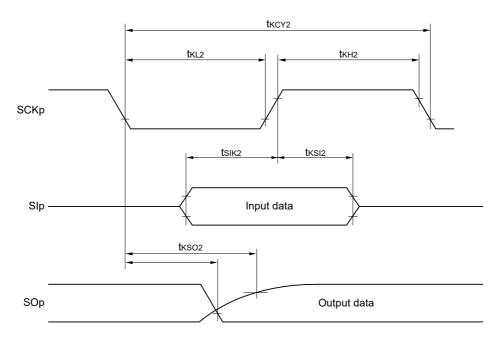
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

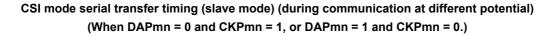
Note 3. Use it with $V_{DD} \ge V_b$.

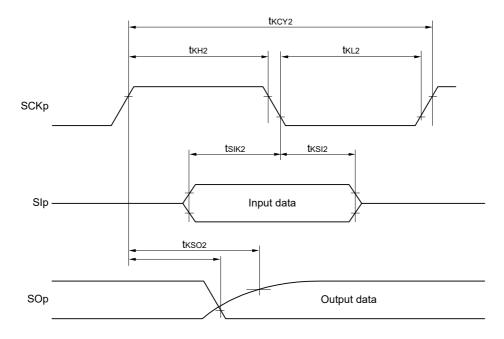
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)


(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symb	Co	onditions		h-speed Mode	LS (low main)	/-speed Mode	LP (Lov main)	v-power mode	LV (low main)	-voltage Mode	Unit
	OI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$2.7~V \leq V\text{DD} \leq 3.6~V,~2.3$	20 MHz < fmck \leq 24 MHz	16/fмск		—		—		-		ns
time Note 1		$V \leq Vb \leq 2.7 \ V$	16 MHz < fмск ≤ 20 MHz	14/fмск		-		—		—		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		—				-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		—		ns
			fMCK ≤ 4 MHz	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{VDD} < 3.3 \text{ V}, 1.6$	20 MHz < fмск ≤ 24 MHz	36/fмск		—				-		ns
		V ≤ Vb ≤ 2.0 V Note 2	16 MHz < fмск ≤ 20 MHz	32/fмск		-		_		—		ns
			8 MHz < fмск ≤ 16 MHz	26/fмск		—				—		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск				—		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level	tкн2, tкL2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$V \le Vb \le 2.7 V$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
width		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le Vb \le 2.0 V$ Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to	tsık2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}, 2.3 \text{ V}$	$V \leq Vb \leq 2.7 V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SCKp↑) Note 3		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.6 V	$V \le Vb \le 2.0 V$ Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓	tĸso2	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, \; 2.3 \; V \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	$V \leq Vb \leq 2.7 V$,		2/fмск + 214		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
to SOp output ^{Note 5}		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{DD} < 3.3 \mbox{ V}, \mbox{ 1.6 }\mbox{ V} \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 5.5 \mbox{ k}\Omega \end{array}$	$^{\prime} \leq Vb \leq 2.0 \text{ V}$ Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns


(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)


(Notes and Caution are listed on the next page. Remarks are listed on the page after the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 5)

(10) Communication at different potential (1.8 V, 2.5 V) (simplified I²C mode)

Parameter	Sym bol	Conditions	、 U	h-speed Mode	``	v-speed Mode	``	v-power mode		-voltage Mode	Unit
	DOI		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	kHz
Hold time when SCLr	tLOW	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		1550		ns
= "L"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1150		1550		1550		1550		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ p\text{F}, \ R_b = 5.5 \ k\Omega \end{array}$	1550		1550		1550		1550		ns
Hold time when SCLr	tнıgн	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		610		ns
= "H"		$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		610		ns
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	610		610		610		610		ns
Data setup time (reception)	tsu: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fмск + 190 Note 2		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\label{eq:2.7} \begin{split} & 2.7 \ V \leq V_{DD} \leq 3.6 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1/fмск + 190 Note 3		ns						
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	1/fмск + 190 Note 3		ns						
Data hold time (transmission)	thd: DAT	$\begin{array}{l} 2.7 \; V \leq V_{DD} \leq 3.6 \; V, 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{split} 2.7 \ V \leq V_{\text{DD}} \leq 3.6 \ \text{V}, \ 2.3 \ \text{V} \leq V_{\text{b}} \leq 2.7 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{split}$	0	355	0	355	0	355	0	355	ns
		$\begin{array}{l} 1.8 \; V \leq V_{\text{DD}} < 3.3 \; V, \; 1.6 \; V \leq V_{\text{b}} \leq 2.0 \; V \; \text{Note 2}, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 5.5 \; k\Omega \end{array}$	0	405	0	405	0	405	0	405	ns

(TA = -40 to 85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)

Note 1. The value must also be equal to or less than $f_{MCK}/4$.

Note 2. Use it with $V_{DD} \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target: ANI2 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4~V \leq AV_{REFP} \leq AV_{DD} \leq 3.6~V$	8		12	bit
			$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$		8 Note 2	10 Note 1	
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.5	
Conversion time	t CONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	6.75			
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1,	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	2.5625			
		8-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Full-scale error Note 3	Efs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	LSB
		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±4.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.0	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.5	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq 3.6 \text{ V}$			±1.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AVREFP} \leq \text{AVDD} \leq 3.6 \text{ V}$			±1.0	
Analog input voltage	VAIN			0		AVREFP	V

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error (±1/2 LSB).

Caution Always use AVDD pin with the same potential as the VDD pin.

(2) When reference voltage (+) = AVDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = AVss (ADREFM = 0), conversion target: ANI0 to ANI13

(TA = -40 to +85°C, 1.6 V \leq AVDD = VDD \leq 3.6 V, Vss = 0 V, AVss = 0 V, Reference voltage (+) = AVDD, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Con	Conditions MII		TYP.	MAX.	Unit
Resolution	Res	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$		8		12	bit
			$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	8		10 Note 1	
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$		8 Note 2		
Overall error Note 3	AINL	12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±7.5	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$			±5.5	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.0	
Conversion time	tCONV	ADTYP = 0, 12-bit resolution	$2.4 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	3.375			μs
		ADTYP = 0, 10-bit resolution ^{Note 1}	$1.8 \text{ V} \le \text{AV}\text{DD} \le 3.6 \text{ V}$	6.75	6.75		
		ADTYP = 0, 8-bit resolution ^{Note 2}	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	13.5			
		ADTYP = 1, 8-bit resolution	$2.4~V \leq AV \text{DD} \leq 3.6~V$	2.5625			
			$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	5.125			
			$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$	10.25			
Zero-scale error Note 3	Ezs	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.5	
Full-scale error Note 3	Efs	12-bit resolution	$2.4~V \leq AV \text{dd} \leq 3.6~V$			±6.0	LSB
		10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±5.0	
		8-bit resolution	$1.6 \text{ V} \le \text{AV}_{\text{DD}} \le 3.6 \text{ V}$			±2.5	
Integral linearity error	ILE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±3.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±1.5	
Differential linearity error	DLE	12-bit resolution	$2.4 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	LSB
Note 3		10-bit resolution	$1.8 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±2.0	
		8-bit resolution	$1.6 \text{ V} \leq \text{AV}\text{DD} \leq 3.6 \text{ V}$			±1.5	
Analog input voltage	VAIN	ANI0 to ANI6	0		AVdd	V	

Note 1. Cannot be used for lower 2 bit of ADCR register

Note 2. Cannot be used for lower 4 bit of ADCR register

Note 3. Excludes quantization error $(\pm 1/2 \text{ LSB})$.

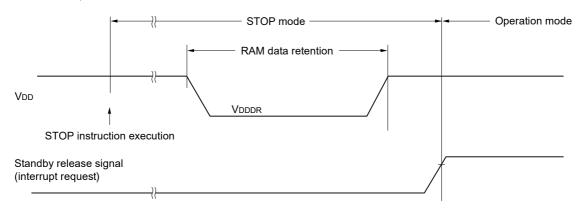
Caution Always use AVDD pin with the same potential as the VDD pin.

2.6.4 Operational amplifier characteristics

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)	

•							
Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Common mode input range	Vicm1	Low-power consumption mode		0.2		AVDD - 0.5	V
	Vicm2	High-speed mode				AVDD - 0.6	V
Output voltage range	Vo1	Low-power consumption mod	Low-power consumption mode			AVDD - 0.1	V
	Vo2	High-speed mode		0.1		AVDD - 0.1	V
Input offset voltage	Vioff			-10		10	mV
Open gain	Av			60	120		dB
Gain-bandwidth (GB) product	GBW1	Low-power consumption mode			0.04		MHz
	GBW2	High-speed mode			1.7		MHz
Phase margin	РМ	CL = 20 pF		50			deg
Gain margin	GM	CL = 20 pF		10			dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power		230		nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode		200		nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode		90		nV/√Hz
	Vnoise4	f = 2 kHz			70		nV/√Hz
Power supply reduction ratio	PSRR		1		90		dB
Common mode signal	CMRR				90		dB
reduction ratio							
Operation stabilization wait	Tstd1	CL = 20 pF	Low-power	650			μs
time		Only operational amplifier is activated ^{Note}	consumption mode				
	Tstd2		High-speed mode	13			μs
	Tstd3	Operational amplifier and	Low-power	650			μs
	T 1 1 4		consumption mode	10			
	Tstd4	activated simultaneously	High-speed mode	13			μs
Settling time	Tset1	CL = 20 pF	Low-power			750	μs
			consumption mode				
	Tset2		High-speed mode			13	μs
Slew rate	Tslew1	CL = 20 pF	Low-power		0.02		V/µs
			consumption mode				
	Tslew2		High-speed mode	-100	1.1		V/µs
Load current	lload1	Low-power consumption mode				100	μA
	lload2	High-speed mode				100	μA
Load capacitance	CL					20	pF

Note


When the operational amplifier reference current circuit is activated in advance.

2.7 **RAM Data Retention Characteristics**

(TA = -40 to +85°C, 1.8 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V) (TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, VSS = AVSS = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR	TA = -40 to +85°C	1.46 Note		3.6	V
		TA = +85 to +105°C	1.44 Note		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.8 **Flash Memory Programming Characteristics**

(TA = -40 to +85°C, 1.8 V \leq AVDD \approx	= VDD ≤ 3	.6 V, Vss = AVss = 0 V)				
(TA = +85 to +105°C, 2.4 V \leq AVDD = VDD \leq 3.6 V, Vss = AVss = 0 V)						
Parameter	Symbol	Conditions				

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C ^{Note 4}		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years TA = 85°C ^{Note 4}	10,000			

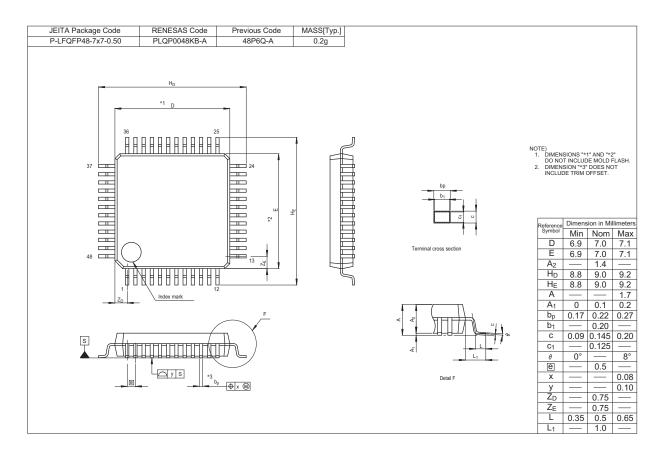
Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

<R>


<R>

3.5 48-pin products

<R>

R5F117GCGFB, R5F117GAGFB

