

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	21
Program Memory Size	7.5KB (7.5K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mchc908gr8acfae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

7.3	CPU Registers	83
7.3.1	Accumulator	84
7.3.2	Index Register	84
7.3.3	Stack Pointer	85
7.3.4	Program Counter	85
7.3.5	Condition Code Register	86
7.4	Arithmetic/Logic Unit (ALU)	87
7.5	Low-Power Modes	87
7.5.1	Wait Mode	87
7.5.2	Stop Mode	87
7.6	CPU During Break Interrupts	87
7.7	Instruction Set Summary	88
7.8	Opcode Map	93

Chapter 8 External Interrupt (IRQ)

8.1		. 95
8.2	Features	. 95
8.3	Functional Description	. 95
8.4	IRQ Pin	. 97
8.5	IRQ Module During Break Interrupts	. 97
8.6	IRQ Status and Control Register	. 98

Chapter 9 Keyboard Interrupt Module (KBI)

9.1	Introduction
9.2	Features
9.3	Functional Description
9.4	Keyboard Initialization
9.5	Low-Power Modes
9.5.1	Wait Mode
9.5.2	Stop Mode
9.6	Keyboard Module During Break Interrupts 103
9.7	I/O Registers
9.7.1	Keyboard Status and Control Register 103
9.7.2	Keyboard Interrupt Enable Register 104

Chapter 10

Low-Power Modes

10.1	Introduction
10.1.1	Wait Mode
10.1.2	Stop Mode
10.2	Analog-to-Digital Converter (ADC) 105
10.2.1	Wait Mode
10.2.2	Stop Mode
10.3	Break Module (BRK) 106
10.3.1	Wait Mode
10.3.2	Stop Mode

Memory

2.6.3 FLASH Page Erase Operation

Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory. A page consists of 64 consecutive bytes starting from addresses \$XX00, \$XX40, \$XX80, or \$XXC0. The 36-byte user interrupt vectors area also forms a page. Any FLASH memory page can be erased alone.

- 1. Set the ERASE bit, and clear the MASS bit in the FLASH control register.
- 2. Read the FLASH block protect register.
- 3. Write any data to any FLASH location within the page address range of the block to be erased.
- 4. Wait for a time, t_{NVS} (minimum 10 μ s)
- 5. Set the HVEN bit.
- 6. Wait for a time, t_{Erase} (minimum 1 ms or 4 ms)
- 7. Clear the ERASE bit.
- 8. Wait for a time, t_{NVH} (minimum 5 μ s)
- 9. Clear the HVEN bit.
- 10. After a time, t_{RCV} (typical 1 μ s), the memory can be accessed in read mode again.

NOTE

Programming and erasing of FLASH locations cannot be performed by code being executed from FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps.

In applications that need more than 1000 program/erase cycles, use the 4-ms page erase specification to get improved long-term reliability. Any application can use this 4-ms page erase specification. However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and speed is important, use the 1-ms page erase specification to get a shorter cycle time.

2.6.4 FLASH Mass Erase Operation

Use this step-by-step procedure to erase entire FLASH memory:

- 1. Set both the ERASE bit, and the MASS bit in the FLASH control register.
- 2. Read the FLASH block protect register.
- 3. Write any data to any FLASH address⁽¹⁾ within the FLASH memory address range.
- 4. Wait for a time, t_{NVS} (minimum 10 μ s)
- 5. Set the HVEN bit.
- 6. Wait for a time, t_{MErase} (minimum 4 ms)
- 7. Clear the ERASE and MASS bits.

NOTE

Mass erase is disabled whenever any block is protected (FLBPR does not equal \$FF).

- 8. Wait for a time, t_{NVHL} (minimum 100 μ s)
- 9. Clear the HVEN bit.
- 10. After a time, t_{BCV} (typical 1 µs), the memory can be accessed in read mode again.

^{1.} When in monitor mode, with security sequence failed (see 18.3.2 Security), write to the FLASH block protect register instead of any FLASH address.

Figure 3-2. ADC Block Diagram

3.3.2 Voltage Conversion

When the input voltage to the ADC equals V_{REFH} , the ADC converts the signal to \$FF (full scale). If the input voltage equals V_{REFL} , the ADC converts it to \$00. Input voltages between V_{REFH} and V_{REFL} are a straight-line linear conversion.

NOTE

The ADC input voltage must always be greater than V_{SSA} and less than V_{DDA} . V_{RFFH} must always be greater than or equal to V_{RFFH} .

NOTE

Connect the V_{DDA} pin to the same voltage potential as the V_{DD} pin, and connect the V_{SSA} pin to the same voltage potential as the V_{SS} pin. The V_{DDA} pin should be routed carefully for maximum noise immunity.

Clock Generator Module (CGM)

Figure 4-1. CGM Block Diagram

if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires two writes to the PLL control register. (See 4.3.8 Base Clock Selector Circuit.)

PRE1 and PRE0 — Prescaler Program Bits

These read/write bits control a prescaler that selects the prescaler power-of-two multiplier, P. (See PLL Circuits and Programming the PLL.) PRE1 and PRE0 cannot be written when the PLLON bit is set. Reset clears these bits.

PRE1 and PRE0	Р	Prescaler Multiplier
00	0	1
01	1	2
10	2	4
11	3	8

Table 4-2. PRE 1 and PRE0 Programming

VPR1 and 0 — VCO Power-of-Two Range Select Bits

These read/write bits control the VCO's hardware power-of-two range multiplier E that, in conjunction with L (See 4.3.3 PLL Circuits, 4.3.6 Programming the PLL, and 4.5.5 PLL VCO Range Select Register.) controls the hardware center-of-range frequency, f_{VRS}. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears these bits.

Iable + J, vritt and vritt ritual interviewed to the second se

VPR1 and VPR0	E	VCO Power-of-Two Range Multiplier
00	0	1
01	1	2
10	2	4
11	3(1)	8

1. Do not program E to a value of 3.

4.5.2 PLL Bandwidth Control Register

The PLL bandwidth control register (PBWC):

- Selects automatic or manual (software-controlled) bandwidth control mode
- Indicates when the PLL is locked
- In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode
- In manual operation, forces the PLL into acquisition or tracking mode

4.8.3 Choosing a Filter

As described in 4.8.2 Parametric Influences on Reaction Time, the external filter network is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage.

Figure 4-10 shows two types of filter circuits. In low-cost applications, where stability and reaction time of the PLL are not critical, the three component filter network shown in Figure 4-10(B) can be replaced by a single capacitor, C_F , as shown in Figure 4-10(A). Refer to Table 4-4 for recommended filter components at various reference frequencies. For reference frequencies between the values listed in the table, extrapolate to the nearest common capacitor value. In general, a slightly larger capacitor provides more stability at the expense of increased lock time.

fRCLK	C _{F1}	C _{F2}	R _{F1}	C _F
1 MHz	8.2 nF	820 pF	2k	18 nF
2 MHz	4.7 nF	470 pF	2k	6.8 nF
3 MHz	3.3 nF	330 pF	2k	5.6 nF
4 MHz	2.2 nF	220 pF	2k	4.7 nF
5 MHz	1.8 nF	180 pF	2k	3.9 nF
6 MHz	1.5 nF	150 pF	2k	3.3 nF
7 MHz	1.2 nF	120 pF	2k	2.7 nF
8 MHz	1 nF	100 pF	2k	2.2 nF

Central Processor Unit (CPU)

Source		D		o	Effect on CCR				ess	ode	and	S
Form	Operation	Description	v	н	1	N	z	С	Addr Node	opco	Open	Cycl€
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ H \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00 \end{array}$	0	_	_	0	1	_	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	t	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	23443245
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\underline{M}) = \$FF - (M) \\ A \leftarrow (\underline{A}) = \$FF - (M) \\ X \leftarrow (\underline{X}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\mathbf{M}) = \$FF - (M) \end{array}$	0	_	_	ţ	ţ	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	411435
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	ţ	-		t	\$	ţ	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	U	-	-	t	t	t	INH	72		2
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 4 + \mathit{rel} ? (\mathit{result}) \neq 0 \end{array}$	_	_	_	_	_	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr rr ff rr	533546
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	411435
DIV	Divide	$A \leftarrow (H:A)/(X)$ H \leftarrow Remainder	-	-	-	-	ţ	ţ	INH	52		7
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR X EOR opr,SP EOR opr,SP	Exclusive OR M with A	$A \leftarrow (A \oplus M)$	0	_	_	ţ	ţ	-	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow (M) + 1\\ A \leftarrow (A) + 1\\ X \leftarrow (X) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5

10.3 Break Module (BRK)

10.3.1 Wait Mode

The break (BRK) module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if the SBSW bit in the break status register is set.

10.3.2 Stop Mode

The break module is inactive in stop mode. The STOP instruction does not affect break module register states.

10.4 Central Processor Unit (CPU)

10.4.1 Wait Mode

The WAIT instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

10.4.2 Stop Mode

The STOP instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.

10.5 Clock Generator Module (CGM)

10.5.1 Wait Mode

The clock generator module (CGM) remains active in wait mode. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive applications can disengage the PLL without turning it off. Applications that require the PLL to wake the MCU from wait mode also can deselect the PLL output without turning off the PLL.

10.5.2 Stop Mode

If the OSCSTOPENB bit in the CONFIG2 register is cleared (default), then the STOP instruction disables the CGM (oscillator and phase-locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and CGMINT).

If the OSCSTOPENB bit in the CONFIG2 register is set, then the phase locked loop is shut off, but the oscillator will continue to operate in stop mode.

11.3.3 Voltage Hysteresis Protection

Once the LVI has triggered (by having V_{DD} fall below V_{TRIPF}), the LVI will maintain a reset condition until V_{DD} rises above the rising trip point voltage, V_{TRIPR} . This prevents a condition in which the MCU is continually entering and exiting reset if V_{DD} is approximately equal to V_{TRIPF} . V_{TRIPR} is greater than V_{TRIPF} by the hysteresis voltage, V_{HYS} .

11.3.4 LVI Trip Selection

The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection.

NOTE

The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (V_{TRIPF} [5 V] or V_{TRIPF} [3 V]) may be lower than this. See Chapter 19 Electrical Specifications for the actual trip point voltages.

11.4 LVI Status Register

The LVI status register (LVISR) indicates if the V_{DD} voltage was detected below the V_{TRIPF} level.

Address:	\$FE0C							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	LVIOUT	0	0	0	0	0	0	0
Write:								
Reset:	0	0	0	0	0	0	0	0
	= Unimplemented							

Figure 11-3. LVI Status Register (LVISR)

LVIOUT — LVI Output Bit

This read-only flag becomes set when the V_{DD} voltage falls below the V_{TRIPF} trip voltage (see Table 11-1). Reset clears the LVIOUT bit.

V _{DD}	LVIOUT
V _{DD} > V _{TRIPR}	0

1

Previous value

 Table 11-1. LVIOUT Bit Indication

11.5	LVI Interrupts	

The LVI module does not generate interrupt requests.

11.6 Low-Power Modes

The STOP and WAIT instructions put the MCU in low power-consumption standby modes.

 $V_{DD} < V_{TRIPF}$

 $V_{\text{TRIPF}} < V_{\text{DD}} < V_{\text{TRIPR}}$

Figure 13-13. SCI Status Register 1 (SCS1)

SCTE — SCI Transmitter Empty Bit

This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.

1 = SCDR data transferred to transmit shift register

0 = SCDR data not transferred to transmit shift register

TC — Transmission Complete Bit

This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit.

1 = No transmission in progress

0 = Transmission in progress

SCRF — SCI Receiver Full Bit

This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.

1 = Received data available in SCDR

0 = Data not available in SCDR

IDLE — Receiver Idle Bit

This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit.

1 = Receiver input idle

0 = Receiver input active (or idle since the IDLE bit was cleared)

OR — Receiver Overrun Bit

This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit.

1 = Receive shift register full and SCRF = 1

0 = No receiver overrun

NP

System Integration Module (SIM)

The SIM is responsible for:

- Bus clock generation and control for CPU and peripherals:
 - Stop/wait/reset/break entry and recovery
 - Internal clock control
- Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout
- Interrupt arbitration

Table 14-1 shows the internal signal names used in this section.

Signal Name	Description
CGMXCLK	Buffered version of OSC1 from clock generator module (CGM)
CGMVCLK	PLL output
CGMOUT	PLL-based or OSC1-based clock output from CGM module (Bus clock = CGMOUT divided by two)
IAB	Internal address bus
IDB	Internal data bus
PORRST	Signal from the power-on reset module to the SIM
IRST	Internal reset signal
R/W	Read/write signal

Table 14-1. Signal Name Conventions

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$FE00	SIM Break Status Register (SBSR)	Read: Write:	R	R	R	R	R	R	SBSW Note ⁽¹⁾	R
	See page 171.	Reset:	0	0	0	0	0	0	0	0
			1. Writing a	0 clears SBS\	Ν.					
	SIM Reset Status Register	Read:	POR	PIN	COP	ILOP	ILAD	MODRST	LVI	0
\$FE01	(SRSR)	Write:								
	See page 172.	POR:	1	0	0	0	0	0	0	0
\$FE03	SIM Break Flag Control Register (SBFCR)	Read: Write:	BCFE	R	R	R	R	R	R	R
	See page 173.	Reset:	0	-						
	Interrupt Status	Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0
\$FE04	Register 1 (INT1)	Write:	R	R	R	R	R	R	R	R
	See page 167.	Reset:	0	0	0	0	0	0	0	0
	Interrupt Status	Read:	IF14	IF13	IF12	IF11	IF10	IF9	IF8	IF7
\$FE05	Register 2 (INT2)	Write:	R	R	R	R	R	R	R	R
	See page 168.	Reset:	0	0	0	0	0	0	0	0
	Interrupt Status	Read:	0	0	0	0	0	0	IF16	IF15
\$FE06	Register 3 (INT3)	Write:	R	R	R	R	R	R	R	R
	See page 168.	Reset:	0	0	0	0	0	0	0	0
				= Unimplem	ented	R	= Reserved			

Figure 14-2. SIM I/O Register Summary

Serial Peripheral Interface (SPI) Module

1. Ports are software configurable with pullup device if input port.

2. Higher current drive port pins

3. Pin contains integrated pullup device

Figure 15-1. Block Diagram Highlighting SPI Block and Pins

Serial Peripheral Interface (SPI) Module

Figure 15-8. Transmission Start Delay (Master)

Timebase Module (TBM)

Figure 16-1. Timebase Block Diagram

16.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

16.5.1 Wait Mode

The timebase module remains active after execution of the WAIT instruction. In wait mode the timebase register is not accessible by the CPU.

If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before executing the WAIT instruction.

16.5.2 Stop Mode

The timebase module may remain active after execution of the STOP instruction if the internal clock generator has been enabled to operate during stop mode through the OSCSTOPENB bit in the configuration register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode.

If the internal clock generator has not been enabled to operate in stop mode, the timebase module will not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU.

NP

Timer Interface Module (TIM1 and TIM2)

1. Ports are software configurable with pullup device if input port.

2. Higher current drive port pins

3. Pin contains integrated pullup device

Figure 17-2. Block Diagram Highlighting TIM Block and Pins

Chapter 19 Electrical Specifications

19.1 Introduction

This chapter contains electrical and timing specifications

19.2 Absolute Maximum Ratings

Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without permanently damaging it.

NOTE

This device is not guaranteed to operate properly beyond the maximum ratings. Refer to 5.0 V DC Electrical Characteristics for guaranteed operating conditions.

Characteristic ⁽¹⁾	Symbol	Value	Unit
Supply voltage	V _{DD}	–0.3 to + 6.0	V
Input voltage	V _{In}	V _{SS} – 0.3 to V _{DD} + 0.3	V
Maximum current per pin excluding $V_{DD},V_{SS},andPTC0-PTC$	I	± 15	mA
Maximum current for pins PTC0–PTC1	I _{PTC0-PTC1}	± 25	mA
Maximum current into V _{DD}	l _{mvdd}	150	mA
Maximum current out of V _{SS}	I _{mvss}	150	mA
Storage temperature	T _{stg}	–55 to +150	°C

1. Voltages referenced to $V_{\mbox{\scriptsize SS}}$

NOTE

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that V_{In} and V_{Out} be constrained to the range $V_{SS} \leq (V_{In} \text{ or } V_{Out}) \leq V_{DD}$. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either V_{SS} or V_{DD}).

Electrical Specifications

19.3 Functional Operating Range

Characteristic	Symbol	Value	Unit
Operating temperature range	Τ _Α	-40 to +125	°C
Operating voltage range	V _{DD}	3.0 ±10% 5.0 ±10%	V

19.4 Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance PDIP (28-pin) SOIC (28-pin) QFP (32-pin)	θ _{JA}	60 60 95	°C/W
I/O pin power dissipation	P _{I/O}	User-Determined	W
Power dissipation ⁽¹⁾	P _D		W
Constant ⁽²⁾	К	$\begin{array}{c} P_{D} \mathrel{\textbf{x}} (T_{A} + 273 \; ^{\circ}C) \\ + \; P_{D}^{2} \times \; \theta_{JA} \end{array}$	W/°C
Average junction temperature	Т _Ј	$T_{A} + (P_{D} \times \theta_{JA})$	°C
Maximum junction temperature	т _{ЈМ}	140	°C

1. Power dissipation is a function of temperature.

2. K is a constant unique to the device. K can be determined for a known T_A and measured P_D . With this value of K, P_D and T_J can be determined for any value of T_A .

Electrical Specifications

Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Мах	Unit
POR reset voltage ⁽⁸⁾	V _{PORRST}	0	700	800	mV
POR rise time ramp rate ⁽⁹⁾	R _{POR}	0.035	—	_	V/ms

1. V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted

2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

- Run (operating) I_{DD} measured using external square wave clock source (f_{osc} = 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD}. Measured with all modules enabled.
- 4. Wait I_{DD} measured using external square wave clock source (f_{osc} = 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD}. Measured with PLL and LVI enabled.
- 5. Stop I_{DD} is measured with OSC1 = V_{SS} .
- Stop I_{DD} with TBM enabled is measured using an external crystal clock source (f_{OSC} = 8 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All inputs configured as inputs.
- 7. Pullups and pulldowns are disabled. Port B leakage is specified in 19.12 ADC Characteristics.
- 8. Maximum is highest voltage that POR is possible.
- 9. If minimum V_{DD} is not reached before the internal POR reset is released, RST must be driven low externally until minimum V_{DD} is reached.

19.6 3.0 V DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Мах	Unit
Output high voltage $(I_{Load} = -0.6 \text{ mA}) \text{ all I/O pins}$ $(I_{Load} = -4.0 \text{ mA}) \text{ all I/O pins}$ $(I_{Load} = -4.0 \text{ mA}) \text{ pins PTC0-PTC1 only}$ Maximum combined I _{OH} for port C, port E,	V _{OH} V _{OH} V _{OH} I _{OH1}	V _{DD} - 0.3 V _{DD} - 1.0 V _{DD} - 0.5 —	 	— — — 30	V V V mA
port PTD0–PTD3 Maximum combined I _{OH} for port PTD4–PTD6, port A, port B Maximum total I _{OH} for all port pins	I _{OH2} I _{OHT}	_	_	30 60	mA mA
Output low voltage $(I_{Load} = 0.5 \text{ mA}) \text{ all I/O pins}$ $(I_{Load} = 6.0 \text{ mA}) \text{ all I/O pins}$ $(I_{Load} = 10.0 \text{ mA}) \text{ pins PTC0-PTC1 only}$ Maximum combined I _{OL} for port C, port E, port PTD0-PTD3 Maximum combined I _{OL} for port PTD4-PTD6, port A, port B Maximum total I _{OL} for all port pins	V _{OL} V _{OL} V _{OL} I _{OL1} I _{OL2} I _{OLT}	 		0.3 1.0 0.8 30 30 60	V V MA mA mA
Input high voltage All ports, IRQs, RESET OSC1	V _{IH}	0.7 x V _{DD} 0.8 x V _{DD}	_	V _{DD}	V
Input low voltage All ports, IRQs, RESET OSC1	V _{IL}	V _{SS}	_	0.3 x V _{DD} 0.2 x V _{DD}	V

Continued on next page

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BOD	DOCUMENT NO	: 98ASB42345B	REV: G	
28 LEAD	CASE NUMBER: 751F-05 10 MAR 200			
CASEOUTLINE	STANDARD: MS	5-013AE		

© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BOD)Y.	DOCUMENT NO	: 98ASB42345B	REV: G
28 LEAD	CASE NUMBER: 751F-05 10 MAR 2005			
CASEOUTLINE	STANDARD:	MS-013AE		