
E·XFL

STMicroelectronics - STPCC5HEBC Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Details	
Product Status	Obsolete
Applications	Set-Top Boxes, TV
Core Processor	x86
Program Memory Type	External Program Memory
Controller Series	STPC® Consumer-II
RAM Size	External
Interface	EBI/EMI, I ² C, IDE, ISA, Local Bus
Number of I/O	-
Voltage - Supply	2.45V ~ 3.6V
Operating Temperature	0°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	388-BGA
Supplier Device Package	388-PBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stpcc5hebc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal Name	Dir	Buffer Type ²	Description	Qty	
BASIC CLOCKS AND RESET	S	•	-		
SYSRSETI#		SCHMITT_FT	System Power Good Input	1	
SYSRSTO#	0	BD8STRP_FT	System Reset Output	1	
XTALI	I	ANA	14.3 MHz Crystal Input- External Oscillator Input		
XTALO	I/O	OSCI13B	14.3 MHz Crystal Output	1	
HCLK	I/O	BD4STRP_FT	Host Clock (Test)	1	
DEV_CLK	0	BT8TRP_TC	24 MHz Peripheral Clock (floppy drive)	1	
DCLK	I/O	BD4STRP_FT	27-135 MHz Graphics Dot Clock	1	
V _{DD} _xxx_PLL ¹		VDDCO	Power Supply for PLL Clocks		
SDRAM CONTROLLER					
MCLKI		TLCHT_TC	Memory Clock Input	1	
MCLKO	0	BT8TRP_TC	Memory Clock Output	1	
CS#[1:0]	0	BD8STRP_TC	DIMM Chip Select	2	
CS2# / MA11	0	BD16STARUQP_TC	DIMM Chip Select / Memory Address	1	
CS3# / MA12 / BA1	0	BD16STARUQP_TC	DIMM Chip Select / Memory Address / Bank Address	1	
BA[0]	0	BD8STRP_TC	Bank Address	1	
MA[10:0]	0	BD16STARUQP_TC	Memory Row & Column Address	12	
MD[63:49]	I/O	BD8STRUP_FT	Memory Data	15	
MD[48:1]	I/O	BD8TRP_TC	Memory Data		
MD[0]	I/O	BD8STRUP_FT	Memory Data	1	
RAS#[1:0]	0	BD16STARUQP_TC	Row Address Strobe	2	
CAS#[1:0]	0	BD16STARUQP_TC	C Column Address Strobe		
MWE#	0	BD16STARUQP_TC	Write Enable	1	
DQM[7:0]	0	BD8STRP_TC	Data Input/Output Mask	8	
PCI CONTROLLER					
PCI_CLKI		TLCHT_FT	33 MHz PCI Input Clock	1	
PCI_CLKO	0	BT8TRP_TC	33 MHz PCI O/P Clk (from internal PLL)	1	
AD[31:0]	I/O	BD8PCIARP_FT	PCI Address / Data	32	
CBE[3:0]	I/O	BD8PCIARP_FT	Bus Commands / Byte Enables	4	
FRAME#	I/O	BD8PCIARP_FT	Cycle Frame	1	
IRDY#	I/O	BD8PCIARP_FT	Initiator Ready	1	
TRDY#	I/O	BD8PCIARP_FT	Target Ready	1	
LOCK#		TLCHT_FT	PCI Lock	1	
DEVSEL#	I/O	BD8PCIARP_FT	Device Select	1	
STOP#	I/O	BD8PCIARP_FT	Stop Transaction	1	
PAR	I/O	BD8PCIARP_FT	Parity Signal Transactions	1	
SERR#	0	BD8PCIARP_FT	System Error	1	
PCIREQ#[2:0]		BD8PCIARP_FT	PCI Request	3	
PCIGNT#[2:0]	0	BD8PCIARP_FT	PCI Grant	3	
PCI_INT#[3:0]		BD4STRUP_FT	PCI Interrupt Request	4	

Table 2-2. Definition of Signal Pins

Note¹: These pins are must be connected to the 2.5 V power supply. They **must not** be connected to the 3.3 V supply. Note²: See Table 2-3 for buffer type descriptions

PIN DESCRIPTION

2.2.7. VGA CONTROLLER

RED, GREEN, BLUE *RGB Video Outputs.* These are the three analog colour outputs from the RAMDACs. These signals are sensitive to interference, therefore they need to be properly shielded.

VSYNC *Vertical Synchronisation Pulse.* This is the vertical synchronization signal from the VGA controller.

HSYNC *Horizontal Synchronisation Pulse.* This is the horizontal synchronization signal from the VGA controller.

VREF_DAC *DAC Voltage reference.* An external voltage reference is connected to this pin to bias the DAC.

RSET *Resistor Current Set.* This reference current input to the RAMDAC is used to set the full-scale output of the RAMDAC.

COMP Compensation. This is the RAMDAC compensation pin. Normally, an external capacitor (typically 10nF) is connected between this pin and V_{DD} to damp oscillations.

2.2.8. VIDEO INPUT PORT

VCLK *Pixel Clock Input.*This signal is used to synchronise data being transferred from an external video device to either the frame buffer, or alternatively out the TV output in bypass mode. This pin can be sourced from STPC if no external VCLK is detected, or can be input from an external video clock source.

VIN[7:0] *YUV Video Data Input CCIR 601 or 656.* Time multiplexed 4:2:2 luminance and chrominance data as defined in ITU-R Rec601-2 and Rec656 (except for TTL input levels). This bus typically carries a stream of Cb,Y,Cr,Y digital video at VCLK frequency, clocked on the rising edge (by default) of VCLK.

2.2.9. ANALOG TV OUTPUT PORT

RED_TV / **C_TV** Analog video outputs synchronized with CVBS. This output is currentdriven and must be connected to analog ground over a load resistor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended. In S-VHS mode, this is the Chrominance Output.

GREEN_TV / Y_TV Analog video outputs synchronized with CVBS. This output is currentdriven and must be connected to analog ground over a load resistor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended. In S-VHS mode, this is the Luminance Output.

BLUE_TV / **CVBS** Analog video outputs synchronized with CVBS. This output is currentdriven and must be connected to analog ground over a load resistor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended. In S-VHS mode, this is a second composite output.

CVBS Analog video composite output (luminance/ chrominance). CVBS is current-driven and must be connected to analog ground over a load resistor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended.

IREF1_TV *Ref. current* for CVBS 10-bit DAC.

IREF2_TV Reference current for RGB 10-bit DAC.

VREF1_TV *Ref. voltage* for CVBS 10-bit DAC. Connect to analog ground.

VREF2_TV *Reference voltage* for RGB 10-bit DAC. Connect to analog ground.

VSSA_TV Analog V_{SS} for DACs.

VDDA_TV Analog V_{DD} for DACs.

JTAG Signals

VCS *Line synchronisation Output.* This pin is an input in ODDEV+HSYNC or VSYNC + HSYNC or VSYNC slave modes and an output in all other modes (master/slave)

ODD_EVEN *Frame Synchronisation Output.* This pin supports the Frame synchronisation signal. It is an input in slave modes, except when sync is extracted from YCrCbdata, and an output in master mode and when sync is extracted from YCrCb data

The signal is synchronous to rising edge of DCLK. The default polarity for this pin is:

- odd (not-top) field: LOW level

- even (bottom) field: HIGH level

2.2.10. MISCELLANEOUS

SPKRD *Speaker Drive.* This the output to the speaker. It is an AND of the counter 2 output with bit 1 of Port 61, and drives an external speaker driver. This output should be connected to 7407 type high voltage driver.

SCL, SDA I²C Interface. These bidirectional pins are connected to CRTC register 3Fh to implement DDC capabilities. They conform to I²C electrical specifications, they have open-collector output drivers which are internally connected to V_{DD} through pull-up resistors.

They can be used for the DDC1 (SCL) and DDC0 (SDA) lines of the VGA interface.

SCAN_ENABLE *Reserved.* The pin is reserved for Test and Miscellaneous functions.

COL_SEL *Colour Select.* Can be used for Picture in Picture function. Note however that this signal, brought out from the video pipeline, is not in sync with the VGA output signals, i.e. the VGA signals run four clock cycles after the Col_Sel signal.

VDD_CORE 2.5 V Power Supply. These power pins are necessary to supply the core with 2.5 V.

TCLK Test clock

TDI Test data input

TMS Test mode input

TDO Test data output

PIN DESCRIPTION

Table 2-7. Pinout.

Pin #	Pin name
AF3	SYSRSETI#
AE4	SYSRSETO#
A3	XTALI
C4	XTALO
G23	HCLK
H24	DEV_CLK
AD11	DCLK
AF15	MCLKI
AP13 AB23	MCLKO
AE16	
-	MA[0]
AD15	MA[1]
AF16	MA[2]
AE17	MA[3]
AD16	MA[4]
AF17	MA[5]
AE18	MA[6]
AD17	MA[7]
AF18	MA[8] ³
AE19	MA[9] ³
AE20	MA[10]
AC19	MA[11]/BA[0]
AF22	CS#[0]
AD21	CS#[1]
AE24	CS#[2]/MA[11]
AD23	CS#[3]/MA[12]/BA[1]
AF23	RAS#[0]
AD22	RAS#[1]
AE21	CAS#[0]
AC20	CAS#[1]
AF20	DQM#[0]
AD19	DQM#[1]
AF21	DQM#[2]
AD20	DQM#[3]
AE22	DQM#[4]
AE23	DQM#[5]
AF19	DQM#[6]
AD18	DQM#[7]
AC22	MWE#
R1	MD[0] ³
T2	MD[1] ³
R3	MD[2]
T1	MD[3]
R4	MD[4]
U2	MD[5]
Т3	MD[6]
U1	MD[7]
U4	MD[8]
V2	MD[9]
L	L-3

Pin #	Pin name
U3	MD[10]
V1	MD[11]
W2	MD[12]
V3	MD[13]
Y2	MD[13] MD[14]
12 W4	MD[14] MD[15]
Y1	MD[15] MD[16]
W3	
	MD[17]
AA2	MD[18]
Y4	MD[19]
AA1	MD[20]
Y3	MD[21]
AB2	MD[22]
AB1	MD[23]
AA3	MD[24]
AB4	MD[25]
AC1	MD[26]
AB3	MD[27]
AD2	MD[28]
AC3	MD[29]
AD1	MD[30]
AF2	MD[31]
AF24	MD[32]
AE26	MD[33]
AD25	MD[34]
AD26	MD[35]
AC25	MD[36]
AC24	MD[37]
AC26	MD[38]
AB25	MD[39]
AB24	MD[40]
AB26	MD[41]
AA25	MD[42]
Y23	MD[43]
AA24	MD[44]
AA26	MD[45]
Y25	MD[46]
Y26	MD[47]
Y24	MD[48]
W25	MD[49] ³
V23	MD[50] ³
W26	MD[51] ³
W24	MD[52] ³
V25	MD[53] ³
V26	MD[54] ³
U25	MD[55] ³
V24	MD[56] ³
U24	MD[57] ³
U23	MD[57] MD[58] ³
025	

Pin #	Pin name
T25	MD[59] ³
U24	MD[60] ³
T26	MD[61] ³
R25	MD[62] ³
R26	MD[63] ³
F24	PCI_CLKI
D25	PCI_CLKO
B20	AD[0]
C20	AD[1]
B19	AD[2]
A19	AD[3]
C19	AD[4]
B18	AD[5]
A18	AD[6]
B17	AD[7]
C18	AD[8]
A17	AD[9]
D17	AD[10]
B16	AD[11]
C17	AD[12]
B15	AD[13]
A15	AD[14]
C16	AD[15]
B14	AD[16]
D15	AD[17]
A14	AD[18]
B13	AD[19]
D13	AD[20]
A13	AD[21]
C14	AD[21]
B12	AD[23]
C13	AD[24]
A12	AD[25]
C12	AD[25] AD[26]
A11	AD[27]
D12	AD[28]
B12 B10	AD[29]
C11	AD[30]
A10	AD[31]
D10	CBE[0]
C10	CBE[1]
A9	CBE[2]
B8	CBE[3]
A8	FRAME#
A0 B7	TRDY#
D8	IRDY#
A7	STOP#
C8	DEVSEL#
B6	PAR
50	1741

PIN DESCRIPTION

Pin #	Pin name
AC2	TDO
AD12	VDDA_TV
AF8	VDD DAC1
G24	VDD_CPUCLK_PLL ¹
AD13	VDD_DCLK_PLL ¹
F25	VDD_DEVCLK_PLL ¹
AC17	VDD_MCLKI_PLL ¹
AC17 AC15	VDD_MCLKO_PLL ¹
F26	VDD_HCLK_PLL ¹
E25	VDD_HCLK_PLL VDD_SKEW_PLL ¹
EZƏ	VDD_SKEW_PLL
D11	VDD_CORE ¹
L23	VDD_CORE ¹
L23 T4	VDD_CORE ¹
14 AC6	VDD_CORE ¹
AUD	VDD_COKE.
De	VDD
D6	
D16 D21	VDD
	VDD
F4	VDD
F23	VDD
AC11	VDD
AC16	VDD
AC21	VDD
AA4	VDD
AA23	VDD
T23	VDD
L4	VDD
AF13	VSSA_TV
AC9	VSS_DAC1
A1:2	VSS
A26	VSS
B2	VSS
B25:26	VSS
C3	VSS
C24	VSS
D4	VSS
D9	VSS
D14	VSS
D19	VSS
D23	VSS
H4	VSS
J23	VSS
L11:16	VSS
M11:16	VSS
N4	VSS
N11:16	VSS

Pin #	Pin name
P11:16	VSS
P23	VSS
R11:16	VSS
T11:16	VSS
V4	VSS
W23	VSS
AC4	VSS
AC8	VSS
AC13	VSS
AC18	VSS
AC23	VSS
AD3	VSS
AD14	COMPENSATION_VS
AD24	VSS
AE1:2	VSS
AE25	VSS
AF1	VSS
AF25	VSS
AF26	VSS
A16	Unconnected
B9	Unconnected
B11	Unconnected
D18	Unconnected
E26	Unconnected
AD9	Unconnected
AF10	Unconnected

Note¹; These pins must be connected to the 2.5 V power supply. They **must not** be connected to the 3.3 V supply.

STRAP OPTIONS

3.1.2. ADPC STRAP REGISTER 1 CONFIGURATION

Strap1	Access = 0022h/0023h Regoffset =							
7	6	5	4	3	2	1	0	
R	SV	Rsv Rsv Rsv					sv	
	This register defaults to the values sampled on MD[13:10] pins after reset							

Bit Number Sampled	Mnemonic	Description
Bits 7-6	Rsv	Reserved
Bits 5-2	MD[13:10]	Reserved
Bits 1-0	Rsv	Reserved

ELECTRICAL SPECIFICATIONS

4.4. DC CHARACTERISTICS

I

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{DD}	Operating Voltage		3.0	3.3	3.6	V
V _{CORE}	Operating Voltage		2.45	2.5	2.7	V
P _{DD}	Supply Power	3.0V < V _{DD} < 3.6V			0.18	W
P _{CORE}	Supply Power	2.45V < V _{CORE} < 2.7V			2.90	W
	Input Low Voltage	Except XTALI	-0.3		0.8	V
V _{IL}		XTALI	-0.3		0.8	V
V	Innut Llinh Valtana	Except XTALI	2.1		V _{DD} +0.3	V
V _{IH}	Input High Voltage	XTALI	2.35		V _{DD} +0.3	V
I _{LK}	Input Leakage Current	Input, I/O	-5		5	μΑ
	Integrated Pull up/down			50		KΩ

Table 4-2. DC Characteristics

Table 4-3. PAD buffers DC Characteristics

Buffer Type	I/O count	V _{IH} min (V)	V _{IL} max (V)	V _{OH} min (V)	V _{OL} max (V)	l _{OL} min (mA)	l _{OH} max (mA)	C _{load} max (pF)	Derating (ps/pF) ¹	C _{IN} (pF)
ANA	8	2.35	0.9	-	-	-	-	-	-	-
OSCI13B	1	2.1	0.8	2.4	0.4	2	- 2	50	-	-
BT8TRP_TC	5	-	-	2.4	0.4	8	- 8	200	21	6.89
BD4STRP_FT	50	2	0.8	2.4	0.4	4	- 4	100	42	5.97
BD4STRUP_FT	10	2	0.8	2.4	0.4	4	- 4	100	41	5.97
BD8STRP_FT	26	2	0.8	2.4	0.4	8	- 8	200	23	5.96
BD8STRUP_FT	40	2	0.8	2.4	0.4	8	- 8	200	23	5.96
BD8STRP_TC	10	2	0.8	2.4	0.4	8	- 8	200	21	7.02
BD8TRP_TC	60	2	0.8	2.4	0.4	8	- 8	200	21	7.03
BD8PCIARP_FT	49	0.5*V _{DD}	0.3*V _{DD}	0.9*V _{DD}	0.1*V _{DD}	1.5	- 0.5	200	15	6.97
BD16STARUQP_TC	19	2	0.8	2.4	0.4	16	-16	400	12	9.34
SCHMITT_FT	1	2	0.8	-	-	-	-	-	-	5.97
TLCHT_FT	5	2	0.8	-	-	-	-	-	-	5.97
TLCHT_TC	1	2	0.8	-	-	-	-	-	-	5.97
TLCHTD_TC	1	2	0.8	-	-	-	-	-	-	5.97
Note 1: time to output	variatio	n depend	ing on the	e capacitive	e load.					

Table 4-4. RAMDAC DC Specification

Symbol	Parameter	Min	Мах
Vref_dac	Voltage Reference	1.00 V	1.24 V
INL	Integrated Non Linear Error	-	3 LSB
DNL	Differentiated Non Linear Error	-	1 LSB
BLC	Black Level Current	1.0 mA	2.0 mA
WLC	White Level Current	15.00 mA	18.50 mA

ELECTRICAL SPECIFICATIONS

4.5.7. LOCAL BUS INTERFACE

Figure 4-3 to Figure 4-11 and Table 4-15 list the AC characteristics of the Local Bus interface.

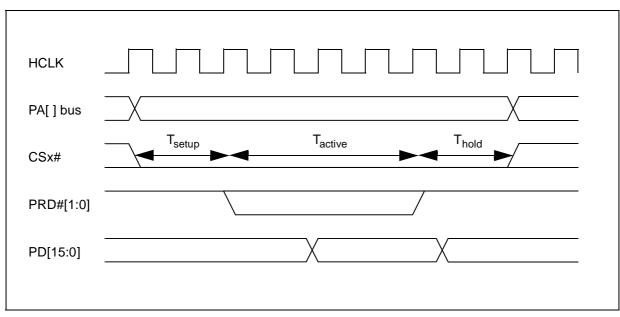
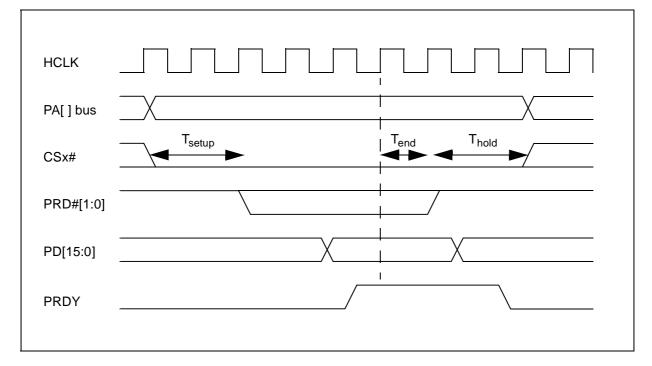



Figure 4-8. Synchronous Read Cycle

Figure 4-9. Asynchronous Read Cycle

48/93

ELECTRICAL SPECIFICATIONS

The Table 4-14 below refers to Vh, Va, Vs which are the register value for Setup time, Active Time

and Hold time, as described in the Programming Manual.

Cycle	T _{setup}	T _{active}	T _{hold}	T _{end}	Unit
Memory (FCSx#)	4 + Vh	2 + Va	4 + Vs	4	HCLK
Peripheral (IOCSx#)	8 + Vh	3 + Va	4 + Vs	4	HCLK

Table 4-15. Local Bus Interface AC Timing

Name	Parameters	Min	Max	Units
	HCLK to PA bus	-	15	nS
	HCLK to PD bus	-	15	nS
	HCLK to FCS#[1:0]	-	15	nS
	HCLK to IOCS#[3:0]	-	15	nS
	HCLK to PWR#[1:0]	-	15	nS
	HCLK to PRD#[1:0]	-	15	nS
	PD[15:0] Input setup to HCLK	-	4	nS
	PD[15:0] Input hold to HCLK	2	-	nS
	PRDY Input setup to HCLK	-	4	nS
	PRDY Input hold to HCLK	2	-	nS

4.5.12 INTENSIONNALY BLANK

6.3.3. SDRAM

The STPC provides all the signals for SDRAM control. Up to 128 MBytes of main memory are supported. All Banks must be 64 bits wide. Up to 4 memory banks are available when using 16Mbit devices. Only up to 2 banks can be connected when using 64Mbit and 128Mbit components due to the reallocation of CS2# and CS3# signals. This is described in Table 6-4 and Table 6-5.

Graphics memory resides at the beginning of Bank 0. Host memory begins at the top of graphics

memory and extends to the top of populated SDRAM. Bank 0 must always be populated.

Figure 6-4, Figure 6-5 and Figure 6-6 show some typical implementations.

The purpose of the serial resistors is to reduce signal oscillation and EMI by filtering line reflections. The capacitance in Figure 6-4 has a filtering effect too, while it is used for propagation delay compensation in the 2 other figures.

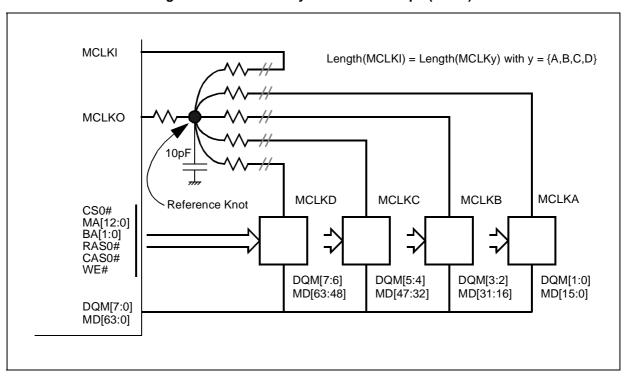
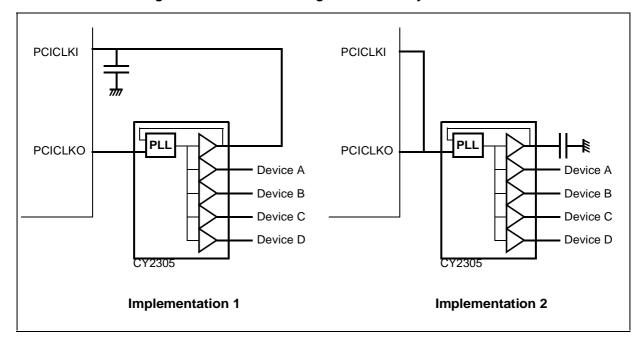
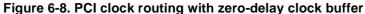
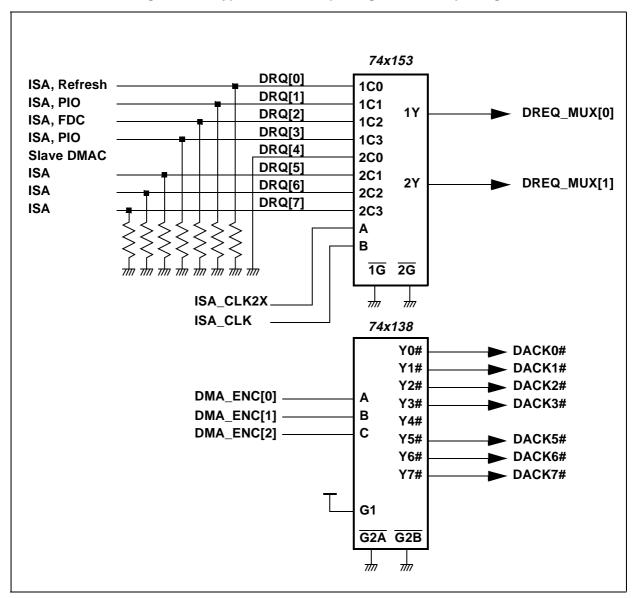




Figure 6-4. One Memory Bank with 4 Chips (16-bit)

In the case of higher clock load it is recommended to use a zero-delay clock buffer as described in Figure 6-8. This approach is also recommended when implementing the delay on PCICLKI according to the PCI section of the **Electrical Specifications** chapter.



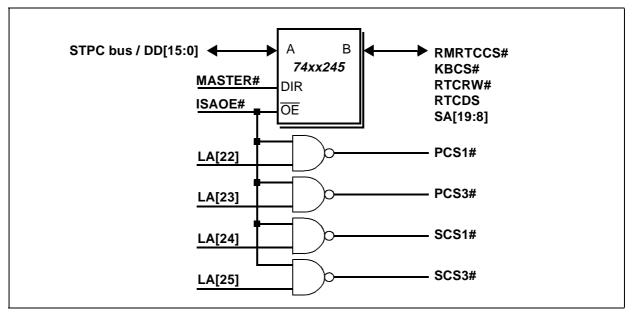
The figure below describes a complete implementation of the external glue logic for DMA Request time-multiplexing and DMA Acknowledge demultiplexing. Like for the interrupt lines, this logic can be simplified when only few DMA channels are used in the application.

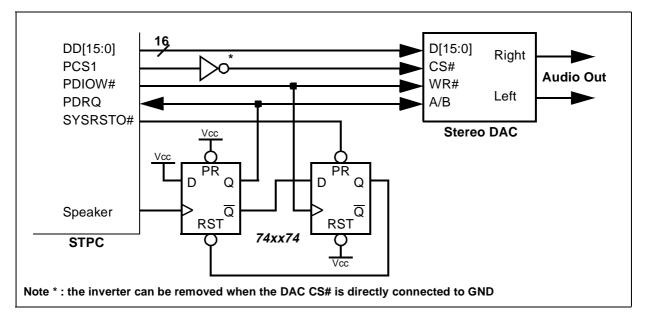
This glue logic is not needed in Local bus mode as it does not support DMA transfers.

6.3.7. IDE / ISA DYNAMIC DEMULTIPLEXING

Some of the ISA bus signals are dynamically multiplexed to optimize the pin count. Figure 6-12

describes how to implement the external glue logic to demultiplex the IDE and ISA interfaces. In Local Bus mode the two buffers are not needed and the NAND gates can be simplified to inverters.




Figure 6-12. Typical IDE / ISA Demultiplexing

6.3.8. BASIC AUDIO USING IDE INTERFACE

When the application requires only basic audio capabilities, an audio DAC on the IDE interface can avoid using a PCI-based audio device. This

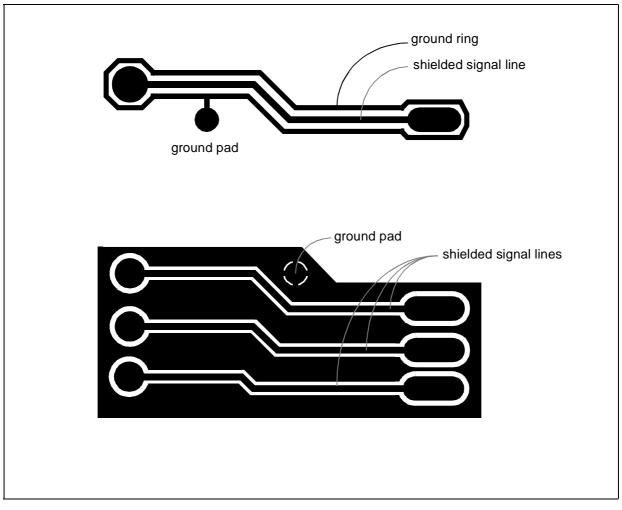
low cost solution is not CPU consuming thanks to the DMA controller implemented in the IDE controller and can generate 16-bit stereo sound. The clock speed is programmable when using the speaker output.

Figure 6-13. Basic audio on IDE

6.4. PLACE AND ROUTE RECOMMENDATIONS

6.4.1. GENERAL RECOMMENDATIONS

Some STPC Interfaces run at high speed and need to be carefully routed or even shielded like:


- 1) Memory Interface
- 2) PCI bus
- 3) Graphics and video interfaces
- 4) 14 MHz oscillator stage

All clock signals have to be routed first and shielded for speeds of 27MHz or higher. The high speed signals follow the same constraints, as for the memory and PCI control signals.

The next interfaces to be routed are Memory, PCI, and Video/graphics.

All the analog noise-sensitive signals have to be routed in a separate area and hence can be routed indepedently.

Figure 6-17. Shielding signals

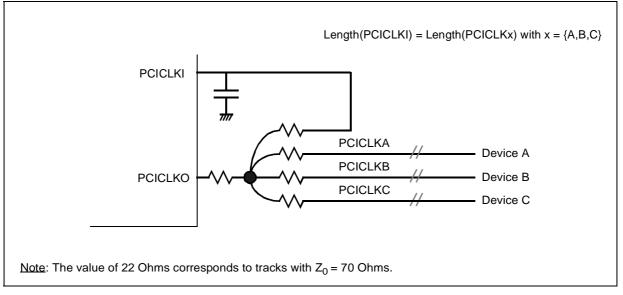
6.4.2. PLL DEFINITION AND IMPLIMENTATION

PLLs are analog cells which supply the internal STPC Clocks. To get the cleanest clock, the jitter on the power supply must be reduced as much as possible. This will result in a more stable system.

Each of the integrated PLL has a dedicated power pin so a single power plane for all of these PLLs,

or one wire for each, or any solution in between which help the layout of the board can be used.

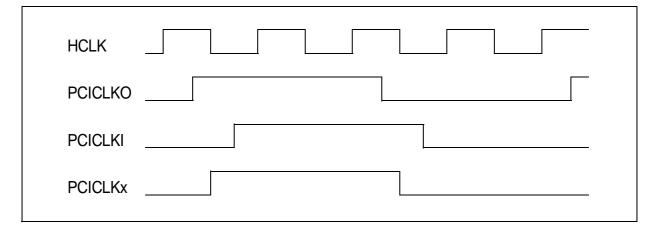
Powering these pins with one Ferrite + capacitances is enough. We recommend at least 2 capacitances: one 'big' (few uF) for power storage, and one or 2 smalls (100nF + 1nF) for noise filtering.


6.4.4.3. Board Layout Issues

The physical layout of the motherboard PCB assumed in this presentation is as shown in Figure 6-24. For the PCI interface, the most critical signal is the clock. Any skew between the clocks at the PCI components and the STPC will impact the timing budget. In order to get well matched clocks at all components it is recommended that all the PCI clocks are individually driven from a serial resistance with matched routing lengths. In other

words, all clock line lengths that go from the resistor to the PCI chips (PCICLKx) must be identical.

The figure below is for PCI devices soldered onboard. In the case of a PCI slot, the wire length must be shortened by 2.5" to compensate the clock layout on the PCI board. The maximum clock skew between all devices is 2ns according to PCI specifications.



The Figure 6-25 describes a typical clock delay implementation. The exact timing constraints are

listed in the PCI section of the **Electrical Specifications** Chapter.

ÁŢ/.

Figure 6-25. Clocks relationships

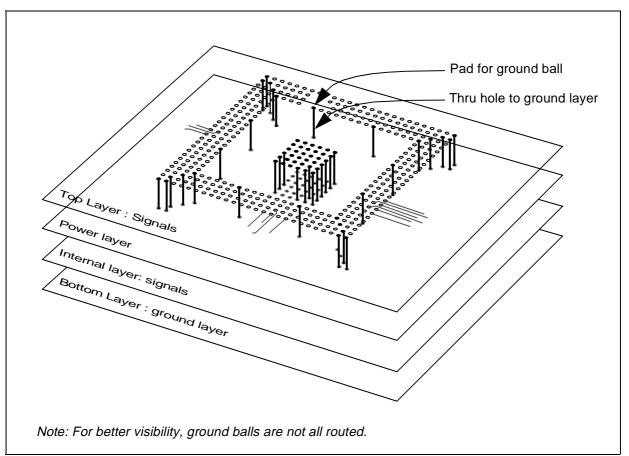
6.4.5. THERMAL DISSIPATION

6.4.5.1. Power saving

Thermal dissipation of the STPC depends mainly on supply voltage. When the system does not need to work at the upper voltage limit, it may therefore be beneficial to reduce the voltage to the lower voltage limit, where possible. This could save a few 100's of mW.

The second area to look at is unused interfaces and functions. Depending on the application, some input signals can be grounded, and some blocks not powered or shutdown. Clock speed dynamic adjustment is also a solution that can be used along with the integrated power management unit.

6.4.5.2. Thermal balls

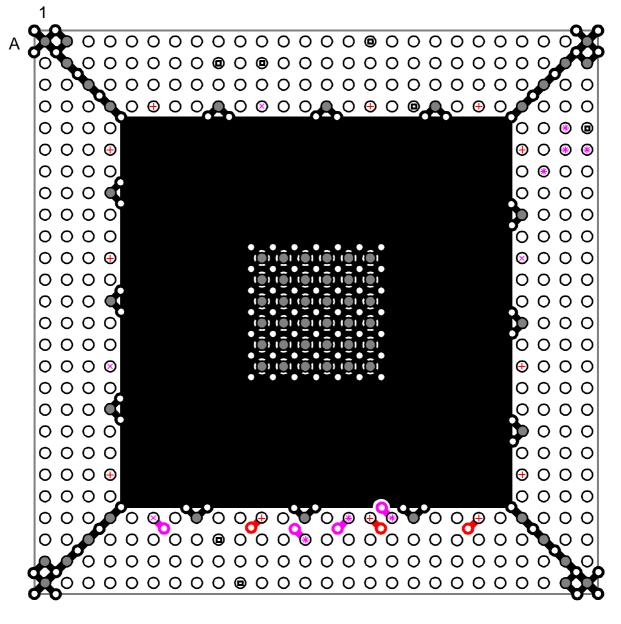

The standard way to route thermal balls to ground layer implements only one via pad for each ball pad, connected using a 8-mil wire.

With such configuration the Plastic BGA package does 90% of the thermal dissipation through the ground balls, and especially the central thermal balls which are directly connected to the die. The remaining 10% is dissipated through the case. Adding a heat sink reduces this value to 85%.

As a result, some basic rules must be followed when routing the STPC in order to avoid thermal problems.

As the whole ground layer acts as a heat sink, the ground balls must be directly connected to it, as illustrated in Figure 6-26. If one ground layer is not enough, a second ground plane may be added.

When possible, it is important to avoid other devices on-board using the PCB for heat dissipation, like linear regulators, as this would heat the STPC itself and reduce the temperature range of the whole system, In case these devices can not use a separate heat sink, they must not be located just near the STPC


Figure 6-26. Ground routing

As the PCB acts as a heat sink, the layout of top and ground layers must be done with care to maximize the board surface dissipating the heat. The only limitation is the risk of losing routing channels. Figure 6-31 and Figure 6-32 show a

routing with a good thermal dissipation thanks to an optimized placement of power and signal vias. The ground plane should be on bottom layer for the best heat spreading (thicker layer than internal ones) and dissipation (direct contact with air).

O STPC ball	0	GND ball
O Via	⊕	3.3V ball
Not Connected ball	8⊛	2.5V ball (Core / PLLs)

Release 1.5 - January 29, 2002

ĹŢ/

RMRTCCS# cycle to inform the ISA controller of a 16-bit device.

6.5.3.3. POST code

Once the 16 first bytes are fetched and decoded, the CPU core continue its execution depending on the content of these first data. Usually, it corresponds to a JUMP instruction and the code fetching continues, generating read cycles on the ISA bus.

Most of the BIOS and boot loaders are reading the content of the flash, decompressing it in SDRAM, and then continue the execution by jumping to the entry point in RAM. This boot process ends with a JUMP to the entry point of the OS launcher.

These various steps of the booting sequence are codified by the so-called POST codes (Power-On Self-Test). A 8-bit code is written to the port 80H at the beginning of each stage of the booting process (I/O write to address 0080H) and can be displayed on two 7-segment display, enabling a fast visual check of the booting completion level.

Usually, the last POST code is 0x00 and corresponds to the jump into the OS launcher.

When the execution fails or hangs, the lastest written code stays visible on that display, indicating either the piece of code to analyse, either the area of the hardware not working properly.

6.5.4. LOCAL BUS MODE

As the Local Bus controller is located into the Host interface, there is no access to the cycles on the PCI, reducing the amount of signals to check.

6.5.4.1. First code fetches

When booting on the Local Bus, the key signal to check at the very beginning is FCS0#. This signal is a Chip Select for the boot flash and should toggle together with PRD# to fetch the first 16 bytes of code. This corresponds to the loading of the first line of the CPU cache.

In case FCS0# does not toggle, then one of the previous steps has not been done properly, like HCLK speed and CPU clock multiplier (x1, x2).

6.5.4.2. Boot Flash size

The Local Bus support 16-bit boot memory devices only.

6.5.4.3. POST code

Like in ISA mode, POST codes can be implemented on the Local Bus. The difference is that an IOCS# must be programmed at I/O address 80H prior to writing these code, the POST display being connected to this IOCS# and to the lower 8 bits of the bus.

6.5.5. SUMMARY

Here is a check-list for the STPC board debug from power-on to CPU execution.

For each step, in case of failure, verify first the corresponding balls of the STPC:

- check if the voltage or activity is correct

- search for potential shortcuts.

For troubleshooting in steps 5 to 10, verify the related strap options:

- value & connection. Refer to Section 3.

- see Figure 4-3 for timing constraints

Steps 8a and 9a are for debug in ISA mode while steps 8b and 9b are for Local Bus mode.

	Check:	How?	Troubleshooting
1	Power supplies	Verify that voltage is within specs: - this must include HF & LF noise - avoid full range sweep Refer to Table 4-1 for values	Measure voltage near STPC balls: - use very low GND connection. Add some decoupling capacitor: - the smallest, the nearest to STPC balls.
2	14.318 MHz	Verify OSC14M speed	The 2 capacitors used with the quartz must match with the capacitance of the crystal. Try other values.
3	SYSRSTI# (Power Good)	Measure SYSRSTI# of STPC See Figure 4-3 for waveforms.	Verify reset generation circuit: - device reference - components value
5	HCLK	Measure HCLK is at selected frequency 25MHz < HCLK < 100MHz	HCLK wire must be as short as possible

Á7/.

	Check:	How?	Troubleshooting	
6	PCI clocks	Measure PCICLKO: - maximum is 33MHz by standard - check it is at selected frequency - it is generated from HCLK by a division (1/2, 1/3 or 1/4) Check PCICLKI equals PCICLKO	Verify PCICLKO loops to PCICLKI. Verify maximum skew between any PCI clock branch is below 2ns. In Synchronous mode, check MCLKI.	
7	Memory clocks	Measure MCLKO: - use a low-capacitance probe - maximum is 100MHz - check it is at selected frequency - In SYNC mode MCLK=HCLK - in ASYNC mode, default is 66MHz Check MCLKI equals MCLKO	Verify load on MCLKI. Verify MCLK programming (BIOS setting).	
4	SYSRSTO#	Measure SYSRSTO# of STPC See Figure 4-3 for waveforms.	Verify SYSRSTI# duration. Verify SYSRSTI# has no glitch Verify clocks are running.	
8a	PCI cycles	Check PCI signals are toggling: - FRAME#, IRDY#, TRDY#, DEVSEL# - these signals are active low. Check, with a logic analyzer, that first PCI cycles are the expected ones: memory read starting at address with lower bits to 0xFFF0	Verify PCI slots If the STPC don't boot - verify data read from boot memory is OK - ensure Flash is correctly programmed - ensure CMOS is cleared.	
9a	ISA cycles to boot memory	Check RMRTCCS# & MEMRD# Check directly on boot memory pin	Verify MEMCS16#: - must not be asserted for 8-bit memory Verify IOCHRDY is not be asserted Verify ISAOE# pin: - it controls IDE / ISA bus demultiplexing	
8b	Local Bus	Check FCS0# & PRD# Check directly on boot memory pin	Verify HCLK speed and CPU clock mode.	
9b	cycles to boot memory	Check, with a logic analyzer, that first Local Bus cycles are the expected one: memory read starting at the top of boot memory less 16 bytes	If the STPC don't boot - verify data read from boot memory is OK - ensure Flash is correctly programmed - ensure CMOS is cleared.	
10	The CPU fills its first cache line by fetching 16 bytes from boot memory. Then, first instructions are executed from the CPU. Any boot memory access done after the first 16 bytes are due to the instructions executed by the CPU => Minimum hardware is correctly set, CPU executes code. Please have a look to the Bios Writer's Guide or Programming Manual to go further with your board testing.			

6.6.

