



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 10MHz                                                                    |
| Connectivity               | -                                                                        |
| Peripherals                | POR, WDT                                                                 |
| Number of I/O              | 12                                                                       |
| Program Memory Size        | 768B (512 x 12)                                                          |
| Program Memory Type        | OTP                                                                      |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 25 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                              |
| Data Converters            | -                                                                        |
| Oscillator Type            | External                                                                 |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                           |
| Supplier Device Package    | 18-SOIC                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c54-10-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 8.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

#### 8.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 8-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

#### 8.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 8-5 shows the delay from the external clock edge to the timer incrementing.



the error in measuring the interval between two edges on Timer0 input =  $\pm 4$ Tosc max.

© 1997-2013 Microchip Technology Inc.

## TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

|                                                                                                                                       | PIC12CXXX                           | PIC14000                         | PIC16C5X        | X92912IA | PIC16CXXX  | PIC16F62X | X7D81DI9   | XX7O91OI9  | 78291219 | PIC16F8XX | PIC16C9XX | PIC17C4X | XXTOTIOI9 | PIC18CXX2 | PIC18FXXX | 63CXX<br>52CXX/<br>54CXX/ | хххсэн    | мсвеххх    | MCP2510 |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|-----------------|----------|------------|-----------|------------|------------|----------|-----------|-----------|----------|-----------|-----------|-----------|---------------------------|-----------|------------|---------|
| MPLAB <sup>®</sup> Integrated<br>Development Environment                                                                              | >                                   | >                                | >               | >        | >          | >         | >          | >          | >        | >         | >         | >        | >         | >         | >         |                           |           |            |         |
| MPLAB® C17 C Compiler                                                                                                                 |                                     |                                  |                 |          |            |           |            |            |          |           |           | >        | >         |           |           |                           |           |            |         |
| MPLAB® C18 C Compiler                                                                                                                 |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           | ~         | >         |                           |           |            |         |
| MPASM <sup>TM</sup> Assembler/<br>MPLINK <sup>TM</sup> Object Linker                                                                  | >                                   | >                                | >               | >        | ^          | >         | >          | >          | >        | >         | >         | >        | >         | >         | >         | >                         | >         |            |         |
| MPLAB® ICE In-Circuit Emulator                                                                                                        | <                                   | >                                | >               | ~        | ~          | ×*`       | ~          | >          | >        | >         | >         | >        | >         | ~         | >         |                           |           |            |         |
| ICEPIC <sup>TM</sup> In-Circuit Emulator                                                                                              | >                                   |                                  | >               | >        | >          |           | >          | >          | >        |           | >         |          |           |           |           |                           |           |            |         |
| et<br>MPLAB® ICD In-Circuit<br>Debugger<br>Debugger                                                                                   |                                     |                                  |                 | *        |            |           | *          |            |          | >         |           |          |           |           | >         |                           |           |            |         |
| ଏ PICSTART® Plus Entry Level<br>ଅପେତା Programmer                                                                                      | <                                   | >                                | >               | >        | >          | **`       | >          | >          | >        | >         | >         | >        | >         | >         | >         |                           |           |            |         |
| PRO MATE® II<br>Do Universal Device Programmer<br>D                                                                                   | >                                   | >                                | >               | >        | >          | ** ⁄      | >          | >          | >        | >         | >         | >        | >         | >         | >         | >                         | >         |            |         |
| PICDEM <sup>TM</sup> 1 Demonstration<br>Board                                                                                         |                                     |                                  | >               |          | >          |           | <b>*</b> + |            | >        |           |           | >        |           |           |           |                           |           |            |         |
| PICDEM <sup>TM</sup> 2 Demonstration<br>Board                                                                                         |                                     |                                  |                 | ∕+       |            |           | <↓<br>↓    |            |          |           |           |          |           | >         | >         |                           |           |            |         |
| PICDEM <sup>TM</sup> 3 Demonstration<br>Board                                                                                         |                                     |                                  |                 |          |            |           |            |            |          |           | >         |          |           |           |           |                           |           |            |         |
| 면 PICDEM <sup>TM</sup> 14A Demonstration<br>Board                                                                                     |                                     | >                                |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           |           |            |         |
| ☐ PICDEM™ 17 Demonstration<br>B Board                                                                                                 |                                     |                                  |                 |          |            |           |            |            |          |           |           |          | >         |           |           |                           |           |            |         |
| KEELoq® Evaluation Kit                                                                                                                |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           | >         |            |         |
| KEELoa® Transponder Kit                                                                                                               |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           | >         |            |         |
| e microlD™ Programmer's Kit                                                                                                           |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           |           | >          |         |
| ₫ 125 kHz microID™<br>Developer's Kit                                                                                                 |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           |           | >          |         |
| 125 kHz Anticollision microlD <sup>TM</sup><br>Developer's Kit                                                                        |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           |           | ~          |         |
| 13.56 MHz Anticollision<br>microlD <sup>TM</sup> Developer's Kit                                                                      |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           |           | ~          |         |
| MCP2510 CAN Developer's Kit                                                                                                           |                                     |                                  |                 |          |            |           |            |            |          |           |           |          |           |           |           |                           |           |            | >       |
| * Contact the Microchip Technology In<br>** Contact Microchip Technology Inc. fo<br><sup>†</sup> Development tool is available on sel | nc. web s<br>or avails<br>lect devi | site at w<br>ability da<br>ices. | ww.micr<br>tte. | ochip.cc | om for inf | ormation  | on how 1   | to use the | MPLAB    | ® ICD In  | Circuit I | Debugg   | er (DV16  | 4001) w   | ith PIC16 | SC62, 63,                 | 64, 65, 7 | 2, 73, 74, | 76, 77. |

© 1997-2013 Microchip Technology Inc.



#### FIGURE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -PIC16C54/55/56/57

#### TABLE 12-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57

| AC Chara     | cteristics | Standard Operating Conditions (uOperating Temperature $0^{\circ}C \leq$ $-40^{\circ}C \leq$ $-40^{\circ}C \leq$ | I <b>NIESS (</b><br>TA ≤ +7<br>TA ≤ +8<br>TA ≤ +1 | otherwi<br>0°C for<br>5°C for<br>25°C for | se spec<br>commei<br>industria<br>r extend | <b>tified)</b><br>rcial<br>al<br>led |                   |
|--------------|------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------|-------------------|
| Param<br>No. | Symbol     | Characteristic                                                                                                  | Min                                               | Тур†                                      | Max                                        | Units                                | Conditions        |
| 30           | TmcL       | MCLR Pulse Width (low)                                                                                          | 100*                                              | —                                         | _                                          | ns                                   | VDD = 5.0V        |
| 31           | Twdt       | Watchdog Timer Time-out Period<br>(No Prescaler)                                                                | 9.0*                                              | 18*                                       | 30*                                        | ms                                   | VDD = 5.0V (Comm) |
| 32           | Tdrt       | Device Reset Timer Period                                                                                       | 9.0*                                              | 18*                                       | 30*                                        | ms                                   | VDD = 5.0V (Comm) |
| 34           | Tioz       | I/O Hi-impedance from MCLR Low                                                                                  |                                                   | _                                         | 100*                                       | ns                                   |                   |

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### FIGURE 12-5: TIMER0 CLOCK TIMINGS - PIC16C54/55/56/57



#### TABLE 12-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54/55/56/57

| AC Ch        | aracterist | Standard Operating (<br>Operating Temperature                | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | s other<br>+70°C f<br>+85°C f<br>+125°C | wise s<br>or com<br>or indu<br>for ext | <b>pecifiec</b><br>mercial<br>strial<br>ended | 1)                                                             |
|--------------|------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| Param<br>No. | Symbol     | Characteristic                                               | Min                                                  | Тур†                                    | Max                                    | Units                                         | Conditions                                                     |
| 40           | Tt0H       | TOCKI High Pulse Width<br>- No Prescaler<br>- With Prescaler | 0.5 Tcy + 20*<br>10*                                 |                                         | _                                      | ns<br>ns                                      |                                                                |
| 41           | TtOL       | T0CKI Low Pulse Width<br>- No Prescaler<br>- With Prescaler  | 0.5 Tcy + 20*<br>10*                                 |                                         |                                        | ns<br>ns                                      |                                                                |
| 42           | Tt0P       | T0CKI Period                                                 | 20 or <u>Tcy + 40</u> *<br>N                         | _                                       | —                                      | ns                                            | Whichever is greater.<br>N = Prescale Value<br>(1, 2, 4,, 256) |

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### 13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

| PIC16LC<br>PIC16LC<br>(Comm | <b>R54A-04</b><br><b>R54A-04I</b><br>ercial, Indus | trial)                                        | Standa<br>Operat | ard Opei<br>ting Tem    | <b>ating C</b><br>perature | ondition<br>• 0°<br>-40° | s (unless otherwise specified)<br>$C \le TA \le +70^{\circ}C$ for commercial<br>$C \le TA \le +85^{\circ}C$ for industrial                                         |
|-----------------------------|----------------------------------------------------|-----------------------------------------------|------------------|-------------------------|----------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIC16CR<br>PIC16CR<br>(Comm | 254A-04, 10<br>254A-04I, 10<br>ercial, Indus       | , 20<br>01, 201<br>strial)                    | Standa<br>Operat | ard Oper<br>ting Tem    | <b>ating C</b><br>perature | ondition<br>0°<br>–40°   | s (unless otherwise specified)<br>C $\leq$ TA $\leq$ +70°C for commercial<br>C $\leq$ TA $\leq$ +85°C for industrial                                               |
| Param<br>No.                | Symbol                                             | Characteristic/Device                         | Min              | Тур†                    | Max                        | Units                    | Conditions                                                                                                                                                         |
|                             | Vdd                                                | Supply Voltage                                |                  |                         |                            |                          |                                                                                                                                                                    |
| D001                        |                                                    | PIC16LCR54A                                   | 2.0              |                         | 6.25                       | V                        |                                                                                                                                                                    |
| D001<br>D001A               |                                                    | PIC16CR54A                                    | 2.5<br>4.5       |                         | 6.25<br>5.5                | V<br>V                   | RC and XT modes<br>HS mode                                                                                                                                         |
| D002                        | Vdr                                                | RAM Data Retention<br>Voltage <sup>(1)</sup>  |                  | 1.5*                    | _                          | V                        | Device in SLEEP mode                                                                                                                                               |
| D003                        | Vpor                                               | VDD Start Voltage to ensure<br>Power-on Reset | _                | Vss                     | —                          | V                        | See Section 5.1 for details on<br>Power-on Reset                                                                                                                   |
| D004                        | Svdd                                               | VDD Rise Rate to ensure<br>Power-on Reset     | 0.05*            |                         | —                          | V/ms                     | See Section 5.1 for details on<br>Power-on Reset                                                                                                                   |
|                             | IDD                                                | Supply Current <sup>(2)</sup>                 |                  |                         |                            |                          |                                                                                                                                                                    |
| D005                        |                                                    | PICLCR54A                                     | —                | 10                      | 20<br>70                   | μA<br>μA                 | Fosc = 32 kHz, VDD = 2.0V<br>Fosc = 32 kHz, VDD = 6.0V                                                                                                             |
| D005A                       |                                                    | PIC16CR54A                                    |                  | 2.0<br>0.8<br>90<br>4.8 | 3.6<br>1.8<br>350<br>10    | mA<br>mA<br>μA           | RC <sup>(3)</sup> and XT modes:<br>Fosc = 4.0 MHz, VDD = 6.0V<br>Fosc = 4.0 MHz, VDD = 3.0V<br>Fosc = 200 kHz, VDD = 2.5V<br>HS mode:<br>Fosc = 10 MHz, VDD = 5.5V |
|                             |                                                    |                                               | —                | 9.0                     | 20                         | mA                       | FOSC = 20  MHz,  VDD = 5.5  V                                                                                                                                      |

Legend: Rows with standard voltage device data only are shaded for improved readability.

- \* These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
  - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
  - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k $\Omega$ .

#### FIGURE 14-6: MAXIMUM IPD vs. VDD, WATCHDOG DISABLED



# FIGURE 14-7: TYPICA

#### TYPICAL IPD vs. VDD, WATCHDOG ENABLED



#### FIGURE 14-8: MAXIMUM IPD vs. VDD, WATCHDOG ENABLED



IPD, with WDT enabled, has two components: The leakage current, which increases with higher temperature, and the operating current of the WDT logic, which increases with lower temperature. At  $-40^{\circ}$ C, the latter dominates explaining the apparently anomalous behavior.











#### FIGURE 14-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD





#### FIGURE 14-22: PORTA, B AND C IOL vs. VoL, VDD = 5 V



# 15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

| Absolute Maximum Ratings <sup>(†)</sup>                                                   |                                                           |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Ambient temperature under bias                                                            | –55°C to +125°C                                           |
| Storage temperature                                                                       | –65°C to +150°C                                           |
| Voltage on VDD with respect to VSS                                                        | 0 to +7.5V                                                |
| Voltage on MCLR with respect to Vss                                                       | 0 to +14V                                                 |
| Voltage on all other pins with respect to Vss                                             | –0.6V to (VDD + 0.6V)                                     |
| Total power dissipation <sup>(1)</sup>                                                    |                                                           |
| Max. current out of Vss pin                                                               | 150 mA                                                    |
| Max. current into VDD pin                                                                 | 100 mA                                                    |
| Max. current into an input pin (T0CKI only)                                               | ±500 μA                                                   |
| Input clamp current, Iik (VI < 0 or VI > VDD)                                             | ±20 mA                                                    |
| Output clamp current, IOK (VO < 0 or VO > VDD)                                            | ±20 mA                                                    |
| Max. output current sunk by any I/O pin                                                   |                                                           |
| Max. output current sourced by any I/O pin                                                |                                                           |
| Max. output current sourced by a single I/O port (PORTA or B)                             |                                                           |
| Max. output current sunk by a single I/O port (PORTA or B)                                | 50 mA                                                     |
| <b>Note 1:</b> Power dissipation is calculated as follows: Pdis = VDD x {IDD - $\sum$ IOH | $+ \sum \{(VDD-VOH) \times IOH\} + \sum (VOL \times IOL)$ |

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

## 15.6 Timing Diagrams and Specifications

#### FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A



| TABLE 15-1: | <b>EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A</b> |
|-------------|-------------------------------------------------------|
|             |                                                       |

| AC Chara     | acteristics | Standard Operating Con<br>Operating Temperature | dition:<br>0°(<br>-40°(<br>-20°(<br>-40°( | s (unless o<br>$C \le TA \le +7$<br>$C \le TA \le +8$<br>$C \le TA \le +8$<br>$C \le TA \le +1$ | otherwise<br>0°C for c<br>5°C for in<br>5°C for in<br>25°C for for | e speci<br>commer<br>ndustria<br>ndustria<br>extend | i <b>fied)</b><br>rcial<br>al<br>al - PIC16LV54A-02I<br>ed |
|--------------|-------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
| Param<br>No. | Symbol      | Characteristic                                  | Min                                       | Тур†                                                                                            | Max                                                                | Units                                               | Conditions                                                 |
|              | Fosc        | External CLKIN Fre-                             | DC                                        |                                                                                                 | 4.0                                                                | MHz                                                 | XT OSC mode                                                |
|              |             | quency <sup>(1)</sup>                           | DC                                        | —                                                                                               | 2.0                                                                | MHz                                                 | XT osc mode (PIC16LV54A)                                   |
|              |             |                                                 | DC                                        | —                                                                                               | 4.0                                                                | MHz                                                 | HS osc mode (04)                                           |
|              |             |                                                 | DC                                        | —                                                                                               | 10                                                                 | MHz                                                 | HS osc mode (10)                                           |
|              |             |                                                 | DC                                        | —                                                                                               | 20                                                                 | MHz                                                 | HS osc mode (20)                                           |
|              |             |                                                 | DC                                        | —                                                                                               | 200                                                                | kHz                                                 | LP osc mode                                                |
|              |             | Oscillator Frequency <sup>(1)</sup>             | DC                                        | _                                                                                               | 4.0                                                                | MHz                                                 | RC osc mode                                                |
|              |             |                                                 | DC                                        | —                                                                                               | 2.0                                                                | MHz                                                 | RC osc mode (PIC16LV54A)                                   |
|              |             |                                                 | 0.1                                       | —                                                                                               | 4.0                                                                | MHz                                                 | XT osc mode                                                |
|              |             |                                                 | 0.1                                       | —                                                                                               | 2.0                                                                | MHz                                                 | XT osc mode (PIC16LV54A)                                   |
|              |             |                                                 | 4.0                                       | —                                                                                               | 4.0                                                                | MHz                                                 | HS osc mode (04)                                           |
|              |             |                                                 | 4.0                                       | —                                                                                               | 10                                                                 | MHz                                                 | HS osc mode (10)                                           |
|              |             |                                                 | 4.0                                       | —                                                                                               | 20                                                                 | MHz                                                 | HS osc mode (20)                                           |
|              |             |                                                 | 5.0                                       |                                                                                                 | 200                                                                | kHz                                                 | LP osc mode                                                |

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
  - Instruction cycle period (TcY) equals four times the input oscillator time base period.

FIGURE 16-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS - VDD







# PIC16C5X



FIGURE 16-9: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD



TABLE 16-2:INPUT CAPACITANCE FOR<br/>PIC16C54A/C58A

| Pin         | Typical Capa | acitance (pF) |
|-------------|--------------|---------------|
| FIII        | 18L PDIP     | 18L SOIC      |
| RA port     | 5.0          | 4.3           |
| RB port     | 5.0          | 4.3           |
| MCLR        | 17.0         | 17.0          |
| OSC1        | 4.0          | 3.5           |
| OSC2/CLKOUT | 4.3          | 3.5           |
| TOCKI       | 3.2          | 2.8           |

All capacitance values are typical at 25°C. A part-to-part variation of  $\pm 25\%$  (three standard deviations) should be taken into account.

#### FIGURE 16-23: PORTA, B AND C IOL vs. VOL, VDD = 5V









#### 17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

| PIC16LC<br>PIC16LC<br>(Comm | <b>5X</b><br>CR5X<br>nercial, Ind | ustrial)                          | <b>Stand</b><br>Opera | ard Ope<br>ting Terr | e <b>rating</b><br>peratu  | Condit<br>ire | ions (unless otherwise specified)<br>$0^{\circ}C \le TA \le +70^{\circ}C$ for commercial<br>$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |
|-----------------------------|-----------------------------------|-----------------------------------|-----------------------|----------------------|----------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| PIC16C5<br>PIC16CF<br>(Comm | 5X<br>R5X<br>nercial, Ind         | ustrial)                          | <b>Stand</b><br>Opera | ard Ope<br>ting Terr | e <b>rating</b><br>nperatu | Condit<br>ire | ions (unless otherwise specified)<br>$0^{\circ}C \le TA \le +70^{\circ}C$ for commercial<br>$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |
| Param<br>No.                | Symbol                            | Characteristic/Device             | Min                   | Тур†                 | Max                        | Units         | Conditions                                                                                                                                        |
|                             | IPD                               | Power-down Current <sup>(2)</sup> |                       |                      |                            |               |                                                                                                                                                   |
| D020                        |                                   | PIC16LC5X                         | —                     | 0.25                 | 2                          | μΑ            | VDD = 2.5V, WDT disabled, Commercial                                                                                                              |
|                             |                                   |                                   | —                     | 0.25                 | 3                          | μA            | VDD = 2.5V, WDT disabled, Industrial                                                                                                              |
|                             |                                   |                                   | _                     | 1<br>1 25            | 5                          | μΑ            | VDD = $2.5V$ , WDT enabled, Commercial<br>VDD = $2.5V$ WDT enabled Industrial                                                                     |
|                             |                                   | PIC16C5X                          |                       | 0.25                 | 4.0                        | μ.            | $V_{DD} = 3.0V$ WDT disabled Commercial                                                                                                           |
| DOZOR                       |                                   |                                   | _                     | 0.25                 | 5.0                        | μΑ            | $V_{DD} = 3.0V$ , $W_{DT}$ disabled, our intercent VDD = 3.0V. WDT disabled. Industrial                                                           |
|                             |                                   |                                   | —                     | 1.8                  | 7.0*                       | μA            | VDD = 5.5V, WDT disabled, Commercial                                                                                                              |
|                             |                                   |                                   | —                     | 2.0                  | 8.0*                       | μA            | VDD = 5.5V, WDT disabled, Industrial                                                                                                              |
|                             |                                   |                                   | —                     | 4                    | 12*                        | μΑ            | VDD = 3.0V, WDT enabled, Commercial                                                                                                               |
|                             |                                   |                                   | —                     | 4                    | 14*                        | μA            | VDD = 3.0V, WDT enabled, Industrial                                                                                                               |
|                             |                                   |                                   | —                     | 9.8                  | 27*                        | μA            | VDD = 5.5V, WDT enabled, Commercial                                                                                                               |
|                             |                                   |                                   | —                     | 12                   | 30*                        | μA            | VDD = 5.5V, WDT enabled, Industrial                                                                                                               |

Legend: Rows with standard voltage device data only are shaded for improved readability.

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k $\Omega$ .



#### FIGURE 19-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X-40

#### TABLE 19-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X-40

| AC Charac    | teristics | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | unless o<br>≤ +70°0<br>cribed i | otherwi<br>C (comr<br>n Sectio | <b>se spec</b><br>nercial)<br>on 19.1. | ified) |                   |
|--------------|-----------|------------------------------------------------------|---------------------------------|--------------------------------|----------------------------------------|--------|-------------------|
| Param<br>No. | Symbol    | Characteristic                                       | Min                             | Тур†                           | Max                                    | Units  | Conditions        |
| 30           | TmcL      | MCLR Pulse Width (low)                               | 1000*                           |                                | _                                      | ns     | VDD = 5.0V        |
| 31           | Twdt      | Watchdog Timer Time-out Period<br>(No Prescaler)     | 9.0*                            | 18*                            | 30*                                    | ms     | VDD = 5.0V (Comm) |
| 32           | Tdrt      | Device Reset Timer Period                            | 9.0*                            | 18*                            | 30*                                    | ms     | VDD = 5.0V (Comm) |
| 34           | Tioz      | I/O Hi-impedance from MCLR Low                       | 100*                            | 300*                           | 1000*                                  | ns     |                   |

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



#### TABLE 20-1: INPUT CAPACITANCE

| Pin         | Typical Capa | acitance (pF) |
|-------------|--------------|---------------|
| FIII        | 18L PDIP     | 18L SOIC      |
| RA port     | 5.0          | 4.3           |
| RB port     | 5.0          | 4.3           |
| MCLR        | 17.0         | 17.0          |
| OSC1        | 4.0          | 3.5           |
| OSC2/CLKOUT | 4.3          | 3.5           |
| TOCKI       | 3.2          | 2.8           |

All capacitance values are typical at  $25^{\circ}$ C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.



# APPENDIX A: COMPATIBILITY

To convert code written for PIC16CXX to PIC16C5X, the user should take the following steps:

- 1. Check any CALL, GOTO or instructions that modify the PC to determine if any program memory page select operations (PA2, PA1, PA0 bits) need to be made.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any special function register page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to proper value for processor used.
- 6. Remove any use of the ADDLW, RETURN and SUBLW instructions.
- 7. Rewrite any code segments that use interrupts.

# APPENDIX B: REVISION HISTORY

Revision KE (January 2013)

Added a note to each package outline drawing.

## **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

| To:                                             | Technical Publications Manager                                                               | Total Pages Sent             |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------|--|
| RE:                                             | Reader Response                                                                              |                              |  |
| Fror                                            | m: Name                                                                                      |                              |  |
|                                                 | Company                                                                                      |                              |  |
|                                                 | Address                                                                                      |                              |  |
|                                                 | City / State / ZIP / Country                                                                 |                              |  |
| Ielephone:                                      |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
| Device: PIC16C5X Literature Number: DS30453E    |                                                                                              |                              |  |
| Questions:                                      |                                                                                              |                              |  |
| 1. What are the best features of this document? |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
| 2.                                              | How does this document meet your hardware and software development needs?                    |                              |  |
|                                                 |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
| 3.                                              | Do you find the organization of this data sheet easy to follow? If not, why?                 |                              |  |
|                                                 |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
| 4.                                              | . What additions to the data sheet do you think would enhance the structure and subject?     |                              |  |
|                                                 |                                                                                              |                              |  |
| _                                               |                                                                                              |                              |  |
| 5.                                              | . What deletions from the data sheet could be made without affecting the overall usefulness? |                              |  |
|                                                 |                                                                                              |                              |  |
| 6                                               | Is there any incorrect or misleading inform                                                  | nation (what and where)?     |  |
| 0.                                              |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
| 7.                                              | How would you improve this document?                                                         |                              |  |
|                                                 |                                                                                              |                              |  |
|                                                 |                                                                                              |                              |  |
| 8.                                              | How would you improve our software, sys                                                      | stems, and silicon products? |  |
|                                                 |                                                                                              |                              |  |