

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c54a-10-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C5X FAMILY OF DEVICES

Features	PIC16C54	PIC16CR54	PIC16C55	PIC16C56	PIC16CR56
Maximum Operation Frequency	40 MHz	20 MHz	40 MHz	40 MHz	20 MHz
EPROM Program Memory (x12 words)	512	_	512	1K	
ROM Program Memory (x12 words)		512	_	_	1K
RAM Data Memory (bytes)	25	25	24	25	25
Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0
I/O Pins	12	12	20	12	12
Number of Instructions	33	33	33	33	33
Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

PIC16C58 Features **PIC16C57** PIC16CR57 PIC16CR58 Maximum Operation Frequency 20 MHz 40 MHz 40 MHz 20 MHz EPROM Program Memory (x12 words) 2K 2K ____ _ ROM Program Memory (x12 words) 2K 2K _ _ RAM Data Memory (bytes) 72 72 73 73 Timer Module(s) TMR0 TMR0 TMR0 TMR0 I/O Pins 20 20 12 12 Number of Instructions 33 33 33 33 28-pin DIP, SOIC; 28-pin DIP, SOIC; 18-pin DIP, SOIC; 18-pin DIP, SOIC; Packages 28-pin SSOP 28-pin SSOP 20-pin SSOP 20-pin SSOP All PIC® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability.

4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

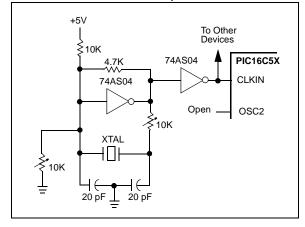
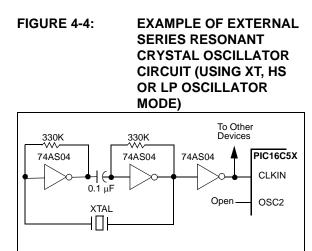



Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

NOTES:

NOTES:

COMF Complement f						
Syntax:	[label] COMF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow (dest)$					
Status Affected:	Z					
Encoding:	0010 01df ffff					
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	COMF REG1,0					
Before Instru REG1 After Instruct REG1 W	= 0x13					

DECF	Decrement f						
Syntax:	[label]	DECF f,	d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$						
Operation:	$(f) - 1 \rightarrow (dest)$						
Status Affected:	Z						
Encoding:	0000	11df	ffff				
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	DECF	CNT,	1				
Before Instru CNT Z After Instruct CNT Z	= 0 = 0 ion	<01					

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f) $-1 \rightarrow d$; skip if result = 0
Status Affected:	None
Encoding:	0010 11df ffff
Description:	The contents of register 'f' are dec- remented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
Before Instru PC	= address (HERE)
After Instruct CNT if CNT PC if CNT PC	tion = CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

	- - - -	6 33 520 540 540 540 540 540 540 540 540 540 54	мсь мс <i>в</i>
MPLAB [®] C17 C complex I	> > > >	>	
MPLAB [®] C18 C compiler I		· · ·	
MPASN™ Assembler/ MPLNW™ Object Linker ×		× ×	
MPLAB® (CE In-Circuit Emulator	> > > >	> > > >	×
ICEPIC ^M In-Circuit Emulator ✓ <t< th=""><th>× × ×</th><th></th><th></th></t<>	× × ×		
MPLAB® ICD In-Circuit ·· </th <th>></th> <th></th> <th></th>	>		
PICSTART® Plus Entry Level <th< th=""><th></th><th>></th><th></th></th<>		>	
PRO MATE® II · · · · · · · · · · · · · · · · · · ·	> > >	> >	
PICDEMTW 1 Demonstration <	> > >	> > > >	· ·
PICDEMTW 2 Demonstration	>		
PICDEMTW 3 Demonstration PICDEMTW 3 Demonstration PICDEMTW 14A Demonstration PIC	×+	>	
PICDEM TM 14A Demonstration Board PICDEM TM 17 Demonstration Board KEELoa [®] Evaluation Kit KEELoa [®] Transponder Kit microlD TM Programmer's Kit 125 KHz microlD TM	*		
		>	
			
			>
			>
Developer's Kit			>
125 kHz Anticollision microlD TM Developer's Kit			>
13.56 MHz Anticollision microlD TM Developer's Kit			>
MCP2510 CAN Developer's Kit			×

© 1997-2013 Microchip Technology Inc.

13.3 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

DC CH	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss		0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD	V V V V	Pin at hi-impedance RC mode only ⁽³⁾ XT, HS and LP modes		
D040	VIн	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	2.0 0.6 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.85 VDD		VDD VDD VDD VDD VDD VDD VDD	V V V V V	VDD = 3.0V to 5.5V ⁽⁴⁾ Full VDD range ⁽⁴⁾ RC mode only ⁽³⁾ XT, HS and LP modes		
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 VDD*	—	—	V			
D060	lι∟	Input Leakage Current ^(1,2) I/O ports	-1.0	_	+1.0	μA	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance		
		MCLR MCLR TOCKI OSC1	-5.0 -3.0 -3.0	— 0.5 0.5 0.5	 +5.0 +3.0 +3.0	μΑ μΑ μΑ	$\label{eq:VPIN} \begin{array}{l} VPIN = VSS + 0.25V \\ VPIN = VDD \\ VSS \leq VPIN \leq VDD \\ VSS \leq VPIN \leq VDD, \\ XT, HS \text{and} LP \text{modes} \end{array}$		
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.5 0.5	V V	IOL = 10 mA, $VDD = 6.0VIOL = 1.9$ mA, $VDD = 6.0V$, RC mode only		
D090	Vон	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.5 Vdd - 0.5	_		V V	IOH = -4.0 mA, VDD = 6.0 V IOH = -0.8 mA, VDD = 6.0 V, RC mode only		

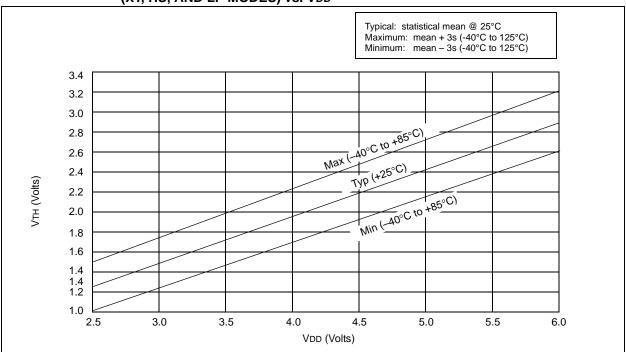
* These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
 - 2: Negative current is defined as coming out of the pin.
 - **3:** For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.
 - 4: The user may use the better of the two specifications.

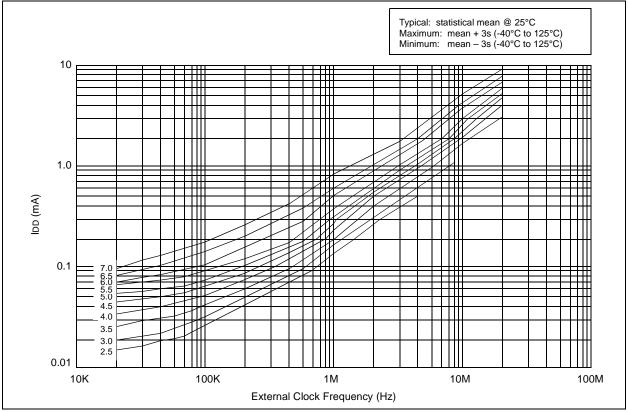
AC Characteristics		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
1	Tosc	External CLKIN Period ⁽¹⁾	250	_	_	ns	XT osc mode	
			250	—	—	ns	HS osc mode (04)	
			100	—		ns	HS osc mode (10)	
			50	—		ns	HS osc mode (20)	
			5.0	_	—	μS	LP OSC mode	
		Oscillator Period ⁽¹⁾	250		_	ns	RC OSC mode	
			250	—	10,000	ns	XT OSC mode	
			250	—	250	ns	HS OSC mode (04)	
			100	—	250	ns	HS osc mode (10)	
			50	—	250	ns	HS osc mode (20)	
			5.0	_	200	μS	LP OSC mode	
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc		_		
3	TosL, TosH	Clock in (OSC1) Low or High	50*		_	ns	XT oscillator	
		Time	20*	—	—	ns	HS oscillator	
			2.0*	_	—	μS	LP oscillator	
4	TosR, TosF	Clock in (OSC1) Rise or Fall	_	—	25*	ns	XT oscillator	
		Time	—	—	25*	ns	HS oscillator	
			—	—	50*	ns	LP oscillator	

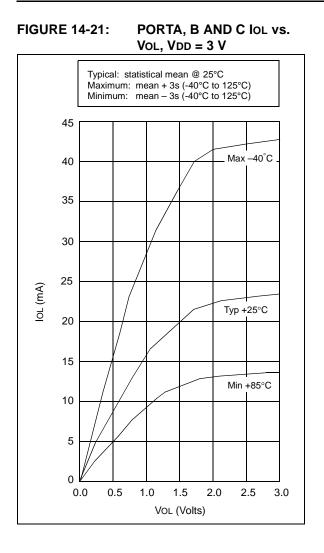
TABLE 13-1:	EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A
-------------	---

These parameters are characterized but not tested.


† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.


when an external clock input is used, the "max" cycle time limit is "Du" (no clock) for all device


2: Instruction cycle period (TcY) equals four times the input oscillator time base period.

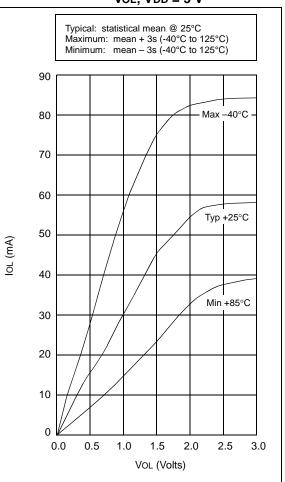
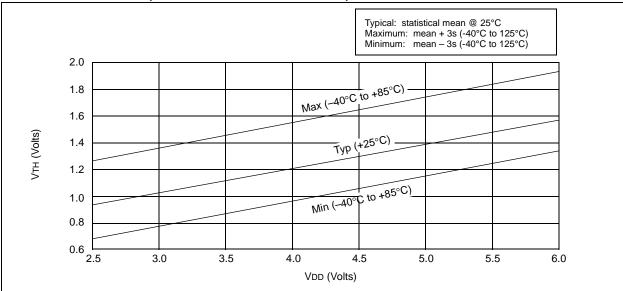


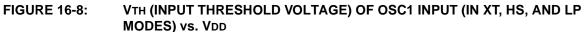
FIGURE 14-22: PORTA, B AND C IOL vs. VoL, VDD = 5 V

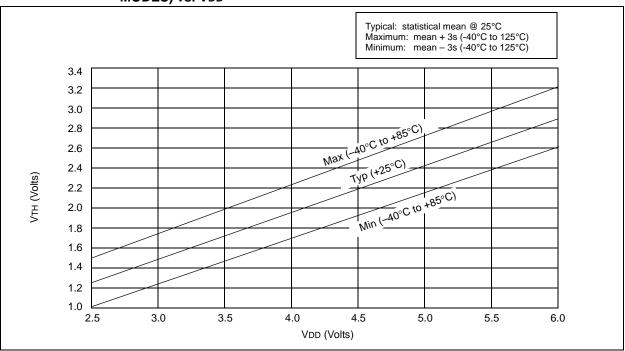
15.2 DC Characteristics: PIC16

PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16LC54A-04E (Extended)							tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended
PIC16C54A-04E, 10E, 20E (Extended)				ard Ope ting Terr	-		tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended
Param No. Symbol Characteristic			Min	Тур†	Max	Units	Conditions
	IPD	Power-down Current ⁽²⁾					
D020		PIC16LC54A	_	2.5 0.25	15 7.0	μΑ μΑ	VDD = 2.5V, WDT enabled, Extended VDD = 2.5V, WDT disabled, Extended
D020A		PIC16C54A		5.0 0.8	22 18*	μΑ μΑ	VDD = 3.5V, WDT enabled VDD = 3.5V, WDT disabled


Legend: Rows with standard voltage device data only are shaded for improved readability.

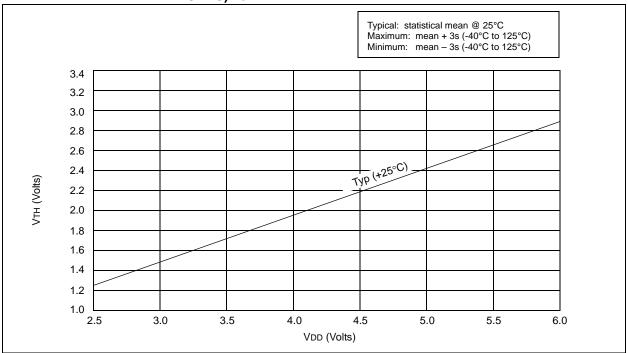

* These parameters are characterized but not tested.


- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

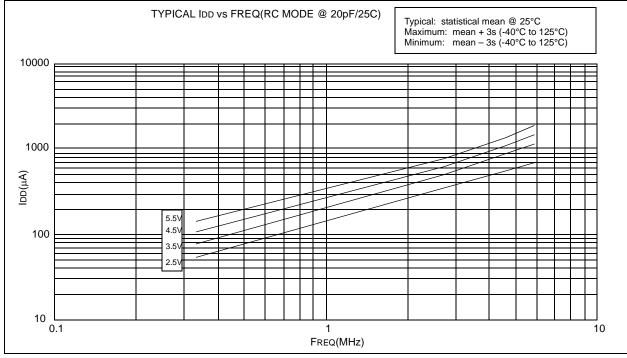
© 1997-2013 Microchip Technology Inc.

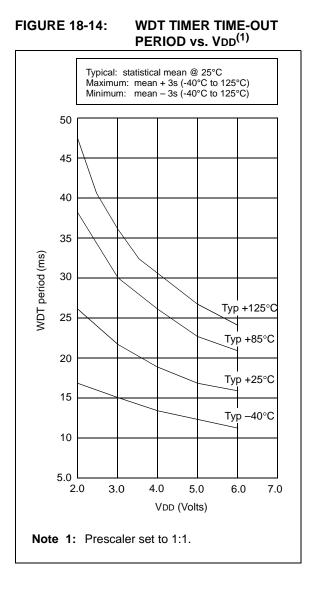
FIGURE 16-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS - VDD

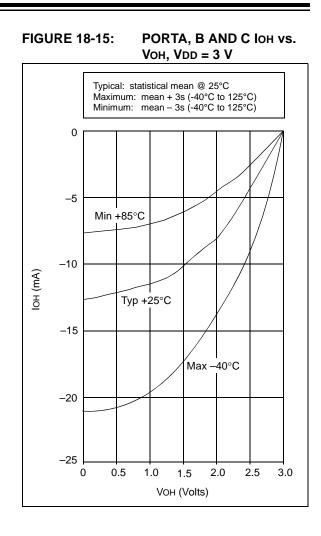
17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)


PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)				Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	3.0 4.5		5.5 5.5		RC, XT, LP, and HS mode from 0 - 10 MHz from 10 - 20 MHz	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset	
D010	IDD	Supply Current ⁽²⁾ XT and RC ⁽³⁾ modes HS mode	_	1.8 9.0	3.3 20	mA mA	Fosc = 4.0 MHz, Vdd = 5.5V Fosc = 20 MHz, Vdd = 5.5V	
D020	IPD	Power-down Current ⁽²⁾		0.3 10 12 4.8 18 26	17 50* 60* 31* 68* 90*	μΑ μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled VDD = 4.5V, WDT disabled VDD = 5.5V, WDT disabled VDD = 3.0V, WDT enabled VDD = 4.5V, WDT enabled VDD = 5.5V, WDT enabled	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.


- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.


FIGURE 18-10: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (IN XT, HS AND LP MODES) vs. VDD

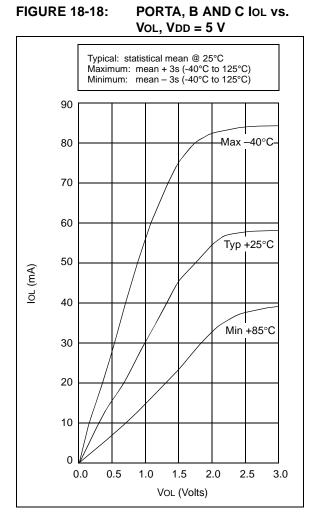
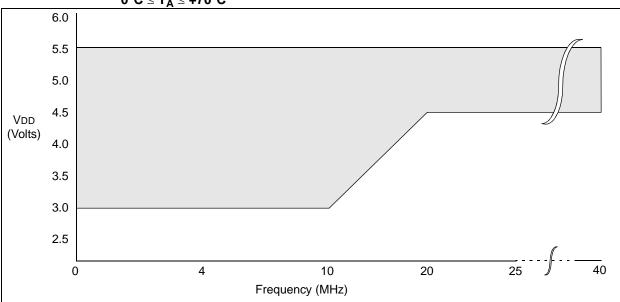


TABLE 18-2:INPUT CAPACITANCE

Pin	Typical Capa	acitance (pF)
Pin	18L PDIP	18L SOIC
RA port	5.0	4.3
RB port	5.0	4.3
MCLR	17.0	17.0
OSC1	4.0	3.5
OSC2/CLKOUT	4.3	3.5
тоскі	3.2	2.8

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.


19.0 ELECTRICAL CHARACTERISTICS - PIC16LC54C 40MHz

Absolute Maximum Ratings^(†)

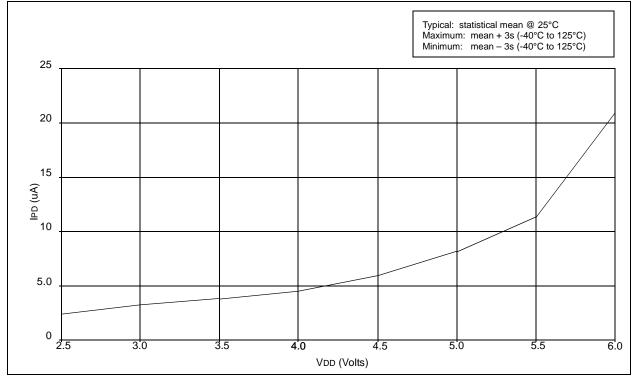
Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, liк (Vi <0 or Vi > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O (Port A, B or C)	50 mA
Max. output current sunk by a single I/O (Port A, B or C)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH)	x IOH} + Σ (Vol x Iol)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 19-1: PIC16C54C/C55A/C56A/C57C/C58B-40 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_A \le +70^{\circ}C$

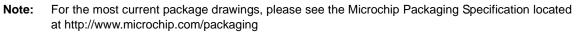
- **2:** The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
- **3:** Operation between 20 to 40 MHz requires the following:
 - VDD between 4.5V. and 5.5V
 - OSC1 externally driven
 - OSC2 not connected
 - HS mode
 - Commercial temperatures

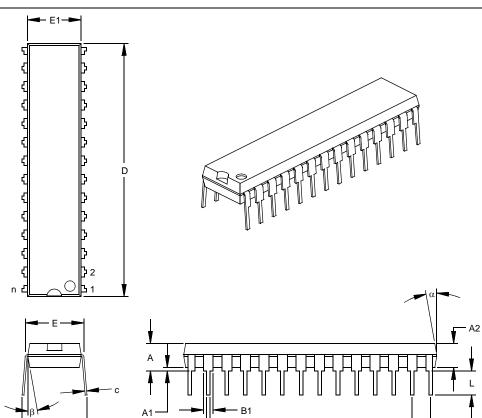
Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C54C-40/P).


4: For operation between DC and 20 MHz, see Section 17.1.

20.0 DEVICE CHARACTERIZATION - PIC16LC54C 40MHz

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.


"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



© 1997-2013 Microchip Technology Inc.

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

в

	Units	INCHES*			MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	èB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

eВ

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.

JEDEC Equivalent: MO-095

Drawing No. C04-070

- p -

Notes: