

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c54a-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 **Clocking Scheme/Instruction** Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: **CLOCK/INSTRUCTION CYCLE**

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

6.0 MEMORY ORGANIZATION

PIC16C5X memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one or two STATUS Register bits. For devices with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Selection Register (FSR).

6.1 Program Memory Organization

The PIC16C54, PIC16CR54 and PIC16C55 have a 9bit Program Counter (PC) capable of addressing a 512 x 12 program memory space (Figure 6-1). The PIC16C56 and PIC16CR56 have a 10-bit Program Counter (PC) capable of addressing a 1K x 12 program memory space (Figure 6-2). The PIC16CR57, PIC16C58 and PIC16CR58 have an 11-bit Program Counter capable of addressing a 2K x 12 program memory space (Figure 6-3). Accessing a location above the physically implemented address will cause a wraparound.

A NOP at the RESET vector location will cause a restart at location 000h. The RESET vector for the PIC16C54, PIC16CR54 and PIC16C55 is at 1FFh. The RESET vector for the PIC16C56 and PIC16CR56 is at 3FFh. The RESET vector for the PIC16C57, PIC16CR57, PIC16C58, and PIC16CR58 is at 7FFh. See Section 6.5 for additional information using CALL and GOTO instructions.

FIGURE 6-1: PIC16C54/CR54/C55 PROGRAM MEMORY MAP AND STACK

FIGURE 6-2:

PIC16C56/CR56 PROGRAM MEMORY MAP AND STACK

FIGURE 6-3:

PIC16C57/CR57/C58/ CR58 PROGRAM MEMORY MAP AND STACK

6.7 Indirect Data Addressing; INDF and FSR Registers

The INDF Register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 6-1: INDIRECT ADDRESSING

- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- Load the value 08 into the FSR Register
- A read of the INDF Register will return the value of 10h
- Increment the value of the FSR Register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF Register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 6-2.

EXAMPLE 6-2:

HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	MOVLW	H'10'	;initialize pointer
	MOVWF	FSR	; to RAM
NEXT	CLRF	INDF	;clear INDF Register
	INCF	FSR,F	;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56) or 7-bit (PIC16C57, PIC16CR57, PIC16CR58, PIC16CR58) wide register. It is used in conjunction with the INDF Register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56: These do not use banking. FSR<6:5> bits are unimplemented and read as '1's.

PIC16C57, **PIC16CR57**, **PIC16C58**, **PIC16CR58**: FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = bank 0, 01 = bank 1, 10 = bank 2, 11 = bank 3).

© 1997-2013 Microchip Technology Inc.

NOTES:

12.2 DC Characteristics: PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)

PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)		Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage PIC16C5X-RCI PIC16C5X-XTI PIC16C5X-10I PIC16C5X-HSI PIC16C5X-HSI	3.0 3.0 4.5 4.5 2.5		6.25 6.25 5.5 5.5 6.25	V V V V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	2.5	1.5*		V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RCI ⁽³⁾ PIC16C5X-XTI PIC16C5X-10I PIC16C5X-HSI PIC16C5X-HSI PIC16C5X-LPI		1.8 1.8 4.8 9.0 15	3.3 3.3 10 10 20 40	mA mA mA mA μA	Fosc = 4 MHz, VDD = $5.5V$ Fosc = 4 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 20 MHz, VDD = $5.5V$ Fosc = 32 kHz, VDD = $3.0V$, WDT disabled
D020	IPD	Power-down Current ⁽²⁾	_	4.0 0.6	14 12	μΑ μΑ	VDD = 3.0V, WDT enabled VDD = 3.0V, WDT disabled

* These parameters are characterized but not tested.

- † Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

AC Chara	cteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
1	Tosc	External CLKIN Period ⁽¹⁾	250			ns	XT OSC mode
			100		—	ns	10 MHz mode
			50		—	ns	HS OSC mode (Comm/Ind)
			62.5		—	ns	HS OSC mode (Ext)
			25		—	μS	LP OSC mode
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC OSC mode
			250		10,000	ns	XT OSC mode
			100		250	ns	10 MHz mode
			50		250	ns	HS OSC mode (Comm/Ind)
			62.5		250	ns	HS OSC mode (Ext)
			25		—	μS	LP OSC mode
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—	
3	TosL,	Clock in (OSC1) Low or High	85*	—	—	ns	XT oscillator
	TosH	Time	20*	—	—	ns	HS oscillator
			2.0*		—	μS	LP oscillator
4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT oscillator
	TosF	Time	—	—	25*	ns	HS oscillator
			—	—	50*	ns	LP oscillator

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A

Absolute Maximum Ratings(†)

Ambient Temperature under bias	55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0 to +14V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	
Max. current out of Vss pin	150 mA
Max. current into Vod pin	50 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iık (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (V0 < 0 or V0 > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O port (PORTA or B)	40 mA
Max. output current sunk by a single I/O port (PORTA or B)	50 mA

- **Note 1:** Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a low level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.
 - **2:** Power Dissipation is calculated as follows: PDIS = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16C5X

FIGURE 14-2: TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 20 PF Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean – 3s (-40°C to 125°C) 5.5 R = 3.3K5.0 4.5 R = 5K 4.0 3.5 Fosc (MHz) 3.0 R = 10K 2.5 2.0 Measured on DIP Packages, $T = 25^{\circ}C$ 1.5 1.0 R = 100K 0.5 0.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)

FIGURE 14-3:

TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 100 PF

FIGURE 14-6: MAXIMUM IPD vs. VDD, WATCHDOG DISABLED

FIGURE 14-7: TYPICA

TYPICAL IPD vs. VDD, WATCHDOG ENABLED

FIGURE 14-8: MAXIMUM IPD vs. VDD, WATCHDOG ENABLED

IPD, with WDT enabled, has two components: The leakage current, which increases with higher temperature, and the operating current of the WDT logic, which increases with lower temperature. At -40° C, the latter dominates explaining the apparently anomalous behavior.

FIGURE 14-18:

TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

TABLE 14-2: INPUT CAPACITANCE FOR PIC16C54/56

Pin	Typical Capacitance (pF)			
FIII	18L PDIP	18L SOIC		
RA port	5.0	4.3		
RB port	5.0	4.3		
MCLR	17.0	17.0		
OSC1	4.0	3.5		
OSC2/CLKOUT	4.3	3.5		
TOCKI	3.2	2.8		

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

TABLE 14-3:	INPUT CAPACITANCE FOR
	PIC16C55/57

	Typical Capacitance (pF)			
Pin	28L PDIP (600 mil)	28L SOIC		
RA port	5.2	4.8		
RB port	5.6	4.7		
RC port	5.0	4.1		
MCLR	17.0	17.0		
OSC1	6.6	3.5		
OSC2/CLKOUT	4.6	3.5		
TOCKI	4.5	3.5		

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

15.5 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. Tp	pS	
Т		
F	Frequency	T Time
Lowe	ercase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	ercase letters and their meanings:	
S		
F	Fall	P Period
н	High	R Rise
I	Invalid (Hi-impedance)	V Valid
L	Low	Z Hi-impedance

FIGURE 15-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54A

16.0 DEVICE CHARACTERIZATION - PIC16C54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

TABLE 16-1: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Average Fosc @ 5 V, 25°C			
20 pF	3.3K	5 MHz	± 27%		
	5K	3.8 MHz	± 21%		
	10K	2.2 MHz	± 21%		
	100K	262 kHz	± 31%		
100 pF	3.3K	1.6 MHz	± 13%		
	5K	1.2 MHz	± 13%		
	10K	684 kHz	± 18%		
	100K	71 kHz	± 25%		
300 pF	3.3K	660 kHz	± 10%		
	5.0K	484 kHz	± 14%		
	10K	267 kHz	± 15%		
	100K	29 kHz	± 19%		

The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

FIGURE 18-17: PORTA, B AND C IOL vs. Vol, VDD = 3 V

PIC16C5X

FIGURE 19-1: PIC16C54C/C55A/C56A/C57C/C58B-40 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_A \le +70^{\circ}C$

- **2:** The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
- **3:** Operation between 20 to 40 MHz requires the following:
 - VDD between 4.5V. and 5.5V
 - OSC1 externally driven
 - OSC2 not connected
 - HS mode
 - Commercial temperatures

Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C54C-40/P).

4: For operation between DC and 20 MHz, see Section 17.1.

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units INCHES*				Ν	IILLIMETERS	5
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052