


Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 4MHz                                                                        |
| Connectivity               | -                                                                           |
| Peripherals                | POR, WDT                                                                    |
| Number of I/O              | 12                                                                          |
| Program Memory Size        | 768B (512 x 12)                                                             |
| Program Memory Type        | OTP                                                                         |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 25 x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                                 |
| Data Converters            | -                                                                           |
| Oscillator Type            | External                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 18-SOIC (0.295", 7.50mm Width)                                              |
| Supplier Device Package    | 18-SOIC                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c54at-04i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

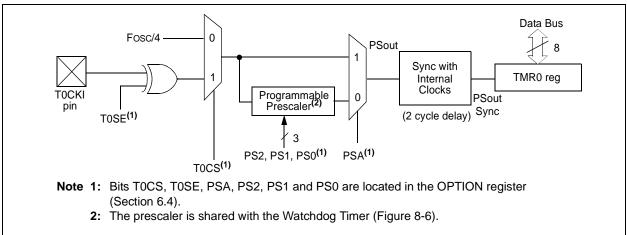
### 8.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

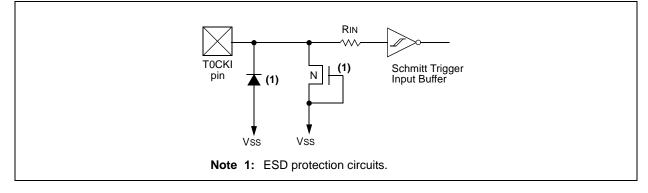
- 8-bit timer/counter register, TMR0
  - Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Edge select for external clock

Figure 8-1 is a simplified block diagram of the Timer0 module, while Figure 8-2 shows the electrical structure of the Timer0 input.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 8-3 and Figure 8-4). The user can work around this by writing an adjusted value to the TMR0 register.




Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 8.1.


Note: The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both.

The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 8.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 8-1.



#### FIGURE 8-2: ELECTRICAL STRUCTURE OF TOCKI PIN



| ADDWF                                                                             | Add W                                                                                                                                                                         | and f                        |      |                    |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|--------------------|
| Syntax:                                                                           | [ <i>label</i> ] ADDWF f,d                                                                                                                                                    |                              |      |                    |
| Operands:                                                                         | $\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$                                                                                                                |                              |      |                    |
| Operation:                                                                        | (W) + (f)                                                                                                                                                                     | $\rightarrow$ (dest)         |      |                    |
| Status Affected:                                                                  | C, DC, Z                                                                                                                                                                      |                              |      |                    |
| Encoding:                                                                         | 0001                                                                                                                                                                          | 11df                         | ffff |                    |
| Description:                                                                      | Add the contents of the W register<br>and register 'f'. If 'd' is 0 the result<br>is stored in the W register. If 'd' is<br>'1' the result is stored back in<br>register 'f'. |                              |      | result<br>f 'd' is |
| Words:                                                                            | 1                                                                                                                                                                             |                              |      |                    |
| Cycles:                                                                           | 1                                                                                                                                                                             |                              |      |                    |
| Example:                                                                          | ADDWF                                                                                                                                                                         | TEMP_RE                      | G, 0 |                    |
| Before Instruction<br>W =<br>TEMP_REG =<br>After Instruction<br>W =<br>TEMP_REG = |                                                                                                                                                                               | 0x17<br>0xC2<br>0xD9<br>0xC2 |      |                    |

| ANDWF                                                      | AND W with f                                                                                                                                                                            |  |  |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Syntax:                                                    | [label] ANDWF f,d                                                                                                                                                                       |  |  |  |
| Operands:                                                  | $\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$                                                                                                                          |  |  |  |
| Operation:                                                 | (W) .AND. (f) $\rightarrow$ (dest)                                                                                                                                                      |  |  |  |
| Status Affected:                                           | Z                                                                                                                                                                                       |  |  |  |
| Encoding:                                                  | 0001 01df ffff                                                                                                                                                                          |  |  |  |
| Description:                                               | The contents of the W register are<br>AND'ed with register 'f'. If 'd' is 0<br>the result is stored in the W regis-<br>ter. If 'd' is '1' the result is stored<br>back in register 'f'. |  |  |  |
| Words:                                                     | 1                                                                                                                                                                                       |  |  |  |
| Cycles:                                                    | 1                                                                                                                                                                                       |  |  |  |
| Example:                                                   | ANDWF TEMP_REG, 1                                                                                                                                                                       |  |  |  |
| Before Instru<br>W<br>TEMP_<br>After Instruc<br>W<br>TEMP_ | = 0x17<br>REG = 0xC2<br>tion<br>= 0x17                                                                                                                                                  |  |  |  |

| ANDLW                                        | AND literal with W                                                                                                           |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| Syntax:                                      | [ <i>label</i> ] ANDLW k                                                                                                     |  |  |
| Operands:                                    | $0 \le k \le 255$                                                                                                            |  |  |
| Operation:                                   | (W).AND. (k) $\rightarrow$ (W)                                                                                               |  |  |
| Status Affected:                             | Z                                                                                                                            |  |  |
| Encoding:                                    | 1110 kkkk kkkk                                                                                                               |  |  |
| Description:                                 | The contents of the W register are<br>AND'ed with the eight-bit literal 'k'.<br>The result is placed in the W regis-<br>ter. |  |  |
| Words:                                       | 1                                                                                                                            |  |  |
| Cycles:                                      | 1                                                                                                                            |  |  |
| Example:                                     | ANDLW H'5F'                                                                                                                  |  |  |
| Before Instru<br>W =<br>After Instruc<br>W = | 0xA3                                                                                                                         |  |  |

| BCF                                                        | Bit Clear f            |                                                                    |             |  |  |  |
|------------------------------------------------------------|------------------------|--------------------------------------------------------------------|-------------|--|--|--|
| Syntax:                                                    | [ label ]              | BCF f,ł                                                            | )           |  |  |  |
| Operands:                                                  |                        | $\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$ |             |  |  |  |
| Operation:                                                 | $0 \rightarrow (f < b$ | >)                                                                 |             |  |  |  |
| Status Affected:                                           | None                   |                                                                    |             |  |  |  |
| Encoding:                                                  | 0100                   | bbbf                                                               | ffff        |  |  |  |
| Description:                                               | Bit 'b' in             | register 'f'                                                       | is cleared. |  |  |  |
| Words:                                                     | 1                      |                                                                    |             |  |  |  |
| Cycles:                                                    | 1                      |                                                                    |             |  |  |  |
| Example:                                                   | BCF                    | FLAG_RE                                                            | IG, 7       |  |  |  |
| Before Instruction<br>FLAG_REG = 0xC7<br>After Instruction |                        |                                                                    |             |  |  |  |
| FLAG_F                                                     | $FLAG_REG = 0x47$      |                                                                    |             |  |  |  |

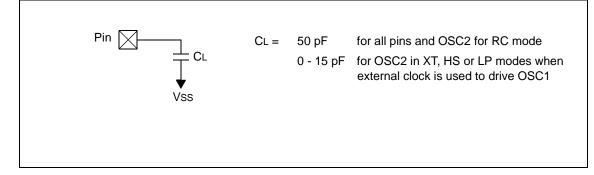
# PIC16C5X

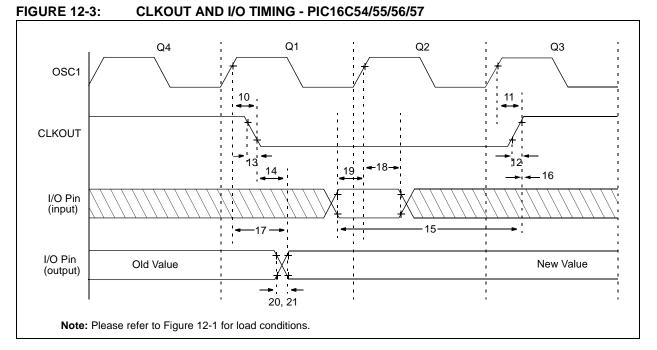
| IORLW                                               | Inclusive OR literal with W                                                                                                 |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Syntax:                                             | [ <i>label</i> ] IORLW k                                                                                                    |  |  |  |
| Operands:                                           | $0 \leq k \leq 255$                                                                                                         |  |  |  |
| Operation:                                          | (W) .OR. (k) $\rightarrow$ (W)                                                                                              |  |  |  |
| Status Affected:                                    | Z                                                                                                                           |  |  |  |
| Encoding:                                           | 1101 kkkk kkkk                                                                                                              |  |  |  |
| Description:                                        | The contents of the W register are<br>OR'ed with the eight bit literal 'k'.<br>The result is placed in the W regis-<br>ter. |  |  |  |
| Words:                                              | 1                                                                                                                           |  |  |  |
| Cycles:                                             | 1                                                                                                                           |  |  |  |
| Example:                                            | IORLW 0x35                                                                                                                  |  |  |  |
| Before Instru<br>W =<br>After Instruc<br>W =<br>Z = | 0x9A<br>tion                                                                                                                |  |  |  |

| IORWF                                                            | Inclusive OR W with f                                                                                                                                                 |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Syntax:                                                          | [ <i>label</i> ] IORWF f,d                                                                                                                                            |  |  |  |
| Operands:                                                        | $\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$                                                                                                            |  |  |  |
| Operation:                                                       | (W).OR. (f) $\rightarrow$ (dest)                                                                                                                                      |  |  |  |
| Status Affected:                                                 | Z                                                                                                                                                                     |  |  |  |
| Encoding:                                                        | 0001 00df ffff                                                                                                                                                        |  |  |  |
| Description:                                                     | Inclusive OR the W register with<br>register 'f'. If 'd' is 0 the result is<br>placed in the W register. If 'd' is 1<br>the result is placed back in<br>register 'f'. |  |  |  |
| Words:                                                           | 1                                                                                                                                                                     |  |  |  |
| Cycles:                                                          | 1                                                                                                                                                                     |  |  |  |
| Example:                                                         | IORWF RESULT, 0                                                                                                                                                       |  |  |  |
| Before Instru<br>RESUL<br>W<br>After Instruct<br>RESUL<br>W<br>Z | Γ = 0x13<br>= 0x91<br>tion                                                                                                                                            |  |  |  |

| MOVF                  | Move f                                                                                                                                                                                                                                                 |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Syntax:               | [ <i>label</i> ] MOVF f,d                                                                                                                                                                                                                              |  |  |  |
| Operands:             | $\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$                                                                                                                                                                                         |  |  |  |
| Operation:            | $(f) \rightarrow (dest)$                                                                                                                                                                                                                               |  |  |  |
| Status Affected:      | Z                                                                                                                                                                                                                                                      |  |  |  |
| Encoding:             | 0010 00df ffff                                                                                                                                                                                                                                         |  |  |  |
| Description:          | The contents of register 'f' is<br>moved to destination 'd'. If 'd' is 0,<br>destination is the W register. If 'd'<br>is 1, the destination is file<br>register 'f'. 'd' is 1 is useful to test a<br>file register since status flag Z is<br>affected. |  |  |  |
| Words:                | 1                                                                                                                                                                                                                                                      |  |  |  |
| Cycles:               | 1                                                                                                                                                                                                                                                      |  |  |  |
| Example:              | MOVF FSR, 0                                                                                                                                                                                                                                            |  |  |  |
| After Instruct<br>W = | tion<br>- value in FSR register                                                                                                                                                                                                                        |  |  |  |

| MOVLW                         | Move Literal to W    |       |               |        |  |
|-------------------------------|----------------------|-------|---------------|--------|--|
| Syntax:                       | [ label ]            | MOVLW | k             |        |  |
| Operands:                     | $0 \leq k \leq 2$    | 55    |               |        |  |
| Operation:                    | $k \rightarrow (W)$  |       |               |        |  |
| Status Affected:              | None                 |       |               |        |  |
| Encoding:                     | 1100                 | kkkk  | kkkk          |        |  |
| Description:                  | The eigh<br>the W re |       | 'k' is loaded | d into |  |
| Words:                        | 1                    |       |               |        |  |
| Cycles:                       | 1                    |       |               |        |  |
| Example:                      | MOVLW                | 0x5A  |               |        |  |
| After Instruction<br>W = 0x5A |                      |       |               |        |  |


## 12.6 Timing Parameter Symbology and Load Conditions


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

| 2. TppS |                                         |                    |  |
|---------|-----------------------------------------|--------------------|--|
|         | PO                                      |                    |  |
| Т       |                                         |                    |  |
| F       | Frequency                               | T Time             |  |
| Lowe    | ercase letters (pp) and their meanings: |                    |  |
| рр      |                                         |                    |  |
| 2       | to                                      | mc MCLR            |  |
| ck      | CLKOUT                                  | osc oscillator     |  |
| су      | cycle time                              | os OSC1            |  |
| drt     | device reset timer                      | t0 T0CKI           |  |
| io      | I/O port                                | wdt watchdog timer |  |
| Uppe    | ercase letters and their meanings:      |                    |  |
| S       |                                         |                    |  |
| F       | Fall                                    | P Period           |  |
| Н       | High                                    | R Rise             |  |
| I       | Invalid (Hi-impedance)                  | V Valid            |  |
| L       | Low                                     | Z Hi-impedance     |  |

#### FIGURE 12-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54/55/56/57





#### TABLE 12-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57

| AC Char      | acteristics | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$ |              |      |      |       |
|--------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|------|-------|
| Param<br>No. | Symbol      | Characteristic                                                                                                                                                                                                                                                                                                                   | Min          | Тур† | Max  | Units |
| 10           | TosH2ckL    | OSC1↑ to CLKOUT↓ <sup>(1)</sup>                                                                                                                                                                                                                                                                                                  | _            | 15   | 30** | ns    |
| 11           | TosH2ckH    | OSC1↑ to CLKOUT↑ <sup>(1)</sup>                                                                                                                                                                                                                                                                                                  | _            | 15   | 30** | ns    |
| 12           | TckR        | CLKOUT rise time <sup>(1)</sup>                                                                                                                                                                                                                                                                                                  |              | 5.0  | 15** | ns    |
| 13           | TckF        | CLKOUT fall time <sup>(1)</sup>                                                                                                                                                                                                                                                                                                  | —            | 5.0  | 15** | ns    |
| 14           | TckL2ioV    | CLKOUT↓ to Port out valid <sup>(1)</sup>                                                                                                                                                                                                                                                                                         |              |      | 40** | ns    |
| 15           | TioV2ckH    | Port in valid before CLKOUT <sup>(1)</sup>                                                                                                                                                                                                                                                                                       | 0.25 TCY+30* | _    | _    | ns    |
| 16           | TckH2iol    | Port in hold after CLKOUT <sup>(1)</sup>                                                                                                                                                                                                                                                                                         | 0*           | _    | _    | ns    |
| 17           | TosH2ioV    | OSC1↑ (Q1 cycle) to Port out valid <sup>(2)</sup>                                                                                                                                                                                                                                                                                | _            |      | 100* | ns    |
| 18           | TosH2iol    | OSC1 <sup>↑</sup> (Q2 cycle) to Port input invalid<br>(I/O in hold time)                                                                                                                                                                                                                                                         | TBD          | —    |      | ns    |
| 19           | TioV2osH    | Port input valid to OSC1↑<br>(I/O in setup time)                                                                                                                                                                                                                                                                                 | TBD          | —    | —    | ns    |
| 20           | TioR        | Port output rise time <sup>(2)</sup>                                                                                                                                                                                                                                                                                             | —            | 10   | 25** | ns    |
| 21           | TioF        | Port output fall time <sup>(2)</sup>                                                                                                                                                                                                                                                                                             | —            | 10   | 25** | ns    |

\* These parameters are characterized but not tested.

\*\* These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

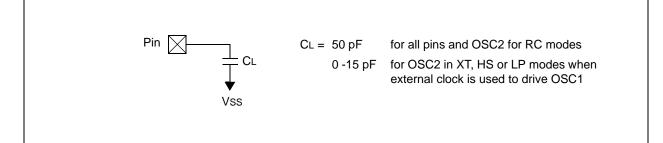
2: Please refer to Figure 12-1 for load conditions.

#### 13.3 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

| DC CHARACTERISTICS |        | $ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array} $ |                                                                |                        |                                                                     | '0°C for commercial   |                                                                                                                                                                               |
|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|---------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param<br>No.       | Sympol |                                                                                                                                                                                                                                                                    |                                                                | Тур†                   | Max                                                                 | Units                 | Conditions                                                                                                                                                                    |
| D030               | VIL    | Input Low Voltage<br>I/O ports<br>MCLR (Schmitt Trigger)<br>T0CKI (Schmitt Trigger)<br>OSC1 (Schmitt Trigger)<br>OSC1                                                                                                                                              | Vss<br>Vss<br>Vss<br>Vss<br>Vss                                |                        | 0.2 VDD<br>0.15 VDD<br>0.15 VDD<br>0.15 VDD<br>0.15 VDD<br>0.15 VDD | V<br>V<br>V<br>V      | Pin at hi-impedance<br>RC mode only <sup>(3)</sup><br>XT, HS and LP modes                                                                                                     |
| D040               | VIн    | Input High Voltage<br>I/O ports<br>I/O ports<br>MCLR (Schmitt Trigger)<br>T0CKI (Schmitt Trigger)<br>OSC1 (Schmitt Trigger)<br>OSC1                                                                                                                                | 2.0<br>0.6 VDD<br>0.85 VDD<br>0.85 VDD<br>0.85 VDD<br>0.85 VDD |                        | VDD<br>VDD<br>VDD<br>VDD<br>VDD<br>VDD<br>VDD                       | V<br>V<br>V<br>V<br>V | VDD = 3.0V to 5.5V <sup>(4)</sup><br>Full VDD range <sup>(4)</sup><br>RC mode only <sup>(3)</sup><br>XT, HS and LP modes                                                      |
| D050               | VHYS   | Hysteresis of Schmitt<br>Trigger inputs                                                                                                                                                                                                                            | 0.15 VDD*                                                      | —                      | —                                                                   | V                     |                                                                                                                                                                               |
| D060               | lι∟    | Input Leakage Current <sup>(1,2)</sup><br>I/O ports                                                                                                                                                                                                                | -1.0                                                           | _                      | +1.0                                                                | μA                    | For VDD $\leq$ 5.5V:<br>VSS $\leq$ VPIN $\leq$ VDD,<br>pin at hi-impedance                                                                                                    |
|                    |        | MCLR<br>MCLR<br>TOCKI<br>OSC1                                                                                                                                                                                                                                      | -5.0<br><br>-3.0<br>-3.0                                       | —<br>0.5<br>0.5<br>0.5 | <br>+5.0<br>+3.0<br>+3.0                                            | μΑ<br>μΑ<br>μΑ        | $\label{eq:VPIN} \begin{array}{l} VPIN = VSS + 0.25V \\ VPIN = VDD \\ VSS \leq VPIN \leq VDD \\ VSS \leq VPIN \leq VDD, \\ XT,  HS  \text{and}  LP  \text{modes} \end{array}$ |
| D080               | Vol    | Output Low Voltage<br>I/O ports<br>OSC2/CLKOUT                                                                                                                                                                                                                     |                                                                | _                      | 0.5<br>0.5                                                          | V<br>V                | IOL = 10  mA,  VDD = 6.0  V<br>IOL = 1.9  mA,  VDD = 6.0  V,<br>RC mode only                                                                                                  |
| D090               | Vон    | Output High Voltage <sup>(2)</sup><br>I/O ports<br>OSC2/CLKOUT                                                                                                                                                                                                     | Vdd - 0.5<br>Vdd - 0.5                                         | _                      |                                                                     | V<br>V                | IOH = -4.0  mA,  VDD = 6.0  V<br>IOH = -0.8  mA,  VDD = 6.0  V,<br>RC mode only                                                                                               |

\* These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
  - 2: Negative current is defined as coming out of the pin.
  - **3:** For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.
  - 4: The user may use the better of the two specifications.

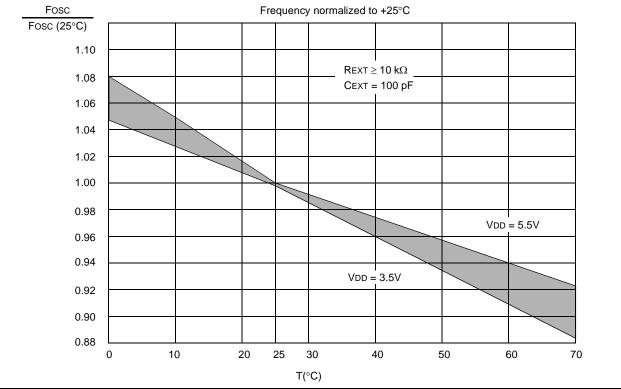

## 13.5 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

| 2. Tp | ρS                                      |                    |
|-------|-----------------------------------------|--------------------|
| Т     |                                         |                    |
| F     | Frequency                               | T Time             |
| Lowe  | ercase letters (pp) and their meanings: |                    |
| рр    |                                         |                    |
| 2     | to                                      | mc MCLR            |
| ck    | CLKOUT                                  | osc oscillator     |
| су    | cycle time                              | os OSC1            |
| drt   | device reset timer                      | t0 T0CKI           |
| io    | I/O port                                | wdt watchdog timer |
| Uppe  | ercase letters and their meanings:      |                    |
| S     |                                         |                    |
| F     | Fall                                    | P Period           |
| н     | High                                    | R Rise             |
| T     | Invalid (Hi-impedance)                  | V Valid            |
| L     | Low                                     | Z Hi-impedance     |

#### FIGURE 13-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16CR54A



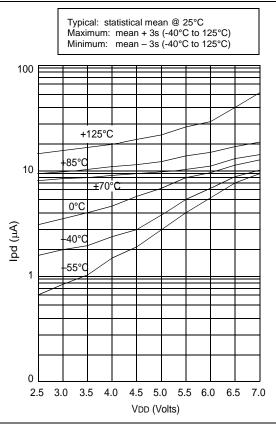

# 14.0 DEVICE CHARACTERIZATION - PIC16C54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean +  $3\sigma$ ) or (mean -  $3\sigma$ ) respectively, where  $\sigma$  is a standard deviation, over the whole temperature range.

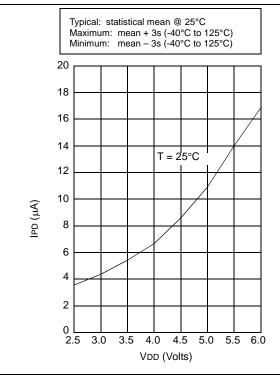




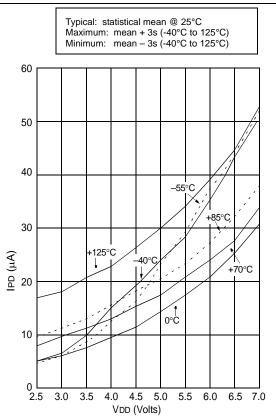

#### TABLE 14-1: RC OSCILLATOR FREQUENCIES

| Сехт   | Rext | Average<br>Fosc @ 5 V, 25°C |       |  |
|--------|------|-----------------------------|-------|--|
| 20 pF  | 3.3K | 5 MHz                       | ± 27% |  |
|        | 5K   | 3.8 MHz                     | ± 21% |  |
|        | 10K  | 2.2 MHz                     | ± 21% |  |
|        | 100K | 262 kHz                     | ± 31% |  |
| 100 pF | 3.3K | 1.6 MHz                     | ± 13% |  |
|        | 5K   | 1.2 MHz                     | ± 13% |  |
|        | 10K  | 684 kHz                     | ± 18% |  |
|        | 100K | 71 kHz                      | ± 25% |  |
| 300 pF | 3.3K | 660 kHz                     | ± 10% |  |
|        | 5.0K | 484 kHz                     | ± 14% |  |
|        | 10K  | 267 kHz                     | ± 15% |  |
|        | 100K | 29 kHz                      | ± 19% |  |

The frequencies are measured on DIP packages.


The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is  $\pm 3$  standard deviations from the average value for VDD = 5V.

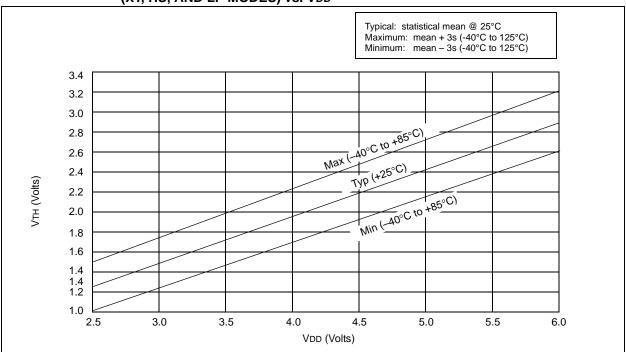
#### FIGURE 14-6: MAXIMUM IPD vs. VDD, WATCHDOG DISABLED



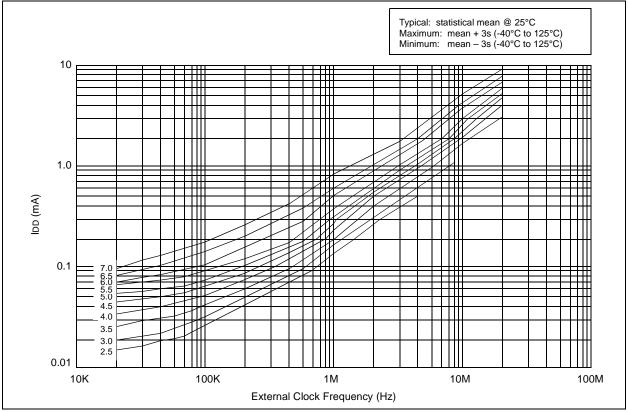

# FIGURE 14-7: T

#### TYPICAL IPD vs. VDD, WATCHDOG ENABLED

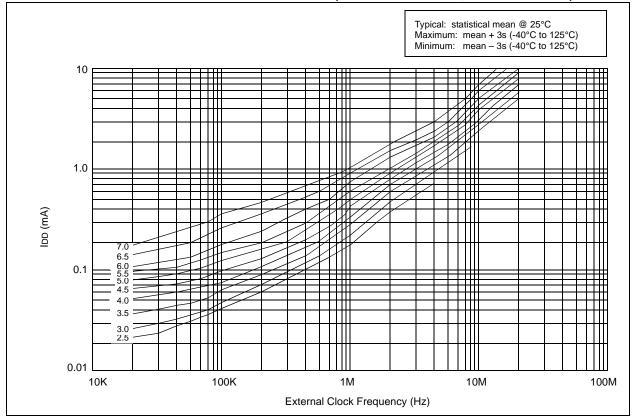



#### FIGURE 14-8: MAXIMUM IPD vs. VDD, WATCHDOG ENABLED

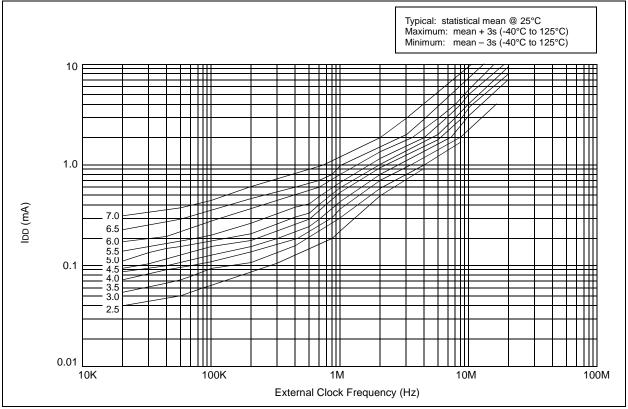


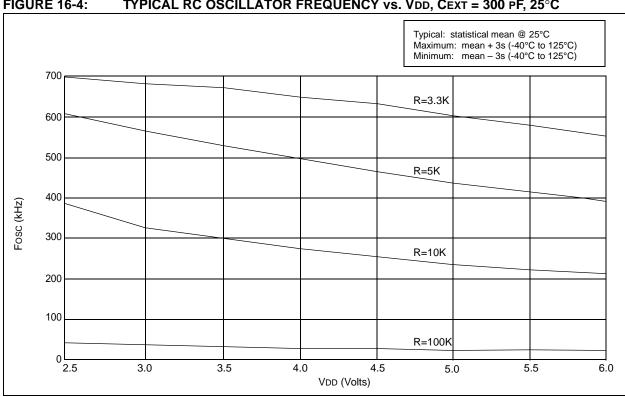

IPD, with WDT enabled, has two components: The leakage current, which increases with higher temperature, and the operating current of the WDT logic, which increases with lower temperature. At  $-40^{\circ}$ C, the latter dominates explaining the apparently anomalous behavior.

# PIC16C5X

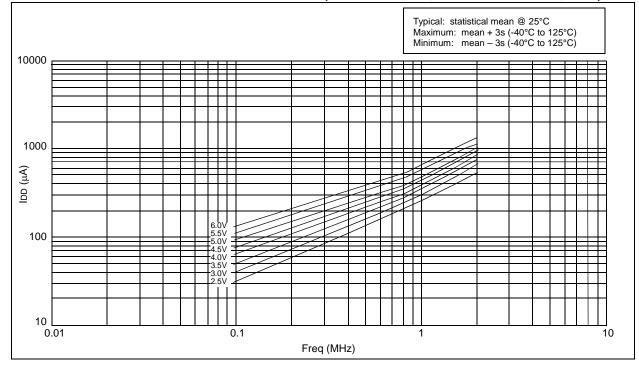




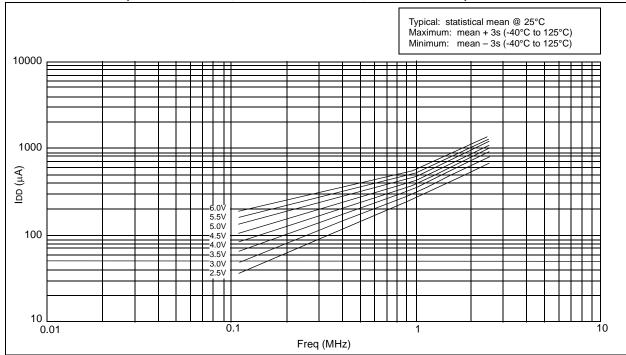









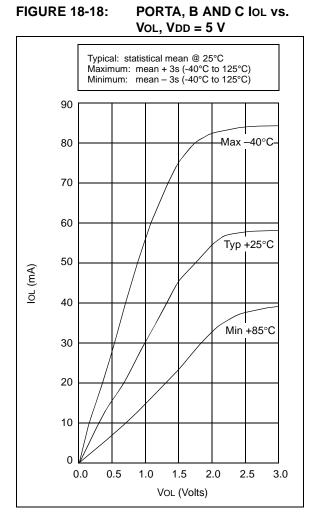

#### **FIGURE 16-4:** TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C



#### FIGURE 16-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

FIGURE 16-13: MAXIMUM IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, -40°C to +85°C)

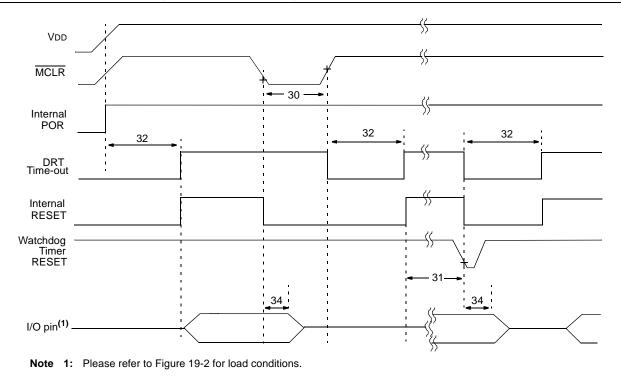



#### 17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)

|              |        |                                                                            |            | Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended |                                       |                                  |                                                                                                                                                                   |  |  |
|--------------|--------|----------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Param<br>No. | Symbol | Characteristic                                                             | Min        | Тур†                                                                                                                                 | Max                                   | Units                            | Conditions                                                                                                                                                        |  |  |
| D001         | Vdd    | Supply Voltage                                                             | 3.0<br>4.5 |                                                                                                                                      | 5.5<br>5.5                            |                                  | RC, XT, LP, and HS mode<br>from 0 - 10 MHz<br>from 10 - 20 MHz                                                                                                    |  |  |
| D002         | Vdr    | RAM Data Retention Voltage <sup>(1)</sup>                                  | —          | 1.5*                                                                                                                                 | —                                     | V                                | Device in SLEEP mode                                                                                                                                              |  |  |
| D003         | VPOR   | VDD start voltage to ensure<br>Power-on Reset                              | —          | Vss                                                                                                                                  | —                                     | V                                | See Section 5.1 for details on<br>Power-on Reset                                                                                                                  |  |  |
| D004         | SVDD   | VDD rise rate to ensure<br>Power-on Reset                                  | 0.05*      | —                                                                                                                                    | —                                     | V/ms                             | See Section 5.1 for details on<br>Power-on Reset                                                                                                                  |  |  |
| D010         | IDD    | Supply Current <sup>(2)</sup><br>XT and RC <sup>(3)</sup> modes<br>HS mode | _          | 1.8<br>9.0                                                                                                                           | 3.3<br>20                             | mA<br>mA                         | Fosc = 4.0 MHz, Vdd = 5.5V<br>Fosc = 20 MHz, Vdd = 5.5V                                                                                                           |  |  |
| D020         | IPD    | Power-down Current <sup>(2)</sup>                                          |            | 0.3<br>10<br>12<br>4.8<br>18<br>26                                                                                                   | 17<br>50*<br>60*<br>31*<br>68*<br>90* | μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ | VDD = 3.0V, WDT disabled<br>VDD = 4.5V, WDT disabled<br>VDD = 5.5V, WDT disabled<br>VDD = 3.0V, WDT enabled<br>VDD = 4.5V, WDT enabled<br>VDD = 5.5V, WDT enabled |  |  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.


- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
  - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
    - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
    - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
  - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.



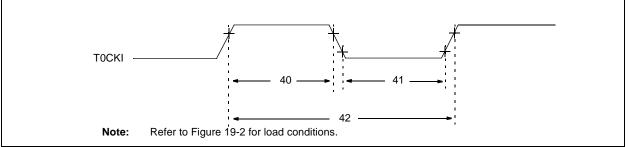
#### TABLE 18-2:INPUT CAPACITANCE

| Pin         | Typical Capacitance (pF) |          |  |  |  |
|-------------|--------------------------|----------|--|--|--|
| Pin         | 18L PDIP                 | 18L SOIC |  |  |  |
| RA port     | 5.0                      | 4.3      |  |  |  |
| RB port     | 5.0                      | 4.3      |  |  |  |
| MCLR        | 17.0                     | 17.0     |  |  |  |
| OSC1        | 4.0                      | 3.5      |  |  |  |
| OSC2/CLKOUT | 4.3                      | 3.5      |  |  |  |
| тоскі       | 3.2                      | 2.8      |  |  |  |

All capacitance values are typical at  $25^{\circ}$ C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.



#### FIGURE 19-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X-40


#### TABLE 19-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X-40

| AC Characteristics  |      | Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)Operating Voltage VDD range is described in Section 19.1. |       |      |       |            |                   |  |  |
|---------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|------------|-------------------|--|--|
| Param<br>No. Symbol |      | Characteristic Min Typ† Max Units Cor                                                                                                                                                      |       |      |       | Conditions |                   |  |  |
| 30                  | TmcL | MCLR Pulse Width (low)                                                                                                                                                                     | 1000* | _    | _     | ns         | VDD = 5.0V        |  |  |
| 31                  | Twdt | Watchdog Timer Time-out Period<br>(No Prescaler)                                                                                                                                           | 9.0*  | 18*  | 30*   | ms         | VDD = 5.0V (Comm) |  |  |
| 32                  | Tdrt | Device Reset Timer Period                                                                                                                                                                  | 9.0*  | 18*  | 30*   | ms         | VDD = 5.0V (Comm) |  |  |
| 34                  | Tioz | I/O Hi-impedance from MCLR Low                                                                                                                                                             | 100*  | 300* | 1000* | ns         |                   |  |  |

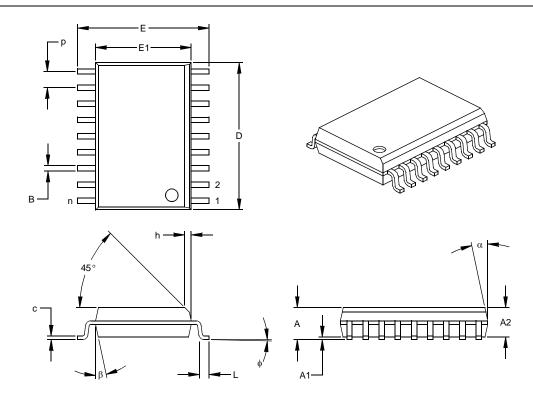
\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

## FIGURE 19-6: TIMER0 CLOCK TIMINGS - PIC16C5X-40



#### TABLE 19-4: TIMER0 CLOCK REQUIREMENTS PIC16C5X-40


| A            | AC Charac | toristics              | ture $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial |      |     |       |                                                                |
|--------------|-----------|------------------------|----------------------------------------------------------|------|-----|-------|----------------------------------------------------------------|
| Param<br>No. | Symbol    | Characteristic         | Min                                                      | Тур† | Max | Units | Conditions                                                     |
| 40           | Tt0H      | T0CKI High Pulse Width |                                                          |      |     |       |                                                                |
|              |           | - No Prescaler         | 0.5 Tcy + 20*                                            | —    |     | ns    |                                                                |
|              |           | - With Prescaler       | 10*                                                      |      | —   | ns    |                                                                |
| 41           | Tt0L      | T0CKI Low Pulse Width  |                                                          |      |     |       |                                                                |
|              |           | - No Prescaler         | 0.5 TCY + 20*                                            | —    |     | ns    |                                                                |
|              |           | - With Prescaler       | 10*                                                      | _    | —   | ns    |                                                                |
| 42           | Tt0P      | T0CKI Period           | 20 or <u>Tcy + 40</u> *<br>N                             | _    | _   | ns    | Whichever is greater.<br>N = Prescale Value<br>(1, 2, 4,, 256) |

\* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### 18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging



|                          | Units     |      | INCHES* |      |       | MILLIMETERS |       |  |
|--------------------------|-----------|------|---------|------|-------|-------------|-------|--|
| Dimensi                  | on Limits | MIN  | NOM     | MAX  | MIN   | NOM         | MAX   |  |
| Number of Pins           | n         |      | 18      |      |       | 18          |       |  |
| Pitch                    | р         |      | .050    |      |       | 1.27        |       |  |
| Overall Height           | А         | .093 | .099    | .104 | 2.36  | 2.50        | 2.64  |  |
| Molded Package Thickness | A2        | .088 | .091    | .094 | 2.24  | 2.31        | 2.39  |  |
| Standoff §               | A1        | .004 | .008    | .012 | 0.10  | 0.20        | 0.30  |  |
| Overall Width            | E         | .394 | .407    | .420 | 10.01 | 10.34       | 10.67 |  |
| Molded Package Width     | E1        | .291 | .295    | .299 | 7.39  | 7.49        | 7.59  |  |
| Overall Length           | D         | .446 | .454    | .462 | 11.33 | 11.53       | 11.73 |  |
| Chamfer Distance         | h         | .010 | .020    | .029 | 0.25  | 0.50        | 0.74  |  |
| Foot Length              | L         | .016 | .033    | .050 | 0.41  | 0.84        | 1.27  |  |
| Foot Angle               | ø         | 0    | 4       | 8    | 0     | 4           | 8     |  |
| Lead Thickness           | С         | .009 | .011    | .012 | 0.23  | 0.27        | 0.30  |  |
| Lead Width               | В         | .014 | .017    | .020 | 0.36  | 0.42        | 0.51  |  |
| Mold Draft Angle Top     | α         | 0    | 12      | 15   | 0     | 12          | 15    |  |
| Mold Draft Angle Bottom  | β         | 0    | 12      | 15   | 0     | 12          | 15    |  |

\* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

#### Μ

| MCLR Reset                                             |    |
|--------------------------------------------------------|----|
| Register values on2                                    | 20 |
| Memory Map                                             |    |
| PIC16C54/CR54/C55                                      | 25 |
| PIC16C56/CR56                                          | 25 |
| PIC16C57/CR57/C58/CR582                                | 25 |
| Memory Organization                                    |    |
| MOVF                                                   | 56 |
| MOVLW                                                  | 56 |
| MOVWF                                                  | 57 |
| MPLAB C17 and MPLAB C18 C Compilers                    | 31 |
| MPLAB ICD In-Circuit Debugger                          | 33 |
| MPLAB ICE High Performance Universal In-Circuit Emulat | or |
| with MPLAB IDE                                         | 32 |
| MPLAB Integrated Development Environment Software      | 31 |
| MPLINK Object Linker/MPLIB Object Librarian            | 32 |

## Ν

| NOP |
|-----|
|-----|

#### 0

| One-Time-Programmable (OTP) Devices | 7 |
|-------------------------------------|---|
| ,                                   |   |
| OPTION                              | - |
| OPTION Register                     |   |
| Value on reset                      |   |
| Oscillator Configurations           |   |
| Oscillator Types                    |   |
| HS                                  |   |
| LP                                  |   |
| RC                                  |   |
| XT                                  |   |
|                                     |   |

### Ρ

| PA0 bit                                            | .29  |
|----------------------------------------------------|------|
| PA1 bit                                            | .29  |
| Paging                                             | . 31 |
| PC                                                 | . 31 |
| Value on reset                                     | .20  |
| PD bit                                             | , 29 |
| Peripheral Features                                | 1    |
| PICDEM 1 Low Cost PIC MCU Demonstration Board      | .63  |
| PICDEM 17 Demonstration Board                      | . 64 |
| PICDEM 2 Low Cost PIC16CXX Demonstration Board     | .63  |
| PICDEM 3 Low Cost PIC16CXXX Demonstration Board    | .64  |
| PICSTART Plus Entry Level Development Programmer   | .63  |
| Pin Configurations                                 |      |
| Pinout Description - PIC16C54, PIC16CR54, PIC16C   | 56,  |
| PIC16CR56, PIC16C58, PIC16CR58                     | .11  |
| Pinout Description - PIC16C55, PIC16C57, PIC16CR57 | . 12 |
| PORTA                                              | . 35 |
| Value on reset                                     | . 20 |
| PORTB                                              | . 35 |
| Value on reset                                     | . 20 |
| PORTC                                              | . 35 |
| Value on reset                                     | . 20 |
| Power-Down Mode                                    | . 47 |
| Power-On Reset (POR)                               | .21  |
| Register values on                                 | . 20 |
| Prescaler                                          |      |
| PRO MATE II Universal Device Programmer            |      |
| Program Counter                                    |      |
| Program Memory Organization                        |      |
| Program Verification/Code Protection               | . 47 |

# Q

| Q cycles                                  | 13 |
|-------------------------------------------|----|
| Quick-Turnaround-Production (QTP) Devices |    |
| В                                         |    |
|                                           | 47 |
| RC Oscillator                             |    |
| Read Only Memory (ROM) Devices            |    |
| Read-Modify-Write                         | 36 |
| Register File Map                         |    |
| PIC16C54, PIC16CR54, PIC16C55, PIC16C56,  |    |
| PIC16CR56                                 | 26 |
| PIC16C57/CR57                             |    |
| PIC16C58/CR58                             | 27 |
| Registers                                 |    |
| Special Function                          | 28 |
| Value on reset                            |    |
| Reset                                     | 19 |
| Reset on Brown-Out                        | 23 |
| RETLW                                     | 57 |
| RLF                                       |    |
| RRF                                       |    |
| NNF                                       | 50 |

#### S

| Serialized Quick-Turnaround-Production (SQTP) D<br>SLEEP |       |
|----------------------------------------------------------|-------|
|                                                          | , ,   |
| Software Simulator (MPLAB SIM)                           | 62    |
| Special Features of the CPU                              | 43    |
| Special Function Registers                               |       |
| Stack                                                    | 32    |
| STATUS Register                                          | 9, 29 |
| Value on reset                                           | 20    |
| SUBWF                                                    | 59    |
| SWAPF                                                    | 59    |
|                                                          |       |

# Т

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC<sup>32</sup> logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1997-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769355

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.