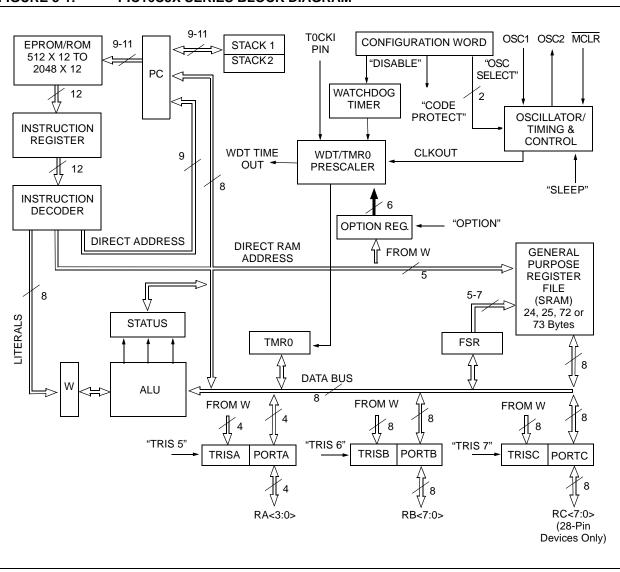


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

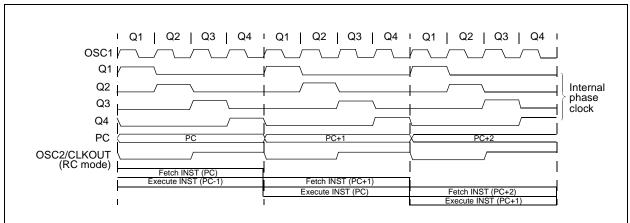
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c54ct-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

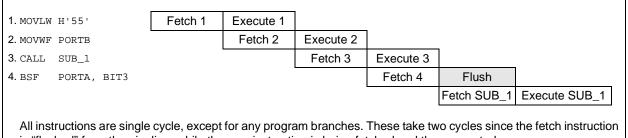
FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

3.1 **Clocking Scheme/Instruction** Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: **CLOCK/INSTRUCTION CYCLE**

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

6.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device (Table 6-1).

The Special Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on Page
N/A	TRIS	I/O Cont	rol Regis	ters (TRIS	SA, TRIS	B, TRISC	;)			1111 1111	35
N/A	OPTION	Contains	s control b	oits to cor	figure Ti	mer0 and	Timer0/V	VDT pres	caler	11 1111	30
00h	INDF	Uses co	ntents of	FSR to ac	ddress da	ata memo	ory (not a	physical ı	egister)	XXXX XXXX	32
01h	TMR0	Timer0	Timer0 Module Register							XXXX XXXX	38
02h ⁽¹⁾	PCL	Low ord	er 8 bits c	of PC						1111 1111	31
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	29
04h	FSR	Indirect	Indirect data memory address pointer							1xxx xxxx ⁽³⁾	32
05h	PORTA	—	—	—	—	RA3	RA2	RA1	RA0	xxxx	35
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	35
07h ⁽²⁾	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	35

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access these bits.

2: File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58 and PIC16CR58.

3: These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.

6.7 Indirect Data Addressing; INDF and FSR Registers

The INDF Register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 6-1: INDIRECT ADDRESSING

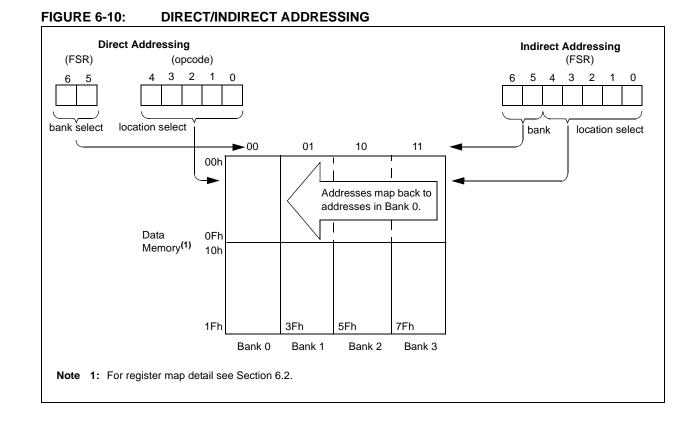
- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- Load the value 08 into the FSR Register
- A read of the INDF Register will return the value of 10h
- Increment the value of the FSR Register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF Register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 6-2.

EXAMPLE 6-2:

HOW TO CLEAR RAM USING INDIRECT ADDRESSING


	MOVLW	H'10'	;initialize pointer
	MOVWF	FSR	; to RAM
NEXT	CLRF	INDF	;clear INDF Register
	INCF	FSR,F	;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56) or 7-bit (PIC16C57, PIC16CR57, PIC16CR58, PIC16CR58) wide register. It is used in conjunction with the INDF Register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56: These do not use banking. FSR<6:5> bits are unimplemented and read as '1's.

PIC16C57, **PIC16CR57**, **PIC16C58**, **PIC16CR58**: FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = bank 0, 01 = bank 1, 10 = bank 2, 11 = bank 3).

© 1997-2013 Microchip Technology Inc.

ADDWF	WF Add W and f						
Syntax:	[label] ADDWF f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$						
Operation:	(W) + (f)	\rightarrow (dest)					
Status Affected:	C, DC, Z						
Encoding:	0001	11df	ffff				
Description:	Add the contents of the W register and register 'f'. If 'd' is 0 the resu is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	ADDWF	TEMP_RE	CG, 0				
Before Instr W TEMP_I After Instruc W TEMP_F	= REG = ction =	0x17 0xC2 0xD9 0xC2					

ANDWF	AND W with f						
Syntax:	[label] ANDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$						
Operation:	(W) .AND. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	0001 01df ffff						
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is '1' the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	ANDWF TEMP_REG, 1						
Before Instru W TEMP_ After Instruc W TEMP_	= 0x17 REG = 0xC2 tion = 0x17						

ANDLW	AND literal with W						
Syntax:	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W).AND. (k) \rightarrow (W)						
Status Affected:	Z						
Encoding:	1110 kkkk kkkk						
Description: The contents of the W register AND'ed with the eight-bit litera The result is placed in the W re ter.							
Words:	1						
Cycles:	1						
Example:	ANDLW H'5F'						
Before Instru W = After Instruc W =	0xA3						

BCF	Bit Clear f								
Syntax:	[label] BCF f,b								
Operands:		$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	$0 \rightarrow (f < b$	>)							
Status Affected:	None								
Encoding:	0100	bbbf	ffff						
Description:	Bit 'b' in	register 'f'	is cleared.						
Words:	1								
Cycles:	1								
Example:	BCF	FLAG_RE	IG, 7						
Before Instruction FLAG_REG = 0xC7 After Instruction									
FLAG_F	REG =	0x47							

NOTES:

12.1 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)

		Standard Operating Conditions (unless otherwise specified Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage PIC16C5X-RC PIC16C5X-XT PIC16C5X-10 PIC16C5X-HS PIC16C5X-LP	3.0 3.0 4.5 4.5 2.5		6.25 6.25 5.5 5.5 6.25	V V V V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	_	V	Device in SLEEP Mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset		Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*		—	V/ms	See Section 5.1 for details on Power-on Reset	
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RC ⁽³⁾ PIC16C5X-XT PIC16C5X-10 PIC16C5X-HS PIC16C5X-HS PIC16C5X-LP	 	1.8 1.8 4.8 4.8 9.0 15	3.3 3.3 10 10 20 32	mA mA mA mA μA	Fosc = 4 MHz, VDD = $5.5V$ Fosc = 4 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 20 MHz, VDD = $5.5V$ Fosc = 32 kHz, VDD = $3.0V$, WDT disabled	
D020	Ipd	Power-down Current ⁽²⁾	—	4.0 0.6	12 9	μΑ μΑ	VDD = 3.0V, WDT enabled VDD = 3.0V, WDT disabled	

* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

12.3 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

		Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage PIC16C5X-RCE PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-LPE	3.25 3.25 4.5 4.5 2.5		6.0 6.0 5.5 5.5 6.0	V V V V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*		—	V/ms	See Section 5.1 for details on Power-on Reset	
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RCE ⁽³⁾ PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-HSE PIC16C5X-LPE		1.8 1.8 4.8 4.8 9.0 19	3.3 3.3 10 10 20 55	mA mA mA mA μA	Fosc = 4 MHz, VDD = $5.5V$ Fosc = 4 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 16 MHz, VDD = $5.5V$ Fosc = 32 kHz, VDD = $3.25V$, WDT disabled	
D020	Ipd	Power-down Current ⁽²⁾	—	5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled	

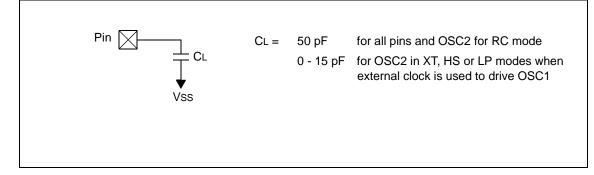
* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

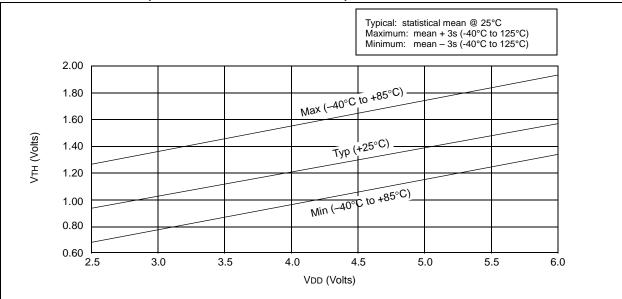
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

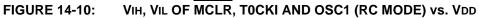
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .


12.6 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:


1. TppS2ppS


2 Tn	2. TppS					
	PO					
Т						
F	Frequency	T Time				
Lowe	ercase letters (pp) and their meanings:					
рр						
2	to	mc MCLR				
ck	CLKOUT	osc oscillator				
су	cycle time	os OSC1				
drt	device reset timer	t0 T0CKI				
io	I/O port	wdt watchdog timer				
Uppe	ercase letters and their meanings:					
S						
F	Fall	P Period				
Н	High	R Rise				
I	Invalid (Hi-impedance)	V Valid				
L	Low	Z Hi-impedance				

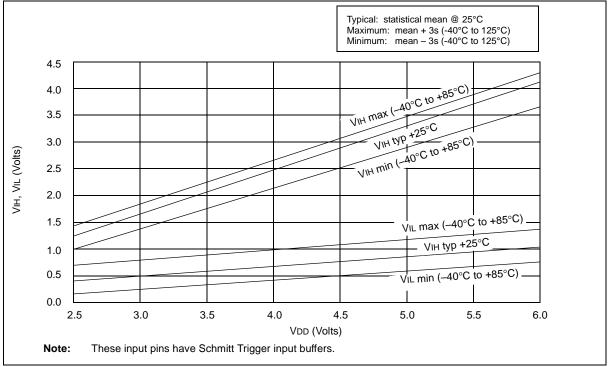
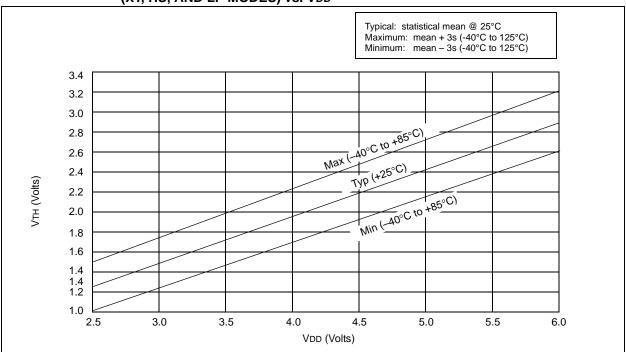
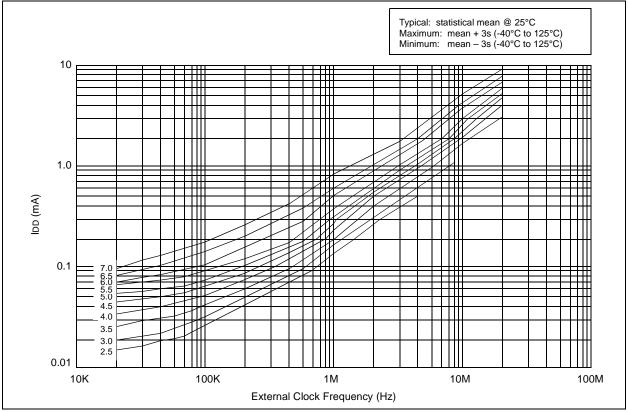
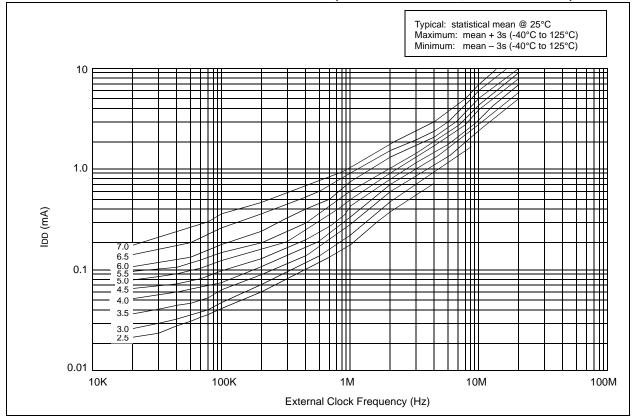

FIGURE 12-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54/55/56/57

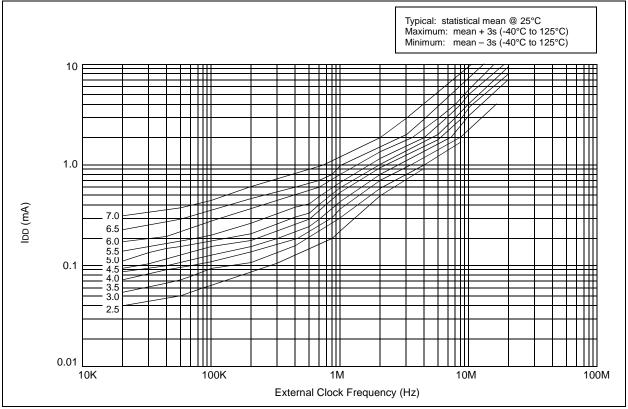
FIGURE 14-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD





PIC16C5X





15.4 DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04E, 10E, 20E, PIC16LC54A-04E (Extended)

DC CH	ARACTE	RISTICS	$ \begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -20^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial-PIC16LV54A-02I} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss Vss		0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V	Pin at hi-impedance RC mode only ⁽³⁾ XT, HS and LP modes		
D040	VIH	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	0.2 VDD + 1 2.0 0.85 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD VDD	V V V V V V	For all V _{DD} ⁽⁴⁾ 4.0V < V _{DD} ≤ 5.5V ⁽⁴⁾ RC mode only ⁽³⁾ XT, HS and LP modes		
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	_	—	V			
D060	IIL	Input Leakage Current ^(1,2) I/O ports MCLR MCLR TOCKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, XT, HS and LP modes		
D080	VOL	Output Low Voltage I/O ports OSC2/CLKOUT	_	_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, RC mode only		
	VOH	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.7 Vdd - 0.7			V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only		

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

*

PIC16C5X

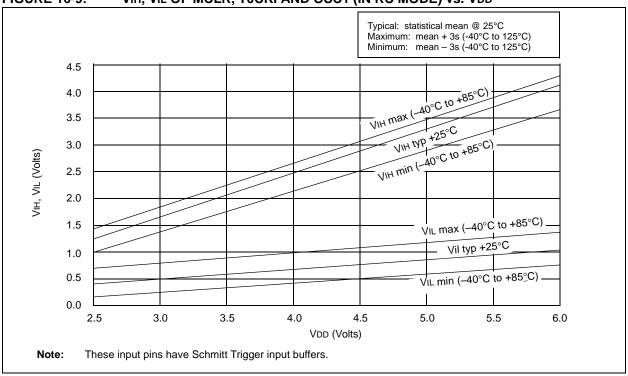
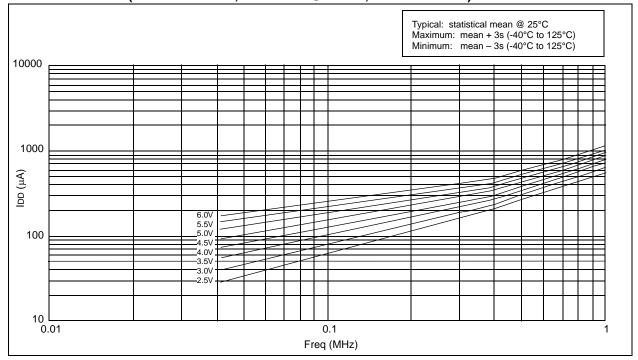


FIGURE 16-9: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD


 Typical: statistical mean @ 25°C.

 Maximum: mean + 3s (-40°C to 125°C)

 Minimum: mean - 3s (-40°C to 125°C)
 </tr

FIGURE 16-14: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 300 PF, 25°C)

FIGURE 16-15: MAXIMUM IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 300 PF, -40°C to +85°C)

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

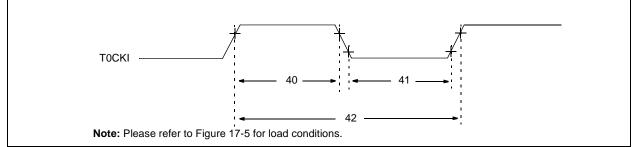
PIC16LC5X PIC16LCR5X (Commercial, Industrial)				$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array} $						
PIC16C5X PIC16CR5X (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions			
	IPD	Power-down Current ⁽²⁾								
D020		PIC16LC5X		0.25 0.25 1 1.25	2 3 5 8	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled, Commercial $VDD = 2.5V$, WDT disabled, Industrial $VDD = 2.5V$, WDT enabled, Commercial $VDD = 2.5V$, WDT enabled, Industrial			
D020A		PIC16C5X		0.25 0.25 1.8 2.0 4 4 9.8 12	4.0 5.0 7.0* 8.0* 12* 14* 27* 30*	μΑ μΑ μΑ μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled, Commercial VDD = 3.0V, WDT disabled, Industrial VDD = 5.5V, WDT disabled, Industrial VDD = 5.5V, WDT disabled, Industrial VDD = 3.0V, WDT enabled, Commercial VDD = 3.0V, WDT enabled, Industrial VDD = 5.5V, WDT enabled, Commercial VDD = 5.5V, WDT enabled, Industrial			

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 17-9: TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X

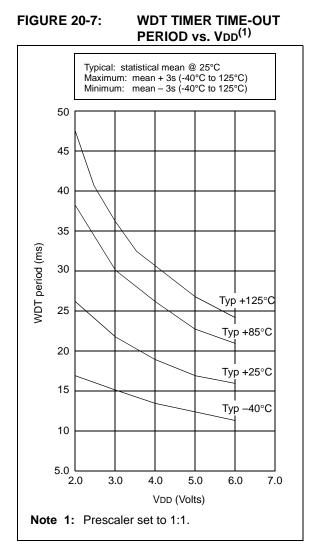


TABLE 17-4: TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X

AC CharacteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							nercial trial
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width - No Prescaler	0.5 Tcy + 20*		_	ns	
		- With Prescaler	10*	_	—	ns	
41	TtOL	T0CKI Low Pulse Width - No Prescaler	0.5 Tcy + 20*	_	_	ns	
		- With Prescaler	10*	_	_	ns	
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N	_	_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

These parameters are characterized but not tested.

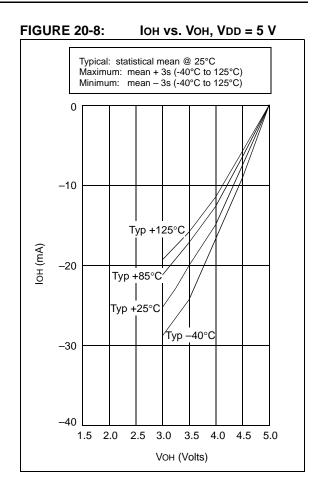
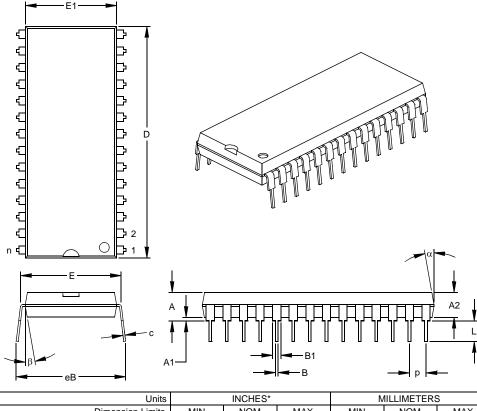

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 20-1: INPUT CAPACITANCE


Pin	Typical Capacitance (pF)				
FIII	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
тоскі	3.2	2.8			

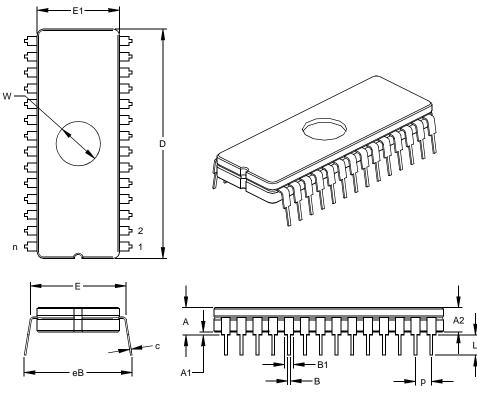
All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

28-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units INCHES*				MILLIMETERS			
Dimer	ision Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		28			28			
Pitch	р		.100			2.54			
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83		
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06		
Base to Seating Plane	A1	.015			0.38				
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88		
Molded Package Width	E1	.505	.545	.560	12.83	13.84	14.22		
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21		
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43		
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38		
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78		
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56		
Overall Row Spacing	§ eB	.620	.650	.680	15.75	16.51	17.27		
Mold Draft Angle Top	α	5	10	15	5	10	15		
Mold Draft Angle Bottom	β	5	10	15	5	10	15		

* Controlling Parameter § Significant Characteristic


Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011 Drawing No. C04-079

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimensior	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Sontolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013