

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	24 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c55-hsi-ss

Email: info@E-XFL.COM

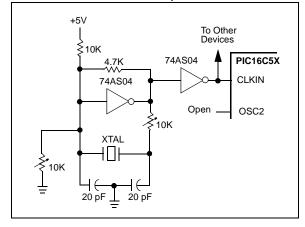
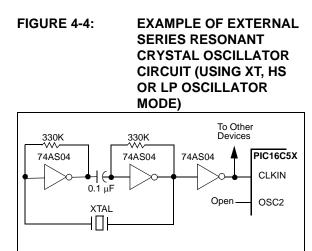
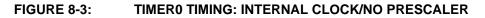
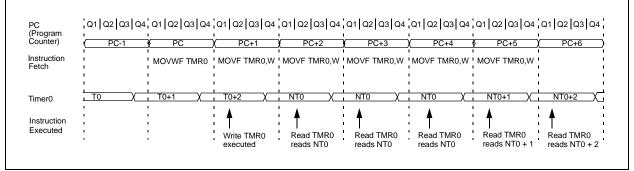
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

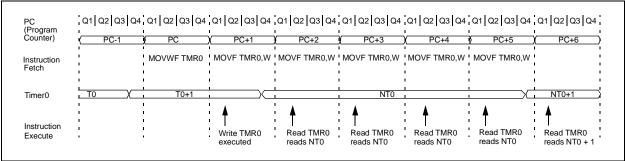

Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 8-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0 -	Timer0 - 8-bit real-time clock/counter xxxx xxxx uuuu uuuu								
N/A	OPTION	_		TOCS	TOSE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells not used by Timer0.

ADDWF	Add W	and f		
Syntax:	[label] A	DDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f)	\rightarrow (dest)		
Status Affected:	C, DC, Z			
Encoding:	0001	11df	ffff	
Description:	and regis	ster 'f'. If 'd in the W sult is sto	of the W r d' is 0 the register. I red back	result f 'd' is
Words:	1			
Cycles:	1			
Example:	ADDWF	TEMP_RE	CG, 0	
Before Instr W TEMP_I After Instruc W TEMP_F	= REG = ction =	0x17 0xC2 0xD9 0xC2		

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 01df ffff
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is '1' the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	ANDWF TEMP_REG, 1
Before Instru W TEMP_ After Instruc W TEMP_	= 0x17 REG = 0xC2 tion = 0x17

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W).AND. (k) \rightarrow (W)			
Status Affected:	Z			
Encoding:	1110 kkkk kkkk			
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W regis- ter.			
Words:	1			
Cycles:	1			
Example:	ANDLW H'5F'			
Before Instru W = After Instruc W =	0xA3			

BCF	Bit Clear f				
Syntax:	[<i>label</i>] BCF f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$0 \rightarrow (f < b$	>)			
Status Affected:	None				
Encoding:	0100	bbbf	ffff		
Description:	Bit 'b' in	register 'f'	is cleared.		
Words:	1				
Cycles:	1				
Example:	BCF	FLAG_RE	IG, 7		
Before Instruction FLAG_REG = 0xC7 After Instruction					
FLAG_F	REG =	0x47			

CALL	Subroutine Call		
Syntax:	[<i>label</i>] CALL k		
Operands:	$0 \leq k \leq 255$		
Operation:	$(PC) + 1 \rightarrow TOS;$ $k \rightarrow PC < 7:0>;$ $(STATUS < 6:5>) \rightarrow PC < 10:9>;$ $0 \rightarrow PC < 8>$		
Status Affected:	None		
Encoding:	1001 kkkk kkkk		
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two- cycle instruction.		
Words:	1		
Cycles:	2		
Example:	HERE CALL THERE		
After Instruct	address (HERE) ion address (THERE)		

CLRF	Clear f
	Oloui I

Syntax:	[label]	CLRF f	
Operands:	$0 \leq f \leq 31$		
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Encoding:	0000	011f	ffff
Description:		ents of re and the Z	gister 'f' are bit is set.
Words:	1		
Cycles:	1		
Example:	CLRF	FLAG_RE	IG
Before Instru FLAG_R After Instruct	EG =	0x5A	
FLAG_R Z	EG = =	0x00 1	

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
W = After Instruct	ion
W = Z =	1
Z =	Clear Watchdog Timer
Z = CLRWDT Syntax:	Clear Watchdog Timer
Z = CLRWDT Syntax: Operands:	Clear Watchdog Timer [label] CLRWDT None
Z = CLRWDT Syntax:	Clear Watchdog Timer
Z = CLRWDT Syntax: Operands:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$
Z = CLRWDT Syntax: Operands: Operation:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
Z = CLRWDT Syntax: Operands: Operation: Status Affected:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Z = CLRWDT Syntax: Operands: Operation: Status Affected: Encoding:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $0000 0000 0100$ The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bits
Z = CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT$; $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO}$; $1 \rightarrow \overline{PD}$ \overline{TO} , \overline{PD} 0000 0000 0100 The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bitsTO and \overline{PD} are set.

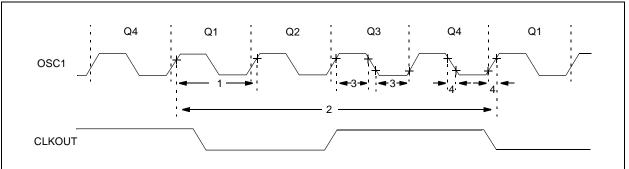
After Instruction		
WDT counter	=	0x00
WDT prescaler	=	0
TO	=	1
PD	=	1

PIC16C5X

IORLW	Inclusive OR literal with W		
Syntax:	[<i>label</i>] IORLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .OR. (k) \rightarrow (W)		
Status Affected:	Z		
Encoding:	1101 kkkk kkkk		
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.		
Words:	1		
Cycles:	1		
Example:	IORLW 0x35		
Before Instru W = After Instruc W = Z =	0x9A tion		

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(W).OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 00df ffff
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	IORWF RESULT, 0
Before Instru RESUL W After Instruct RESUL W Z	Γ = 0x13 = 0x91 tion

MOVF	Move f								
Syntax:	[<i>label</i>] MOVF f,d								
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$								
Operation:	$(f) \rightarrow (dest)$								
Status Affected:	Z								
Encoding:	0010 00df ffff								
Description:	The contents of register 'f' is moved to destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination is file register 'f'. 'd' is 1 is useful to test a file register since status flag Z is affected.								
Words:	1								
Cycles:	1								
Example:	MOVF FSR, 0								
After Instruction W = value in FSR register									


MOVLW	Move Literal to W									
Syntax:	[label]	MOVLW	k							
Operands:	$0 \le k \le 255$									
Operation:	$k \rightarrow (W)$									
Status Affected:	None									
Encoding:	1100	kkkk	kkkk							
Description:	The eigh the W re		'k' is loaded	d into						
Words:	1									
Cycles:	1									
Example:	MOVLW	0x5A								
After Instruction W = 0x5A										

SUBWF	Subt	ract W	from f								
Syntax:	[label	JSL	JBWF f,d								
Operands:	$0 \le f$	≤ 31									
•	d ∈ [0	D,1]									
Operation:	(f) – (W) \rightarrow	(dest)								
Status Affected:	C, DO	C, Z									
Encoding:	000	- 1	Odf ffff								
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd'										
	is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.										
Words:	1										
Cycles:	1										
Example 1:	SUBW	FF	REG1, 1								
Before Instru	ction										
REG1	=	3									
W	=	2									
С	=	?									
After Instruct	ion										
REG1	=	1									
W C	=	2 1	, recult is positive								
Example 2:	=	I	; result is positive								
Before Instru	ction										
REG1	=	2									
W	=	2									
C	=	?									
After Instruct	ion										
REG1	=	0									
W	=	2									
С	=	1	; result is zero								
Example 3:											
Before Ins	tructio										
REG1	=	1									
W	=	2									
C	=	?									
After Instruct		0.VEE									
REG1 W	=	0xFF 2									
C	_	2	; result is negative								
Ũ	-	U	, isourio nogativo								

SWAPF	Swap Nibbles in f							
Syntax:	[label] SWAPF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$							
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$							
Status Affected:	None							
Encoding:	0011 10df ffff							
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.							
Words:	1							
Cycles:	1							
Example	SWAPF REG1, 0							
REG1 After Instruct REG1 W	= 0xA5 ion = 0xA5 = 0x5A							
TRIS	Load TRIS Register							
Syntax:	[<i>label</i>] TRIS f							
Operands:	f = 5, 6 or 7							
Operation:	(W) \rightarrow TRIS register f							
Status Affected:	None							
Encoding:	0000 0000 0fff							
Description:	TRIS register 'f' ($f = 5, 6, or 7$) is loaded with the contents of the W register.							
Words:	1							
Cycles:	1							
Example	TRIS PORTB							
Before Instruction W = 0xA5 After Instruction TRISB = 0xA5								

NOTES:

13.6 Timing Diagrams and Specifications

FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A

TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A

AC Chara	cteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions			
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	4.0	MHz	XT OSC mode			
			DC	—	4.0	MHz	HS osc mode (04)			
			DC	_	10	MHz	HS osc mode (10)			
			DC	—	20	MHz	HS osc mode (20)			
			DC	_	200	kHz	LP osc mode			
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC OSC mode			
			0.1	_	4.0	MHz	XT osc mode			
			4.0	_	4.0	MHz	HS osc mode (04)			
			4.0	_	10	MHz	HS osc mode (10)			
			4.0	_	20	MHz	HS osc mode (20)			
			5.0	—	200	kHz	LP osc mode			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial) PIC16C54A-04I, 10I, 20I (Industrial) PIC16LC54A-04 (Commercial) PIC16LC54A-04I (Industrial)

PIC16LC54A-04 PIC16LC54A-04I				Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
(Commercial, Industrial) PIC16C54A-04, 10, 20 PIC16C54A-04I, 10I, 20I (Commercial, Industrial)				Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions			
	Vdd	Supply Voltage			•					
D001		PIC16LC54A	3.0 2.5	_	6.25 6.25	V V	XT and RC modes LP mode			
D001A		PIC16C54A	3.0 4.5	_	6.25 5.5	V V	RC, XT and LP modes HS mode			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset			
	IDD	Supply Current ⁽²⁾								
D005		PIC16LC5X	—	0.5	2.5	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes			
			—	11	27	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode, Commercial			
			—	11	35	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode, Industrial			
D005A		PIC16C5X	—	1.8	2.4	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes			
			—	2.4	8.0	mA	Fosc = 10 MHz, VDD = 5.5V, HS mode			
			_	4.5 14	16 29	mA μA	Fosc = 20 MHz, VDD = 5.5V, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode, Commercial			
			—	17	37	μA	Fosc = 32 kHz , VDD = 3.0V , WDT disabled, LP mode, Industrial			

Legend: Rows with standard voltage device data only are shaded for improved readability.

These parameters are characterized but not tested.

- † Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

15.3 DC Characteristics: PIC16LV54A-02 (Commercial) PIC16LV54A-02I (Industrial)

PIC16LV54A-02 PIC16LV54A-02I (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage RC and XT modes	2.0	_	3.8	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	Svdd	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current⁽²⁾ RC ⁽³⁾ and XT modes LP mode, Commercial LP mode, Industrial		0.5 11 14	 27 35	mA μA μA	Fosc = 2.0 MHz, VDD = 3.0V Fosc = 32 kHz, VDD = 2.5V WDT disabled Fosc = 32 kHz, VDD = 2.5V WDT disabled		
D020	IPD	Power-down Current^(2,4) Commercial Commercial Industrial Industrial		2.5 0.25 3.5 0.3	12 4.0 14 5.0	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT enabled VDD = 2.5V, WDT disabled VDD = 2.5V, WDT enabled VDD = 2.5V, WDT disabled		

These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.
 - 4: The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection on wake-up from SLEEP mode or during initial power-up.

TABLE 15-1:	EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A
-------------	--

AC Chara	acteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -20^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} - PIC16LV54A-02I \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
1	Tosc	External CLKIN Period ⁽¹⁾	250	_		ns	XT OSC mode		
			500	—	—	ns	XT osc mode (PIC16LV54A)		
			250	—	—	ns	HS osc mode (04)		
			100	—	—	ns	HS osc mode (10)		
			50	—	—	ns	HS osc mode (20)		
			5.0	_		μs	LP OSC mode		
		Oscillator Period ⁽¹⁾	250	_	_	ns	RC osc mode		
			500	—	—	ns	RC osc mode (PIC16LV54A)		
			250	—	10,000	ns	XT OSC mode		
			500	—	—	ns	XT osc mode (PIC16LV54A)		
			250	—	250	ns	HS osc mode (04)		
			100	—	250	ns	HS osc mode (10)		
			50	—	250	ns	HS osc mode (20)		
			5.0	_	200	μs	LP OSC mode		
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—			
3	TosL, TosH	Clock in (OSC1) Low or	85*	_	—	ns	XT oscillator		
		High Time	20*	—	—	ns	HS oscillator		
			2.0*	—	—	μS	LP oscillator		
4	TosR, TosF	Clock in (OSC1) Rise or	—	_	25*	ns	XT oscillator		
		Fall Time	—	—	25*	ns	HS oscillator		
			—	—	50*	ns	LP oscillator		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TcY) equals four times the input oscillator time base period.

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC5X PIC16LCR5X (Commercial, Industrial)				Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC16C5X PIC16CR5X (Commercial, Industrial)				Standard Operating Conditions (unless otherwise spectrum)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commute $-40^{\circ}C \le TA \le +85^{\circ}C$ for induct						
Param No.	Symbol	Characteristic/Device	Min	Min Typ† Max Units			Conditions			
	Vdd	Supply Voltage								
D001		PIC16LC5X	2.5 2.7 2.5		5.5 5.5 5.5	V V V	$\begin{array}{l} -40^{\circ}C \leq TA \leq +\ 85^{\circ}C,\ 16LCR5X \\ -40^{\circ}C \leq TA \leq 0^{\circ}C,\ 16LC5X \\ 0^{\circ}C \leq TA \leq +\ 85^{\circ}C\ 16LC5X \end{array}$			
D001A		PIC16C5X	3.0 4.5	_	5.5 5.5	V V	RC, XT, LP and HS mode from 0 - 10 MHz from 10 - 20 MHz			
D002	Vdr	RAM Data Retention Volt- age ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset			

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC5X PIC16LCR5X (Commercial, Industrial)				$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array} $					
PIC16C5X PIC16CR5X (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$					
Param No.	Symbol	Characteristic/Device	Min	Min Typ† Max Units			Conditions		
	IPD	Power-down Current ⁽²⁾							
D020		PIC16LC5X		0.25 0.25 1	2 3 5	μΑ μΑ μΑ	VDD = 2.5V, WDT disabled, Commercial $VDD = 2.5V$, WDT disabled, Industrial $VDD = 2.5V$, WDT enabled, Commercial		
			_	1.25	8	μA	$V_{DD} = 2.5V, WDT$ enabled, Industrial		
D020A		PIC16C5X	 	0.25 0.25 1.8 2.0 4	4.0 5.0 7.0* 8.0* 12*	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled, Commercial VDD = 3.0V, WDT disabled, Industrial VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT disabled, Industrial VDD = 3.0V, WDT enabled, Commercial		
			—	4	14*	μA	VDD = 3.0V, WDT enabled, Industrial		
			_	9.8 12	27* 30*	μΑ μΑ	VDD = 5.5V, WDT enabled, Commercial VDD = 5.5V, WDT enabled, Industrial		

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

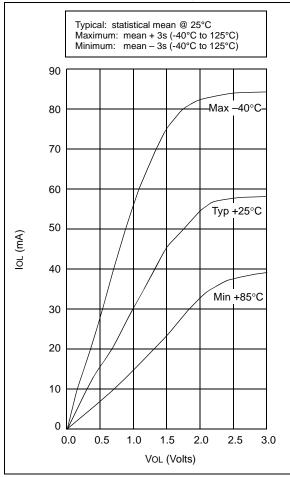
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)


PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic		Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage	3.0 4.5		5.5 5.5		RC, XT, LP, and HS mode from 0 - 10 MHz from 10 - 20 MHz		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current ⁽²⁾ XT and RC ⁽³⁾ modes HS mode	_	1.8 9.0	3.3 20	mA mA	Fosc = 4.0 MHz, VDD = 5.5V Fosc = 20 MHz, VDD = 5.5V		
D020	IPD	Power-down Current ⁽²⁾		0.3 10 12 4.8 18 26	17 50* 60* 31* 68* 90*	μΑ μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled VDD = 4.5V, WDT disabled VDD = 5.5V, WDT disabled VDD = 3.0V, WDT enabled VDD = 4.5V, WDT enabled VDD = 5.5V, WDT enabled		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

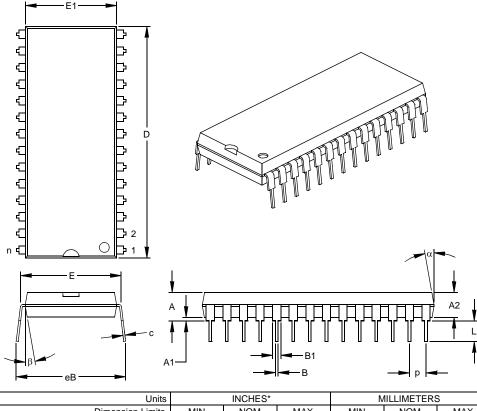

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

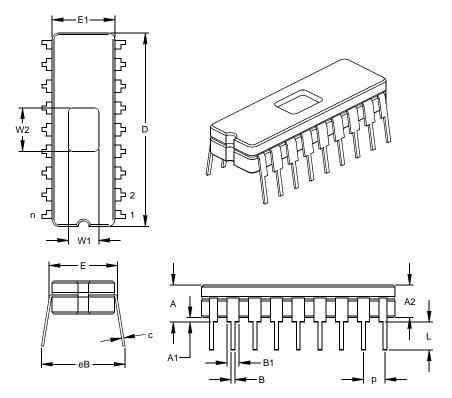
FIGURE 20-9: IOL vs. VOL, VDD = 5 V

28-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units INCHES*			MILLIMETERS			
Dimer	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83	
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88	
Molded Package Width	E1	.505	.545	.560	12.83	13.84	14.22	
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21	
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing	§ eB	.620	.650	.680	15.75	16.51	17.27	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

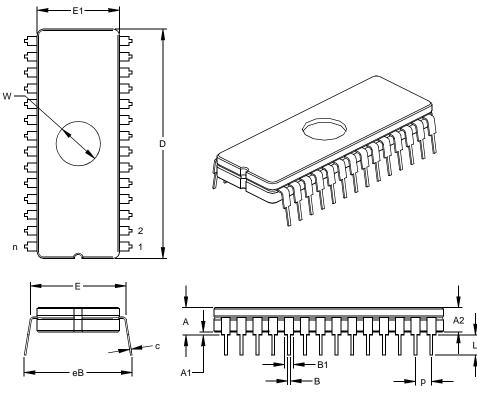

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011 Drawing No. C04-079

18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


		INCHES*		MILLIMETERS			
Dimensior	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eВ	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

* Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-036

Drawing No. C04-010

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimensior	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §		.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Sontolling Parameter
Significant Characteristic
JEDEC Equivalent: MO-103
Drawing No. C04-013

APPENDIX A: COMPATIBILITY

To convert code written for PIC16CXX to PIC16C5X, the user should take the following steps:

- 1. Check any CALL, GOTO or instructions that modify the PC to determine if any program memory page select operations (PA2, PA1, PA0 bits) need to be made.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any special function register page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to proper value for processor used.
- 6. Remove any use of the ADDLW, RETURN and SUBLW instructions.
- 7. Rewrite any code segments that use interrupts.

APPENDIX B: REVISION HISTORY

Revision KE (January 2013)

Added a note to each package outline drawing.

NOTES: