

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	24 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6.25V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c55-lp-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

8.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

8.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 8-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

8.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 8-5 shows the delay from the external clock edge to the timer incrementing.

the error in measuring the interval between two edges on Timer0 input = ± 4 Tosc max.

© 1997-2013 Microchip Technology Inc.

8.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 9.2.1). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

8.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 8-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 8-1: CHANGING PRESCALER (TIMER0→WDT)

CLRWDT	;Clear WDT
CLRF TMR0	;Clear TMR0 & Prescaler
MOVLW B'00xx1111'	;Last 3 instructions in
	this example
OPTION	;are required only if
	;desired
CLRWDT	;PS<2:0> are 000 or
	;001
MOVLW B'00xx1xxx'	;Set Prescaler to
OPTION	;desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 8-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 8-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	B'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source

OPTION

PIC16C5X

XORLW Exclusive OR literal with W									
Syntax:	[<i>label</i>]	XORLW	k						
Operands:	$0 \le k \le 255$								
Operation:	(W) .XOR. $k \rightarrow (W)$								
Status Affected:	Z								
Encoding:	1111	kkkk	kkkk						
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k' The result is placed in the W register.								
Words:	1								
Cycles:	1								
Example:	XORLW	0xAF							
Before Instru W = After Instruct W =	ction 0xB5 ion 0x1A								

XORWF	with f					
Syntax:	[label]	XORWF	f,d			
Operands:	$0 \le f \le 3$ $d \in [0, 1]$	31]				
Operation:	(W) .XC	$DR.(f) \to (c)$	lest)			
Status Affected:	Z					
Encoding:	0001	10df	ffff			
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	XORWF	REG,1				
Before Instru	ction					
REG	= (0xAF				
W	= (0xB5				
After Instruct	ion					
REG	=	0x1A				
W	= (0xB5				

NOTES:

12.5 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions	
D030	Vil	Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	Vss Vss Vss Vss Vss Vss		0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD		Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP	
D040	Vih	Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	0.45 VDD 2.0 0.36 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD VDD VDD	V V V V V V V	For all $V_{DD}^{(4)}$ 4.0V < $V_{DD} \le 5.5V^{(4)}$ $V_{DD} > 5.5 V$ PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V		
D060	Ιι∟	Input Leakage Current ^(1,2) I/O ports MCLR MCLR T0CKI OSC1	-1 -5 - -3 -3	0.5 — 0.5 0.5 0.5	+1 +5 +3 +3	μΑ μΑ μΑ μΑ μΑ	$\label{eq:statestar} \begin{array}{l} \mbox{For Vdd} \leq \mbox{5.5 V:} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd}, \\ \mbox{pin at hi-impedance} \\ \mbox{VplN} = \mbox{Vss} + \mbox{0.25V} \\ \mbox{VplN} = \mbox{Vdd} \\ \mbox{VplN} = \mbox{Vdd} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd} \\ \mbox{PlC16C5X-XT, 10, HS, LP} \end{array}$	
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, PIC16C5X-RC	
D090	Voн	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	VDD - 0.7 VDD - 0.7			V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, PIC16C5X-RC	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

4: The user may use the better of the two specifications.

13.2 DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)

PIC16CR54A-04E, 10E, 20E (Extended)			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage RC, XT and LP modes HS mode	3.25 4.5		6.0 5.5	V V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset	
D010	IDD	Supply Current ⁽²⁾ RC ⁽³⁾ and XT modes HS mode HS mode		1.8 4.8 9.0	3.3 10 20	mA mA mA	Fosc = 4.0 MHz, VDD = 5.5V Fosc = 10 MHz, VDD = 5.5V Fosc = 16 MHz, VDD = 5.5V	
D020	IPD	Power-down Current ⁽²⁾		5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

14.0 DEVICE CHARACTERIZATION - PIC16C54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

TABLE 14-1: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Average Fosc @ 5 V, 25°C				
20 pF	3.3K	5 MHz	± 27%			
	5K	3.8 MHz	± 21%			
	10K	2.2 MHz	± 21%			
	100K	262 kHz	± 31%			
100 pF	3.3K	1.6 MHz	± 13%			
	5K	1.2 MHz	± 13%			
	10K	684 kHz	± 18%			
	100K	71 kHz	± 25%			
300 pF	3.3K	660 kHz	± 10%			
	5.0K	484 kHz	± 14%			
	10K	267 kHz	± 15%			
	100K	29 kHz	± 19%			

The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviations from the average value for VDD = 5V.

PIC16C5X

FIGURE 14-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

15.2 DC Characteristics: PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16I	C54A-04F	•	Stand	, ard One	ratino	, Condi	tions (unless otherwise specified)	
(Exten	ded)	-	Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
PIC16C (Exten	54A-04E, ded)	10E, 20E	Standa Operat	Standard Operating Conditions (unless otherwise specifiedOperating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions	
	Vdd	Supply Voltage						
D001		PIC16LC54A	3.0 2.5		6.25 6.25	V V	XT and RC modes LP mode	
D001A		PIC16C54A	3.5 4.5		5.5 5.5	V V	RC and XT modes HS mode	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	-	Vss	_	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset	
	IDD	Supply Current ⁽²⁾						
D010		PIC16LC54A	-	0.5	25	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes	
			-	11	27	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Commercial	
				11	35	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Industrial	
			—	11	37	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Extended	
D010A		PIC16C54A	—	1.8	3.3	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes	
			-	4.8	10	mA	Fosc = 10 MHz, VDD = 5.5V, HS mode	
			-	9.0	20	mA	Fosc = 20 MHz, VDD = 5.5V, HS mode	

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

NOTES:

FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

19.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)			Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Param No.	Symbol	Characteristic	c Min T		Max	Units	Conditions	
D001	Vdd	Supply Voltage	4.5	—	5.5	V	HS mode from 20 - 40 MHz	
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	—	1.5*	—	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	—		V/ms	See Section 5.1 for details on Power-on Reset	
D010	IDD	Supply Current ⁽³⁾		5.2 6.8	12.3 16	mA mA	FOSC = 40 MHz, VDD = 4.5V, HS mode FOSC = 40 MHz, VDD = 5.5V, HS mode	
D020	IPD	Power-down Current ⁽³⁾		1.8 9.8	7.0 27*	μΑ μΑ	VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT enabled, Commercial	

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- **Note 1:** Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 19.1.
 - **2:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

DC CH	ARACTER	RISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions	
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 Vdd 0.15 Vdd 0.2 Vdd	V V V V	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>	
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd		Vdd Vdd Vdd Vdd	V V V V	4.5V < VDD ≤ 5.5V HS, 20 MHz ≤ Fosc ≤ 40 MHz	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V		
D060	ΙιL	Input Leakage Current ^(2,3) I/O ports MCLR MCLR	-1.0 -5.0 —	0.5 — 0.5	+1.0 +5.0 +3.0	μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD	
		T0CKI OSC1	-3.0 -3.0	0.5 0.5	+3.0	μA μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD \\ VSS \leq VPIN \leq VDD, \textbf{HS} \end{array}$	
D080	Vol	Output Low Voltage I/O ports	_	_	0.6	V	IOL = 8.7 mA, VDD = 4.5V	
D090	Vон	Output High Voltage ⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Іон = -5.4 mA, Vdd = 4.5V	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.

FIGURE 20-4: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF I/O PINS vs. VDD

FIGURE 20-5: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (HS MODE) vs. VDD

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

PIC16C5X

INDEX

Α

Absolute Maximum Ratings	
PIC16C54/55/56/57	67
PIC16C54A	103
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR5	7C/
C58B/CR58B	131
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR5	7C/
C58B/CR58B-40	155
PIC16CR54A	79
ADDWF	51
ALU	9
ANDLW	51
ANDWF	51
Applications	5
Architectural Overview	9
Assembler	
MPASM Assembler	61

в

Block Diagram	
On-Chip Reset Circuit	
PIC16C5X Series	
Timer0	
TMR0/WDT Prescaler	41
Watchdog Timer	
Brown-Out Protection Circuit	
BSF	
BTFSC	
BTFSS	

С

CALL	
Carry (C) bit	9, 29
Clocking Scheme	
CLRF	53
CLRW	
CLRWDT	53
CMOS Technology	
Code Protection	
COMF	54
Compatibility	
Configuration Bits	

D

Data Memory Organization
PIC16C54/55/56/57
Commercial
Extended70, 72
Industrial 69, 71
PIC16C54A
Commercial104, 109
Extended106, 109
Industrial104, 109
PIC16C54C/C55A/C56A/C57C/C58B-40
Commercial157, 158
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B
Commercial134, 138
Extended137, 138
Industrial134, 138
PIC16CR54A
Commercial

Extended	82, 84
Industrial	80, 83
PIC16LV54A	
Commercial	108, 109
Industrial	108, 109
DECF	54
DECFSZ	54
Development Support	61
Device Characterization	
PIC16C54/55/56/57/CR54A	91
PIC16C54A	117
PIC16C54C/C55A/C56A/C57C/C58B-40	165
Device Reset Timer (DRT)	23
Device Varieties	7
Digit Carry (DC) bit	9, 29
DRT	23

Ε

Electrical Specifications
PIC16C54/55/56/57 67
PIC16C54A103
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B 131
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B-40155
PIC16CR54A 79
Errata
External Power-On Reset Circuit 21

F

Family of Devices	
PIC16C5X	
FSR Register	
Value on reset	

G

General Purpose Registers	
Value on reset	20
GOTO	31, 55

Н

High-Performance RISC CPU	1
---------------------------	---

ī

•	
I/O Interfacing	35
I/O Ports	35
I/O Programming Considerations	36
ICEPIC In-Circuit Emulator	62
ID Locations	43, 47
INCF	55
INCFSZ	55
INDF Register	33
Value on reset	20
Indirect Data Addressing	33
Instruction Cycle	
Instruction Flow/Pipelining	13
Instruction Set Summary	49
IORLW	56
IORWF	56
к	

KeeLoq Evaluation and Programming Tools 64

Loading of PC	3	,	1	
---------------	---	---	---	--

L

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events