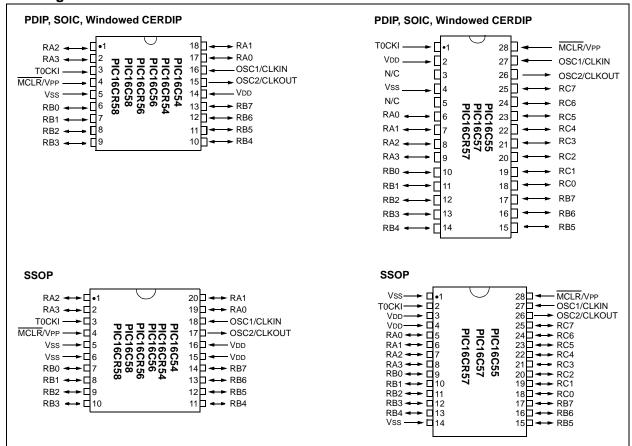


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Active
PIC
8-Bit
4MHz
-
POR, WDT
20
768B (512 x 12)
OTP
-
24 x 8
3V ~ 6.25V
-
External
-40°C ~ 85°C (TA)
Through Hole
28-DIP (0.300", 7.62mm)
28-SPDIP
https://www.e-xfl.com/product-detail/microchip-technology/pic16c55-rci-sp

Pin Diagrams

Device Differences

DS30453E-page 2

Device Differences									
Device	Voltage Range	Oscillator Selection (Program)	Oscillator	Process Technology (Microns)	ROM Equivalent	MCLR Filter			
PIC16C54	2.5-6.25	Factory	See Note 1	1.2	PIC16CR54A	No			
PIC16C54A	2.0-6.25	User	See Note 1	0.9	_	No			
PIC16C54C	2.5-5.5	User	See Note 1	0.7	PIC16CR54C	Yes			
PIC16C55	2.5-6.25	Factory	See Note 1	1.7	_	No			
PIC16C55A	2.5-5.5	User	See Note 1	0.7	_	Yes			
PIC16C56	2.5-6.25	Factory	See Note 1	1.7	_	No			
PIC16C56A	2.5-5.5	User	See Note 1	0.7	PIC16CR56A	Yes			
PIC16C57	2.5-6.25	Factory	See Note 1	1.2	_	No			
PIC16C57C	2.5-5.5	User	See Note 1	0.7	PIC16CR57C	Yes			
PIC16C58B	2.5-5.5	User	See Note 1	0.7	PIC16CR58B	Yes			
PIC16CR54A	2.5-6.25	Factory	See Note 1	1.2	N/A	Yes			
PIC16CR54C	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes			
PIC16CR56A	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes			
PIC16CR57C	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes			
PIC16CR58B	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes			

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

Note: The table shown above shows the generic names of the PIC16C5X devices. For device varieties, please refer to Section 2.0.

PIC16C5X

NOTES:

6.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device (Table 6-1).

The Special Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 6-1: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on Page
N/A	TRIS	I/O Cont	rol Regis	ters (TRIS		1111 1111	35				
N/A	OPTION	Contains	s control b	oits to con	figure Ti	mer0 and	Timer0/V	VDT pres	caler	11 1111	30
00h	INDF	Uses co	ntents of	FSR to ac	ddress da	ata memo	ry (not a	physical r	egister)	XXXX XXXX	32
01h	TMR0	Timer0 N	Module R	egister						XXXX XXXX	38
02h ⁽¹⁾	PCL	Low ord	er 8 bits c	of PC						1111 1111	31
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	29
04h	FSR	Indirect	data mem	ory addre	ess point	er			I.	1xxx xxxx ⁽³⁾	32
05h	PORTA	_	_	_	_	RA3	RA2	RA1	RA0	XXXX	35
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	35
07h ⁽²⁾	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	35

Legend: x = unknown, u = unchanged, -= unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access these bits.

^{2:} File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and PIC16CR58.

^{3:} These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.

PIC16C5X

NOTES:

9.2 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT Reset or Wake-up Reset generates a device RESET.

The TO bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset (Section 6.3).

The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 9.1). Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to access the configuration word.

9.2.1 WDT PERIOD

An 8-bit counter is available as a prescaler for the Timer0 module (Section 8.2), or as a postscaler for the Watchdog Timer (WDT), respectively. For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not

both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio (Section 6.4).

The WDT has a nominal time-out period of 18 ms (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, time-out a period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see Device Characterization).

Under worst case conditions (VDD = Min., Temperature = Max., WDT prescaler = 1:128), it may take several seconds before a WDT time-out occurs.

9.2.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction RESETS the WDT and the prescaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

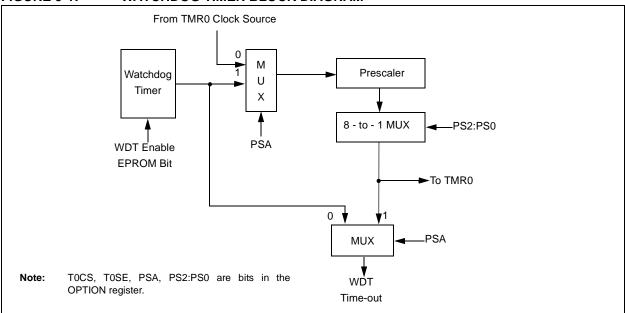


FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on MCLR and WDT Reset
N/A	OPTION	_	_	Tosc	Tose	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: u = unchanged, - = unimplemented, read as '0'. Shaded cells not used by Watchdog Timer.

ADDWF	Add W and f							
Syntax:	[lab	[label] ADDWF f,d						
Operands:	$0 \le f \le 31$ $d \in [0,1]$							
Operation:	(W)	+ (f)	\rightarrow (dest)					
Status Affected:	C, D)C, Z	<u> </u>					
Encoding:	00	01	11df	ff	ff			
Description:	and is st '1' th	regi orec	contents of ster 'f'. If 'o I in the W esult is sto 'f'.	d' is regi	0 the ster. I	result f 'd' is		
Words:	1							
Cycles:	1							
Example:	ADD	WF	TEMP_RE	EG,	0			
Before Instr	uctio	n						
W		=	0x17					
TEMP_I		0xC2						
After Instruc								
W	= 0xD9							
TEMP_I	REG	=	0xC2					

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$0 \le f \le 31$ $d \in [0,1]$					
Operation:	(W) .AND. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	0001 01df ffff					
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	ANDWF TEMP_REG, 1					
Before Instru W TEMP_I After Instruct W TEMP_I	= 0x17 $REG = 0xC2$ $tion$ $= 0x17$					

ANDLW	AND literal with W						
Syntax:	[label] ANDLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	(W).AND. (k) \rightarrow (W)						
Status Affected:	Z						
Encoding:	1110 kkkk kkkk						
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.						
Words:	1						
Cycles:	1						
Example:	ANDLW H'5F'						
Before Instru W = After Instruc W =	0xA3						

BCF	Bit Clea	r f						
Syntax:	[label] BCF f,b							
Operands:	$0 \le f \le 31$ $0 \le b \le 7$							
Operation:	$0 \rightarrow (f < b)$	>)						
Status Affected:	atus Affected: None							
Encoding:	0100	bbbf	ffff					
Description:	Bit 'b' in	register 'f'	is cleared.					
Words:	1							
Cycles:	1							
Example:	BCF FLAG_REG, 7							
Before Instru		0.07						
FLAG_R After Instruct		0xC7						
FLAG_R		0x47						

15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

Absolute Maximum Ratings(†) Storage temperature ——65°C to +150°C Voltage on all other pins with respect to Vss—0.6V to (VDD + 0.6V) Total power dissipation⁽¹⁾......800 mW Input clamp current, IK (VI < 0 or VI > VDD)......±20 mA Output clamp current, IOK (VO < 0 or VO > VDD)±20 mA

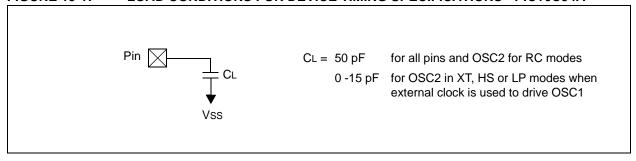
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Timing Parameter Symbology and Load Conditions 15.5

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS


Low

2. TppS

Т		
F	Frequency	T Time
Lowe	ercase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	ercase letters and their meanings:	
S		
F	Fall	P Period
Н	High	R Rise
I	Invalid (Hi-impedance)	V Valid

Hi-impedance

FIGURE 15-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54A

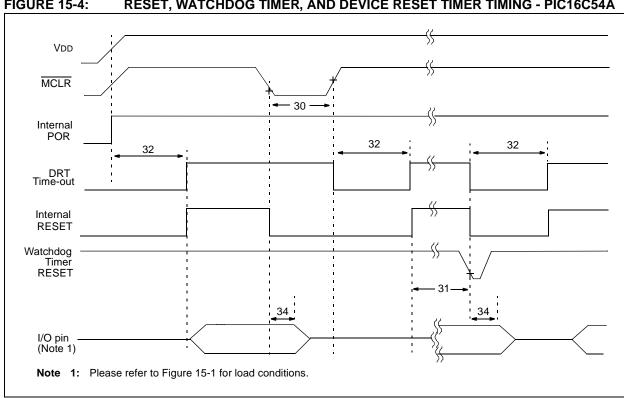
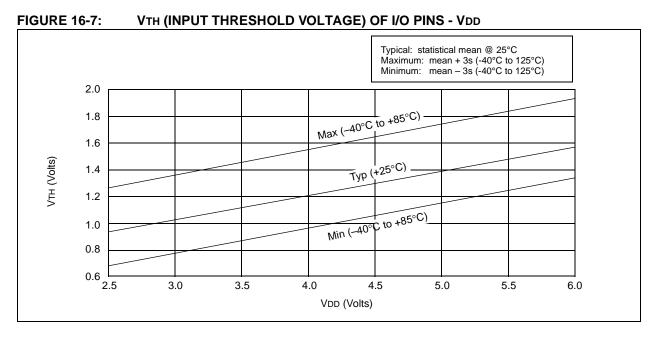
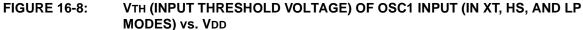
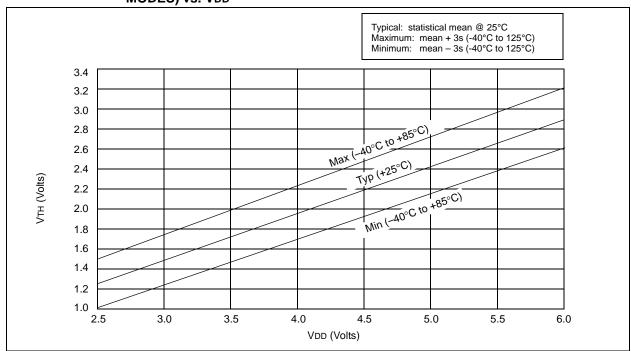


FIGURE 15-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C54A


TABLE 15-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54A


	Standard Operating Conditions (unless otherwise specified)								
Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial								al	
AC Charac	cteristics		-40	$^{\circ}C \leq TA$	≤ +85°	C for inc	lustrial		
			-20	$^{\circ}C \leq TA$	≤ +85°	C for inc	lustrial -	· PIC16LV54A-02I	
	-40° C \leq TA \leq +125°C for extended								


Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100* 1	_		ns μs	VDD = 5.0V VDD = 5.0V (PIC16LV54A only)
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
32	TDRT	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	100* 1μs	ns —	(PIC16LV54A only)

These parameters are characterized but not tested.

Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean - 3s (-40°C to 125°C) 10000 1000 IDD (μA) 100 10 0.1 10 Freq (MHz)

FIGURE 16-10: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 PF, 25°C)

FIGURE 16-11: MAXIMUM IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 PF, -40°C to +85°C)

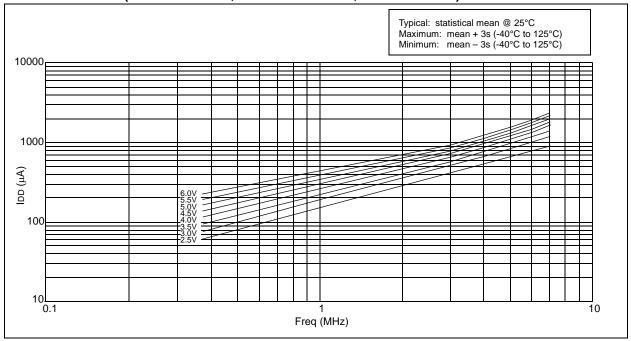


FIGURE 16-22: PORTA, B AND C IOL vs. Vol., VDD = 3V

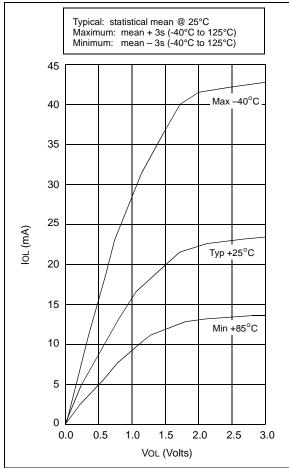
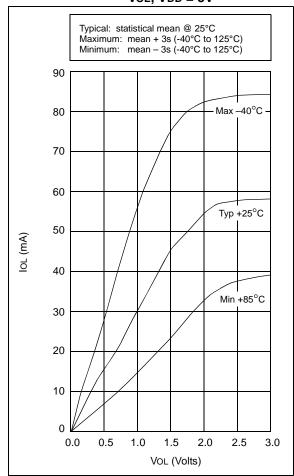



TABLE 16-2: INPUT CAPACITANCE FOR PIC16C54A/C58A

Pin	Typical Capacitance (pF)					
PIII	18L PDIP	18L SOIC				
RA port	5.0	4.3				
RB port	5.0	4.3				
MCLR	17.0	17.0				
OSC1	4.0	3.5				
OSC2/CLKOUT	4.3	3.5				
T0CKI	3.2	2.8				

All capacitance values are typical at 25°C. A part-to-part variation of $\pm 25\%$ (three standard deviations) should be taken into account.

FIGURE 16-23: PORTA, B AND C IOL vs. Vol., VDD = 5V

17.3 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial, Extended)
PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial)
PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial, Extended)
PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
D030	VIL	Input Low Voltage I/O Ports I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss	_ _ _ _	0.8 V 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V	4.5V <vdd 5.5v="" mode="" only<sup="" otherwise="" rc="" ≤="">(3) XT, HS and LP modes</vdd>	
D040	ViH	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	2.0 0.25 Vdd+0.8 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.7 Vdd	_ _ _ _	VDD VDD VDD VDD VDD VDD	V V V V	4.5V < VDD ≤ 5.5V Otherwise RC mode only ⁽³⁾ XT, HS and LP modes	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 VDD*	_	_	V		
D060	lı∟	Input Leakage Current ^(1,2) I/O ports	-1.0	0.5	+1.0	μА	For VDD ≤ 5.5V: VSS ≤ VPIN ≤ VDD, pin at hi-impedance	
		MCLR MCLR TOCKI OSC1	-5.0 -3.0 -3.0	0.5 0.5 0.5	+5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ	VPIN = VSS +0.25V VPIN = VDD VSS ≤ VPIN ≤ VDD VSS ≤ VPIN ≤ VDD, XT, HS and LP modes	
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, RC mode only	
D090	Voн	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	VDD - 0.7 VDD - 0.7	_		V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only	

These parameters are characterized but not tested.

[†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

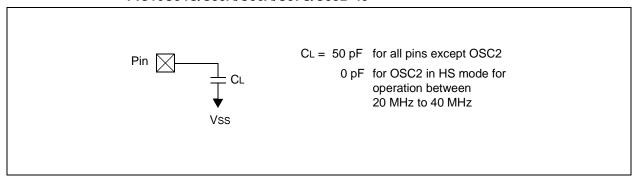
^{2:} Negative current is defined as coming out of the pin.

^{3:} For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

19.3 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

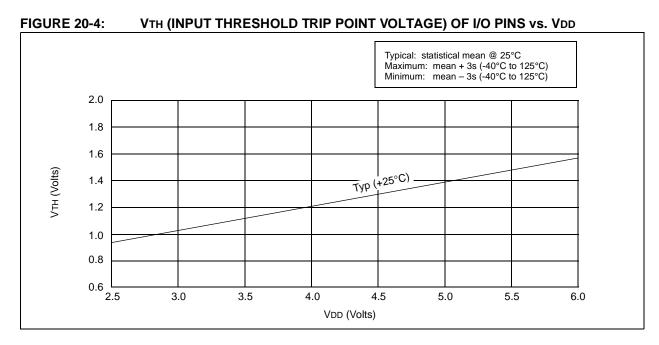
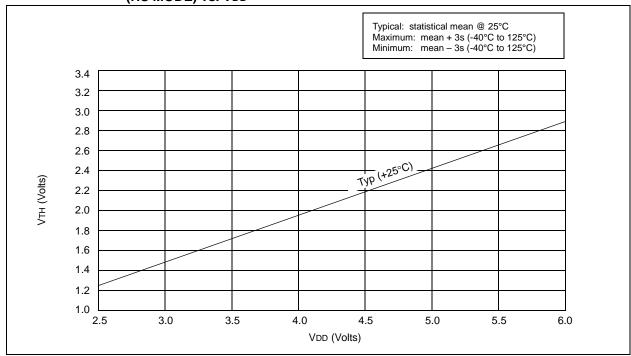
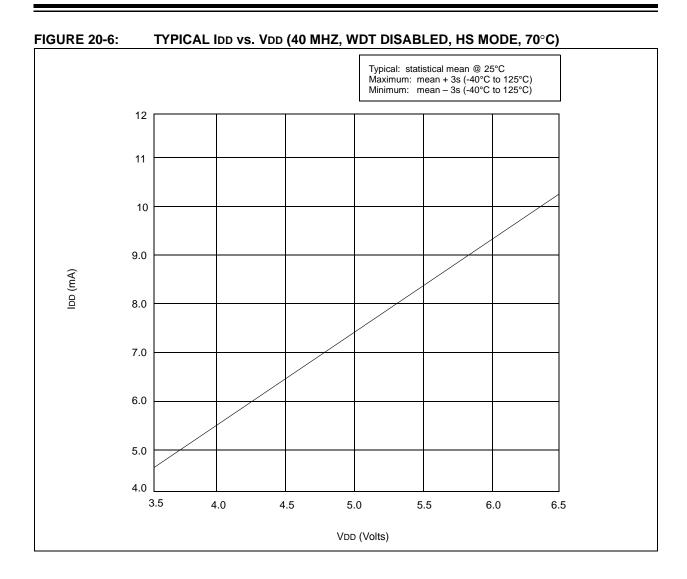

T	
F Frequency	T Time
Lowercase letters (pp) and their meanings:	
рр	
2 40	ma MOLD

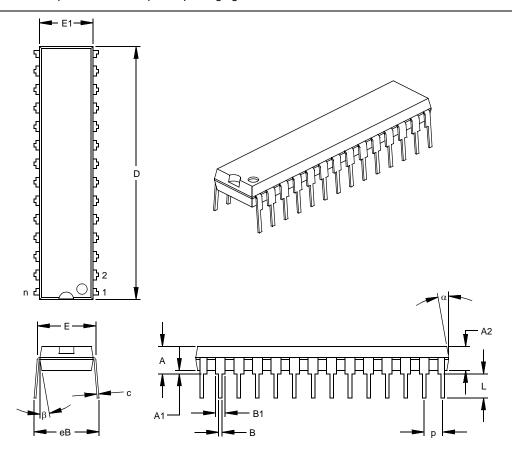
pp		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer

Uppercase letters and their meanings:

	opportation that their meanings.							
S								
F	Fall	Р	Period					
Н	High	R	Rise					
1	Invalid (Hi-impedance)	V	Valid					
L	Low	Z	Hi-impedance					

FIGURE 19-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54C/C55A/C56A/C57C/C58B-40


FIGURE 20-5: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (HS MODE) vs. Vdd

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

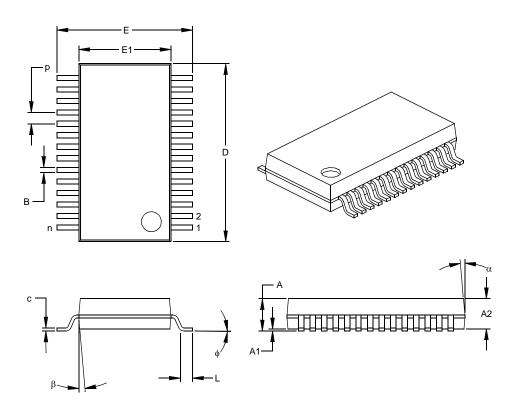
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom		5	10	15	5	10	15

^{*} Controlling Parameter § Significant Characteristic

Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed


^{.010&}quot; (0.254mm) per side.

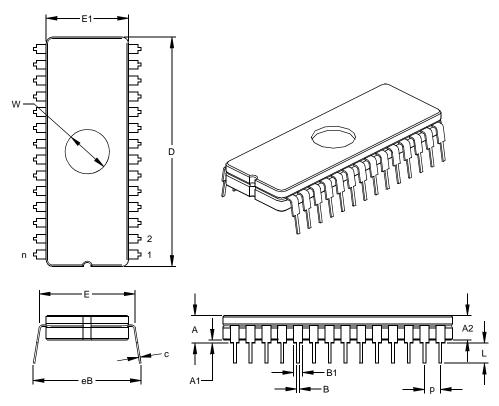
JEDEC Equivalent: MO-095

Drawing No. C04-070

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES		MILLIMETERS*			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	ф	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-150 Drawing No. C04-073

^{*} Controlling Parameter § Significant Characteristic

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width		.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	еВ	.610	.660	.710	15.49	16.76	18.03
Window Diameter W		.270	.280	.290	6.86	7.11	7.37

^{*} Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-103 Drawing No. C04-013

PIC16C5X

APPENDIX A: COMPATIBILITY

To convert code written for PIC16CXX to PIC16C5X, the user should take the following steps:

- Check any CALL, GOTO or instructions that modify the PC to determine if any program memory page select operations (PA2, PA1, PA0 bits) need to be made.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- Eliminate any special function register page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- Change RESET vector to proper value for processor used.
- 6. Remove any use of the ADDLW, RETURN and SUBLW instructions.
- 7. Rewrite any code segments that use interrupts.

APPENDIX B: REVISION HISTORY

Revision KE (January 2013)

Added a note to each package outline drawing.