Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 4MHz | | Connectivity | - | | Peripherals | POR, WDT | | Number of I/O | 20 | | Program Memory Size | 768B (512 x 12) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 24 x 8 | | Voltage - Supply (Vcc/Vdd) | 3.25V ~ 6V | | Data Converters | - | | Oscillator Type | External | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Through Hole | | Package / Case | 28-DIP (0.300", 7.62mm) | | Supplier Device Package | 28-SPDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16c55-xte-sp | | | | ### 8-Bit EPROM/ROM-Based CMOS Microcontrollers #### 1.0 GENERAL DESCRIPTION The PIC16C5X from Microchip Technology is a family of low cost, high performance, 8-bit fully static, EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle except for program branches which take two cycles. The PIC16C5X delivers performance in an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly. The PIC16C5X products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external RESET circuitry. There are four oscillator configurations to choose from, including the power saving LP (Low Power) oscillator and cost saving RC oscillator. Power saving SLEEP mode, Watchdog Timer and Code Protection features improve system cost, power and reliability. The UV erasable CERDIP packaged versions are ideal for code development, while the cost effective One Time Programmable (OTP) versions are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility. The PIC16C5X products are supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full featured programmer. All the tools are supported on IBM® PC and compatible machines. #### 1.1 Applications The PIC16C5X series fits perfectly in applications ranging from high speed automotive and appliance motor control to low power remote transmitters/receivers, pointing devices and telecom processors. The EPROM technology makes customizing application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low cost, low power, high performance ease of use and I/O flexibility make the PIC16C5X series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, co-processor applications). ### 6.2 Data Memory Organization Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers and General Purpose Registers. The Special Function Registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Purpose Registers are used to control the I/O port configuration and prescaler options. The General Purpose Registers are used for data and control information under command of the instructions. For the PIC16C54, PIC16CR54, PIC16C56 and PIC16CR56, the register file is composed of 7 Special Function Registers and 25 General Purpose Registers (Figure 6-4). For the PIC16C55, the register file is composed of 8 Special Function Registers and 24 General Purpose Registers. For the PIC16C57 and PIC16CR57, the register file is composed of 8 Special Function Registers, 24 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-5). For the PIC16C58 and PIC16CR58, the register file is composed of 7 Special Function Registers, 25 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-6). ### 6.2.1 GENERAL PURPOSE REGISTER FILE The register file is accessed either directly or indirectly through the File Select Register (FSR). The FSR Register is described in Section 6.7. FIGURE 6-4: PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56 REGISTER FILE MAP - **Note 1:** Not a physical register. See Section 6.7. - **2:** PIC16C55 only, in all other devices this is implemented as a general purpose register. #### 6.2.2 SPECIAL FUNCTION REGISTERS The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device (Table 6-1). The Special Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature. TABLE 6-1: SPECIAL FUNCTION REGISTER SUMMARY | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on
Power-on
Reset | Details
on Page | |--------------------|--------|----------|--|------------|-----------|----------|-------|-------|---------|-------------------------------|--------------------| | N/A | TRIS | I/O Cont | rol Regis | ters (TRIS | SA, TRIS | B, TRISC | ;) | | | 1111 1111 | 35 | | N/A | OPTION | Contains | Contains control bits to configure Timer0 and Timer0/WDT prescaler | | | | | | 11 1111 | 30 | | | 00h | INDF | Uses co | ses contents of FSR to address data memory (not a physical register) | | | | | | | XXXX XXXX | 32 | | 01h | TMR0 | Timer0 N | Module R | egister | | | | | | XXXX XXXX | 38 | | 02h ⁽¹⁾ | PCL | Low ord | er 8 bits c | of PC | | | | | | 1111 1111 | 31 | | 03h | STATUS | PA2 | PA1 | PA0 | TO | PD | Z | DC | С | 0001 1xxx | 29 | | 04h | FSR | Indirect | data mem | ory addre | ess point | er | | | I. | 1xxx xxxx ⁽³⁾ | 32 | | 05h | PORTA | _ | _ | _ | _ | RA3 | RA2 | RA1 | RA0 | XXXX | 35 | | 06h | PORTB | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | XXXX XXXX | 35 | | 07h ⁽²⁾ | PORTC | RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 | xxxx xxxx | 35 | Legend: x = unknown, u = unchanged, -= unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused **Note** 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access these bits. ^{2:} File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and PIC16CR58. ^{3:} These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu. ## 9.0 SPECIAL FEATURES OF THE CPU What sets a microcontroller apart from other processors are special circuits that deal with the needs of real-time applications. The PIC16C5X family of microcontrollers have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are: - Oscillator Selection (Section 4.0) - RESET (Section 5.0) - Power-On Reset (Section 5.1) - Device Reset Timer (Section 5.2) - Watchdog Timer (WDT) (Section 9.2) - SLEEP (Section 9.3) - Code protection (Section 9.4) - ID locations (Section 9.5) The PIC16C5X Family has a Watchdog Timer which can be shut off only through configuration bit WDTE. It runs off of its own RC oscillator for added reliability. There is an 18 ms delay provided by the Device Reset Timer (DRT), intended to keep the chip in RESET until the crystal oscillator is stable. With this timer on-chip, most applications need no external RESET circuitry. The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake up from SLEEP through external RESET or through a Watchdog Timer time-out. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options. #### 9.2 Watchdog Timer (WDT) The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT Reset or Wake-up Reset generates a device RESET. The TO bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset (Section 6.3). The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 9.1). Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to access the configuration word. #### 9.2.1 WDT PERIOD An 8-bit counter is available as a prescaler for the Timer0 module (Section 8.2), or as a postscaler for the Watchdog Timer (WDT), respectively. For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa. The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio (Section 6.4). The WDT has a nominal time-out period of 18 ms (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, time-out a period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see Device Characterization). Under worst case conditions (VDD = Min., Temperature = Max., WDT prescaler = 1:128), it may take several seconds before a WDT time-out occurs. ### 9.2.2 WDT PROGRAMMING CONSIDERATIONS The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET. The SLEEP instruction RESETS the WDT and the prescaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset. FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on
Power-On
Reset | Value on MCLR and WDT Reset | |---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------|-----------------------------| | N/A | OPTION | | 1 | Tosc | Tose | PSA | PS2 | PS1 | PS0 | 11 1111 | 11 1111 | Legend: u = unchanged, - = unimplemented, read as '0'. Shaded cells not used by Watchdog Timer. | CALL | Subroutine Call | CLRW | Clear W | |---|---|--|--| | Syntax: | [label] CALL k | Syntax: | [label] CLRW | | Operands: | $0 \leq k \leq 255$ | Operands: | None | | Operation: | (PC) + 1→ TOS;
k → PC<7:0>; | Operation: | $00h \rightarrow (W);$ $1 \rightarrow Z$ | | | (STATUS<6:5>) → PC<10:9>;
0 → PC<8> | Status Affected: | Z | | Status Affected: | None | Encoding: | 0000 0100 0000 | | Encoding: | 1001 kkkk kkkk | Description: | The W register is cleared. Zero bit (Z) is set. | | Description: | Subroutine call. First, return address (PC+1) is pushed onto the | Words: | 1 | | | stack. The eight bit immediate | Cycles: | 1 | | | address is loaded into PC bits | Example: | CLRW | | | <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two-cycle instruction. | After Instruc | = 0x5A | | Words: | 1 | Z = | | | Cycles: | 2 | | | | _ | | | | | Example: | HERE CALL THERE | CLRWDT | Clear Watchdog Timer | | Before Instr | uction | CLRWDT
Syntax: | Clear Watchdog Timer | | | uction
= address (HERE) | Syntax: | [label] CLRWDT | | Before Instr
PC =
After Instruc
PC =
TOS = | uction = address (HERE) ction = address (THERE) = address (HERE + 1) | _ | | | Before Instr
PC =
After Instruc
PC = | uction = address (HERE) ction = address (THERE) = address (HERE + 1) Clear f | Syntax: Operands: | [label] CLRWDT
None
$00h \rightarrow WDT;$
$0 \rightarrow WDT$ prescaler (if assigned);
$1 \rightarrow \overline{10};$ | | Before Instruction PC = After Instruction PC = TOS = CLRF Syntax: | uction = address (HERE) ction = address (THERE) = address (HERE + 1) Clear f [label] CLRF f | Syntax: Operands: Operation: | [label] CLRWDT
None
$00h \rightarrow WDT;$
$0 \rightarrow \frac{WD}{T}$ prescaler (if assigned);
$1 \rightarrow \frac{TO}{PD};$
$1 \rightarrow \overline{PD}$ | | Before Instruction PC = After Instruction PC = TOS = CLRF Syntax: Operands: | uction = address (HERE) ction = address (THERE) = address (HERE + 1) Clear f [label] CLRF f 0 \le f \le 31 | Syntax: Operands: Operation: Status Affected: | [label] CLRWDT
None
$00h \rightarrow WDT$;
$0 \rightarrow WDT$ prescaler (if assigned);
$1 \rightarrow \overline{TO}$;
$1 \rightarrow \overline{PD}$
\overline{TO} , \overline{PD} | | Before Instruction PC = After Instruction PC = TOS = CLRF Syntax: | uction = address (HERE) ction = address (THERE) = address (HERE + 1) Clear f [$label$] CLRF f $0 \le f \le 31$ $00h \rightarrow (f)$; | Syntax: Operands: Operation: Status Affected: Encoding: | [label] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $0000 0000 0100$ The CLRWDT instruction resets the WDT. It also resets the prescaler, if | | Before Instruction PC = After Instruction PC = TOS = CLRF Syntax: Operands: Operation: Status Affected: | uction = address (HERE) ction = address (THERE) = address (HERE + 1) Clear f [label] CLRF f $0 \le f \le 31$ $00h \rightarrow (f);$ $1 \rightarrow Z$ Z | Syntax: Operands: Operation: Status Affected: Encoding: | [label] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $0000 0000 0100$ The CLRWDT instruction resets the | | Before Instruction PC = After Instruction PC = TOS = TOS = CLRF Syntax: Operands: Operands: Operation: Status Affected: Encoding: | uction = address (HERE) etion = address (THERE) = address (HERE + 1) Clear f [label] CLRF f $0 \le f \le 31$ $00h \rightarrow (f);$ $1 \rightarrow Z$ Z | Syntax: Operands: Operation: Status Affected: Encoding: | [label] CLRWDT None $00h \rightarrow WDT$; $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{10}$; $1 \rightarrow \overline{PD}$ \overline{TO} , \overline{PD} $0000 0000 0100$ The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits | | Before Instruction PC = After Instruction PC = TOS = CLRF Syntax: Operands: Operation: Status Affected: | uction = address (HERE) ction = address (THERE) = address (HERE + 1) Clear f [label] CLRF f $0 \le f \le 31$ $00h \rightarrow (f);$ $1 \rightarrow Z$ Z | Syntax: Operands: Operation: Status Affected: Encoding: Description: | [label] CLRWDT None $00h \rightarrow WDT$; $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO}$; $1 \rightarrow \overline{PD}$ \overline{TO} , \overline{PD} $0000 0000 0100$ The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits \overline{TO} and \overline{PD} are set. | Before Instruction After Instruction TO $\overline{\mathsf{PD}}$ WDT counter = WDT counter = WDT prescaler = 0x00 0 1 1 Before Instruction After Instruction Ζ FLAG_REG = FLAG_REG = CLRF FLAG_REG 0x5A 0x00 1 Cycles: Example: #### FIGURE 13-5: TIMERO CLOCK TIMINGS - PIC16CR54A TABLE 13-4: TIMERO CLOCK REQUIREMENTS - PIC16CR54A | | AC Chara | acteristics | Standard Operating
Operating Temperat | | $TA \le +7$ $TA \le +8$ | 70°C fo
35°C fo | or comn
or indus | nercial
etrial | |--------------|----------|--------------|--|-------------------------|-------------------------|--------------------|---------------------|-----------------------| | Param
No. | Symbol | C | Characteristic | Min | Тур† | Max | Units | Conditions | | 40 | Tt0H | T0CKI High I | Pulse Width | | | | | | | | | | No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | | With Prescaler | 10* | | _ | ns | | | 41 | Tt0L | T0CKI Low F | Pulse Width | | | | | | | | | | No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | | - With Prescaler | 10* | | _ | ns | | | 42 | Tt0P | T0CKI Period | t | 20 or <u>Tcy + 40</u> * | _ | _ | ns | Whichever is greater. | ^{*} These parameters are characterized but not tested. Ν N = Prescale Value (1, 2, 4, ..., 256) [†] Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 14-19: PORTA, B AND C IOH vs. Voh, VDD = 3 V FIGURE 14-20: PORTA, B AND C IOH vs. Voh, VDD = 5 V #### 18.0 DEVICE CHARACTERIZATION - PIC16LC54A The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. "Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean – 3σ) respectively, where σ is a standard deviation, over the whole temperature range. FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE TABLE 18-1: RC OSCILLATOR FREQUENCIES | Сехт | REXT | Aver
Fosc @ ! | | |--------|------|------------------|-------| | 20 pF | 3.3K | 5 MHz | ± 27% | | | 5K | 3.8 MHz | ± 21% | | | 10K | 2.2 MHz | ± 21% | | | 100K | 262 kHz | ± 31% | | 100 pF | 3.3K | 1.63 MHz | ± 13% | | | 5K | 1.2 MHz | ± 13% | | | 10K | 684 kHz | ± 18% | | | 100K | 71 kHz | ± 25% | | 300 pF | 3.3K | 660 kHz | ± 10% | | | 5.0K | 484 kHz | ± 14% | | | 10K | 267 kHz | ± 15% | | | 100K | 29 kHz | ± 19% | The frequencies are measured on DIP packages. The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V. ### 19.4 Timing Diagrams and Specifications FIGURE 19-3: EXTERNAL CLOCK TIMING - PIC16C5X-40 TABLE 19-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X-40 | AC Chara | cteristics | Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial | | | | | | | | |--------------|------------|---|------|--------|------|-------|---------------|--|--| | Param
No. | Symbol | Characteristic | Min | Typ† | Max | Units | Conditions | | | | | Fosc | External CLKIN Frequency ⁽¹⁾ | 20 | _ | 40 | MHz | HS osc mode | | | | 1 | Tosc | External CLKIN Period ⁽¹⁾ | 25 | _ | _ | ns | HS osc mode | | | | 2 | Tcy | Instruction Cycle Time ⁽²⁾ | _ | 4/Fosc | _ | _ | | | | | 3 | TosL, TosH | Clock in (OSC1) Low or High
Time | 6.0* | _ | _ | ns | HS oscillator | | | | 4 | TosR, TosF | osF Clock in (OSC1) Rise or Fall Time | | _ | 6.5* | ns | HS oscillator | | | ^{*} These parameters are characterized but not tested. - Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. - 2: Instruction cycle period (TcY) equals four times the input oscillator time base period. [†] Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. ### 18-Lead Plastic Dual In-line (P) - 300 mil (PDIP) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | INCHES* | | N | IILLIMETERS | 3 | |----------------------------|-----------|------|---------|------|-------|--------------------|-------| | Dimension | on Limits | MIN | NOM | MAX | MIN | NOM | MAX | | Number of Pins | n | | 18 | | | 18 | | | Pitch | р | | .100 | | | 2.54 | | | Top to Seating Plane | Α | .140 | .155 | .170 | 3.56 | 3.94 | 4.32 | | Molded Package Thickness | A2 | .115 | .130 | .145 | 2.92 | 3.30 | 3.68 | | Base to Seating Plane | A1 | .015 | | | 0.38 | | | | Shoulder to Shoulder Width | Е | .300 | .313 | .325 | 7.62 | 7.94 | 8.26 | | Molded Package Width | E1 | .240 | .250 | .260 | 6.10 | 6.35 | 6.60 | | Overall Length | D | .890 | .898 | .905 | 22.61 | 22.80 | 22.99 | | Tip to Seating Plane | L | .125 | .130 | .135 | 3.18 | 3.30 | 3.43 | | Lead Thickness | С | .008 | .012 | .015 | 0.20 | 0.29 | 0.38 | | Upper Lead Width | B1 | .045 | .058 | .070 | 1.14 | 1.46 | 1.78 | | Lower Lead Width | В | .014 | .018 | .022 | 0.36 | 0.46 | 0.56 | | Overall Row Spacing § | eВ | .310 | .370 | .430 | 7.87 | 9.40 | 10.92 | | Mold Draft Angle Top | α | 5 | 10 | 15 | 5 | 10 | 15 | | Mold Draft Angle Bottom | β | 5 | 10 | 15 | 5 | 10 | 15 | Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007 ^{*} Controlling Parameter § Significant Characteristic ### 28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | INCHES* | | М | ILLIMETERS | | |----------------------------|-------------|-------|---------|-------|-------|------------|-------| | Dimen | sion Limits | MIN | NOM | MAX | MIN | NOM | MAX | | Number of Pins | n | | 28 | | | 28 | | | Pitch | р | | .100 | | | 2.54 | | | Top to Seating Plane | А | .140 | .150 | .160 | 3.56 | 3.81 | 4.06 | | Molded Package Thickness | A2 | .125 | .130 | .135 | 3.18 | 3.30 | 3.43 | | Base to Seating Plane | A1 | .015 | | | 0.38 | | | | Shoulder to Shoulder Width | Е | .300 | .310 | .325 | 7.62 | 7.87 | 8.26 | | Molded Package Width | E1 | .275 | .285 | .295 | 6.99 | 7.24 | 7.49 | | Overall Length | D | 1.345 | 1.365 | 1.385 | 34.16 | 34.67 | 35.18 | | Tip to Seating Plane | L | .125 | .130 | .135 | 3.18 | 3.30 | 3.43 | | Lead Thickness | С | .008 | .012 | .015 | 0.20 | 0.29 | 0.38 | | Upper Lead Width | B1 | .040 | .053 | .065 | 1.02 | 1.33 | 1.65 | | Lower Lead Width | В | .016 | .019 | .022 | 0.41 | 0.48 | 0.56 | | Overall Row Spacing | § eB | .320 | .350 | .430 | 8.13 | 8.89 | 10.92 | | Mold Draft Angle Top | α | 5 | 10 | 15 | 5 | 10 | 15 | | Mold Draft Angle Bottom | β | 5 | 10 | 15 | 5 | 10 | 15 | ^{*} Controlling Parameter § Significant Characteristic Notes: Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed ^{.010&}quot; (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070 | INDEX | Extended | 82, 84 | |---|---|----------| | | Industrial | 80, 83 | | A | PIC16LV54A | | | Absolute Maximum Ratings | Commercial | 108, 109 | | PIC16C54/55/56/5767 | Industrial | 108, 109 | | PIC16C54A103 | DECF | 54 | | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | DECFSZ | 54 | | C58B/CR58B131 | Development Support | 61 | | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | Device Characterization | | | C58B/CR58B-40 | PIC16C54/55/56/57/CR54A | 91 | | PIC16CR54A | PIC16C54A | | | ADDWF | PIC16C54C/C55A/C56A/C57C/C58B-40 | | | | Device Reset Timer (DRT) | | | ALU9 | Device Varieties | | | ANDLW | Digit Carry (DC) bit | | | ANDWF51 | DRT | | | Applications5 | DIX1 | 20 | | Architectural Overview9 | E | | | Assembler | | | | MPASM Assembler61 | Electrical Specifications | 07 | | В | PIC16C54/55/56/57 | | | В | PIC16C54A | | | Block Diagram | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/ | | | On-Chip Reset Circuit20 | C58B/CR58B | | | PIC16C5X Series10 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/ | | | Timer037 | C58B/CR58B-40 | | | TMR0/WDT Prescaler41 | PIC16CR54A | 79 | | Watchdog Timer46 | Errata | 3 | | Brown-Out Protection Circuit | External Power-On Reset Circuit | 21 | | BSF | <u> </u> | | | BTFSC | F | | | BTFSS | Family of Devices | | | 511 00 | PIC16C5X | 6 | | C | FSR Register | 33 | | CALL31, 53 | Value on reset | | | · | 13.00 | | | Carry (C) bit | G | | | Clocking Scheme | General Purpose Registers | | | CLRF53 | Value on reset | 20 | | CLRW | GOTO | | | CLRWDT53 | GO10 | 31, 33 | | CMOS Technology1 | Н | | | Code Protection43, 47 | | | | COMF54 | High-Performance RISC CPU | 1 | | Compatibility182 | 1 | | | Configuration Bits44 | • | | | _ | I/O Interfacing | | | D | I/O Ports | | | Data Memory Organization | I/O Programming Considerations | 36 | | DC Characteristics | ICEPIC In-Circuit Emulator | 62 | | PIC16C54/55/56/57 | ID Locations | 43, 47 | | Commercial | INCF | 55 | | Extended | INCFSZ | 55 | | Industrial | INDF Register | 33 | | PIC16C54A | Value on reset | 20 | | Commercial104, 109 | Indirect Data Addressing | | | • | Instruction Cycle | | | Extended | Instruction Flow/Pipelining | | | · | Instruction Set Summary | | | PIC16C54C/C55A/C56A/C57C/C58B-40 | IORLW | | | Commercial | IORUW | | | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | IOIXWF | 36 | | C58B/CR58B | K | | | Commercial134, 138 | | ٠. | | Extended137, 138 | KeeLoq Evaluation and Programming Tools | 64 | | Industrial134, 138 | L | | | PIC16CR54A | | | | Commercial 80, 83 | Loading of PC | 31 | | M | Q | |--|---| | MCLR Reset | Q cycles13 | | Register values on20 | Quick-Turnaround-Production (QTP) Devices | | Memory Map | | | PIC16C54/CR54/C5525 | R | | PIC16C56/CR5625 | RC Oscillator17 | | PIC16C57/CR57/C58/CR5825 | Read Only Memory (ROM) Devices7 | | Memory Organization25 | Read-Modify-Write36 | | MOVF56 | Register File Map | | MOVLW56 | PIC16C54, PIC16CR54, PIC16C55, PIC16C56, | | MOVWF57 | PIC16CR56 | | MPLAB C17 and MPLAB C18 C Compilers61 | PIC16C57/CR5727 | | MPLAB ICD In-Circuit Debugger63 | PIC16C58/CR5827 | | MPLAB ICE High Performance Universal In-Circuit Emulator | Registers | | with MPLAB IDE62 | Special Function | | MPLAB Integrated Development Environment Software 61 | Value on reset | | MPLINK Object Linker/MPLIB Object Librarian62 | Reset | | N | Reset on Brown-Out | | | RETLW | | NOP57 | RRF | | 0 | KKF | | One-Time-Programmable (OTP) Devices7 | S | | OPTION | Serialized Quick-Turnaround-Production (SQTP) Devices 7 | | OPTION Register | SLEEP | | Value on reset | Software Simulator (MPLAB SIM) | | Oscillator Configurations | Special Features of the CPU | | Oscillator Types | Special Function Registers | | HS15 | Stack | | LP15 | STATUS Register | | RC15 | Value on reset | | XT15 | SUBWF59 | | _ | SWAPF59 | | P | - | | PA0 bit29 | Т | | PA1 bit29 | Timer0 | | Paging31 | Switching Prescaler Assignment 40 | | PC31 | Timer0 (TMR0) Module | | Value on reset | TMR0 register - Value on reset | | PD bit | TMR0 with External Clock | | Peripheral Features | Timing Diagrams and Specifications | | PICDEM 1 Low Cost PIC MCU Demonstration Board 63 | PIC16C54/55/56/57 | | PICDEM 17 Demonstration Board | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | | C58B/CR58B140 | | PICDEM 3 Low Cost PIC16CXXX Demonstration Board 64 PICSTART Plus Entry Level Development Programmer 63 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | Pin Configurations | C58B/CR58B-40160 | | Pinout Description - PIC16C54, PIC16CR54, PIC16C56, | PIC16CR54A | | PIC16CR56, PIC16C58, PIC16CR58 | Timing Parameter Symbology and Load Conditions | | Pinout Description - PIC16C55, PIC16C57, PIC16CR57 12 | PIC16C54/55/56/57 | | PORTA35 | PIC16C54A110 | | Value on reset | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | PORTB35 | C58B/CR58B 139 | | Value on reset20 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | PORTC35 | C58B/CR58B-40159 | | Value on reset20 | PIC16CR54A 85 | | Power-Down Mode47 | TO bit | | Power-On Reset (POR)21 | TRIS | | Register values on20 | TRIS Registers35 | | Prescaler40 | Value on reset | | PRO MATE II Universal Device Programmer63 | 11 | | Program Counter31 | U | | Program Memory Organization25 | UV Erasable Devices7 | | Program Verification/Code Protection47 | | ### PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. | PART NO. | - <u>xx</u> | <u>X</u> | <u>/XX</u> | XXX | Exam | ples: | |-------------------------------------|--|---|--|---------|------|--| | Device | Frequency
Range/OSC
Type | Temperature
Range | Package | Pattern | a) I | PIC16C55A -
PDIP packag
QTP pattern i
PIC16LC54C | | Device | PIC16C54
PIC16C54A
PIC16C754A
PIC16C754C
PIC16C55
PIC16C55A
PIC16C56A
PIC16C56A
PIC16C57
PIC16C57C
PIC16C57C
PIC16C58B
PIC16C788B | PIC16C54T ^C PIC16C54AT PIC16C55AT PIC16C55AT PIC16C55AT PIC16C55AT PIC16C55AT PIC16C56AT PIC16C56AT PIC16C56AT PIC16C56AT PIC16C56AT PIC16C5AT PIC16C5AT PIC16C5AT PIC16C5AT PIC16C5AT PIC16C5AT PIC16C5AT PIC16C5AT PIC16C5AT | (2)
(T ⁽²⁾
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2) | | c) I | protections of the control co | | Frequency Range/
Oscillator Type | HS High Speed 02 200 KHz (LF 04 200 KHz (LF 10 10 MHz (HS 20 20 MHz (HS 40 40 MHz (HS b ⁽⁴⁾ No oscillator *RC/LP/XT/HS at -02 is available fc -04/10/20 options | Crystal ystal/Resonator Crystal) or 2 MHz (XT an) or 4 MHz (XT an i only) i only) i only) r type for JW packa | d RC) liges ⁽³⁾ /57 devices on | es . | | packa JW De progre tion. J requir includ b = Bl | | Temperature Range | b ⁽⁴⁾ = 0°C
I = -40°C
E = -40°C | to +85°C | | | | | | Package | JW = 28-pin
DIP ⁽³⁾
P = 28-pin
SO = 300 m
SS = 209 m
SP = 28-pin | Waffle Pack
600 mil/18-pin 300
600 mil/18-pin 300
il SOIC
il SSOP
300 mil Skinny PE
for additional packa |) mil PDIP | | | | | Pattern | | // code (factory spe
lank for OTP and V | | | | | - 04/P 301 = Commercial Temp., ge, 4 MHz, standard VDD limits, - 04I/SO Industrial Temp., SOIC kHz, extended V_{DD} limits - RC/SP = RC Oscillator, commernny PDIP package, 4 MHz, stan- - Γ -40/SS 123 = commercial P package in tape and reel, 4 ded VDD limits, ROM pattern ormal voltage range extended - tape and reel SOIC and SSOP iges only - evices are UV erasable and can be ammed to any device configura-IW Devices meet the electrical ements of each oscillator type, ing LC devices. - ank #### Sales and Support #### **Data Sheets** Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: - Your local Microchip sales office - The Microchip Worldwide Site (www.microchip.com)