Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 4MHz | | Connectivity | - | | Peripherals | POR, WDT | | Number of I/O | 20 | | Program Memory Size | 768B (512 x 12) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 24 x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 6.25V | | Data Converters | - | | Oscillator Type | External | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Through Hole | | Package / Case | 28-DIP (0.600", 15.24mm) | | Supplier Device Package | 28-PDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16c55-xti-p | | | | ### 8-Bit EPROM/ROM-Based CMOS Microcontrollers #### 1.0 GENERAL DESCRIPTION The PIC16C5X from Microchip Technology is a family of low cost, high performance, 8-bit fully static, EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle except for program branches which take two cycles. The PIC16C5X delivers performance in an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly. The PIC16C5X products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external RESET circuitry. There are four oscillator configurations to choose from, including the power saving LP (Low Power) oscillator and cost saving RC oscillator. Power saving SLEEP mode, Watchdog Timer and Code Protection features improve system cost, power and reliability. The UV erasable CERDIP packaged versions are ideal for code development, while the cost effective One Time Programmable (OTP) versions are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility. The PIC16C5X products are supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full featured programmer. All the tools are supported on IBM® PC and compatible machines. #### 1.1 Applications The PIC16C5X series fits perfectly in applications ranging from high speed automotive and appliance motor control to low power remote transmitters/receivers, pointing devices and telecom processors. The EPROM technology makes customizing application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low cost, low power, high performance ease of use and I/O flexibility make the PIC16C5X series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, co-processor applications). FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM NOTES: #### **7.0 I/O PORTS** As with any other register, the I/O Registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers (TRISA, TRISB, TRISC) are all set. #### 7.1 PORTA PORTA is a 4-bit I/O Register. Only the low order 4 bits are used (RA<3:0>). Bits 7-4 are unimplemented and read as '0's. #### 7.2 PORTB PORTB is an 8-bit I/O Register (PORTB<7:0>). #### 7.3 PORTC PORTC is an 8-bit I/O Register for PIC16C55, PIC16C57 and PIC16CR57. PORTC is a General Purpose Register for PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and PIC16CR58. #### 7.4 TRIS Registers The Output Driver Control Registers are loaded with the contents of the W Register by executing the TRIS f instruction. A '1' from a TRIS Register bit puts the corresponding output driver in a hi-impedance (input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low. The TRIS Registers are "write-only" and are set (output drivers disabled) upon RESET. #### 7.5 I/O Interfacing The equivalent circuit for an I/O port pin is shown in Figure 7-1. All ports may be used for both input and output operation. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output. FIGURE 7-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN TABLE 7-1: SUMMARY OF PORT REGISTERS | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on
Power-On
Reset | Value on MCLR and WDT Reset | |---------|-------|-------|-------|-----------|------------|----------|----------|-------|-------|-------------------------------|-----------------------------| | N/A | TRIS | | I/O | Control R | egisters (| TRISA, T | RISB, TR | ISC) | | 1111 1111 | 1111 1111 | | 05h | PORTA | _ | _ | _ | _ | RA3 | RA2 | RA1 | RA0 | xxxx | uuuu | | 06h | PORTB | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | xxxx xxxx | uuuu uuuu | | 07h | PORTC | RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 | xxxx xxxx | uuuu uuuu | Legend: x = unknown, u = unchanged, — = unimplemented, read as '0', Shaded cells = unimplemented, read as '0' NOTES: | RLF | Rotate Left f through Carry | | | | | | | |---|---|---|-------|------|--|--|--| | Syntax: | [label | [label] RLF f,d | | | | | | | Operands: | | $\begin{aligned} 0 &\leq f \leq 31 \\ d &\in [0,1] \end{aligned}$ | | | | | | | Operation: | See de | escripti | on be | elow | | | | | Status Affected: | С | | | | | | | | Encoding: | 0011 | 010 | df | ffff | | | | | Description: | The contents of register 'f' are rotated one bit to the left through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'. | | | | | | | | Words: | 1 | | | | | | | | Cycles: | 1 | | | | | | | | Example: | RLF | REG | 1,0 | | | | | | Before Instru
REG1
C
After Instruc | = | 1110
0 | 0110 | 0 | | | | | REG1
W | = | 1110
1100 | 0110 | - | | | | | C | = | 1 | 1100 | U | | | | | RRF | Rotate Right f through Carry | | | | | | | |--|--|-------------------|--------|------|--|--|--| | Syntax: | [label | [label] RRF f,d | | | | | | | Operands: | $0 \le f \le d \in [0]$ | | | | | | | | Operation: | See d | escript | ion be | elow | | | | | Status Affected: | С | | | | | | | | Encoding: | 0011 | . 00 | df | ffff | | | | | Description: | The contents of register 'f' are rotated one bit to the right through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. | | | | | | | | Words: | 1 | | | | | | | | Cycles: | 1 | | | | | | | | Example: | RRF | REC | 31,0 | | | | | | Before Instru
REG1
C
After Instruct
REG1 | = = | 1110
0 | 0110 | | | | | | W
C | = | 0111
0 | 001 | 1 | | | | | SLEEP | Enter SLEEP Mode | | | | | | | |------------------|--|-------|------|--|--|--|--| | Syntax: | [label] | SLEEP | | | | | | | Operands: | None | | | | | | | | Operation: | 00h → WDT;
0 → WDT prescaler; if assigned
1 → \overline{TO} ;
0 → \overline{PD} | | | | | | | | Status Affected: | $\overline{TO}, \overline{PD}$ | | | | | | | | Encoding: | 0000 | 0000 | 0011 | | | | | | Description: | Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See section on SLEEP for more details. | | | | | | | | Words: | 1 | | | | | | | | Cycles: | 1 | | | | | | | | Example: | SLEEP | | | | | | | #### 13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A ### Absolute Maximum Ratings(†) | Ambient Temperature under bias | 55°C to +125°C | |---|----------------------| | Storage Temperature | 65°C to +150°C | | Voltage on VDD with respect to Vss | 0 to +7.5V | | Voltage on MCLR with respect to Vss ⁽¹⁾ | 0 to +14V | | Voltage on all other pins with respect to Vss | 0.6V to (VDD + 0.6V) | | Total power dissipation ⁽²⁾ | 800 mW | | Max. current out of Vss pin | 150 mA | | Max. current into VDD pin | 50 mA | | Max. current into an input pin (T0CKI only) | ±500 μA | | Input clamp current, IIK (VI < 0 or VI > VDD) | ±20 mA | | Output clamp current, IOK (V0 < 0 or V0 > VDD) | ±20 mA | | Max. output current sunk by any I/O pin | 25 mA | | Max. output current sourced by any I/O pin | 20 mA | | Max. output current sourced by a single I/O port (PORTA or B) | 40 mA | | Max. output current sunk by a single I/O port (PORTA or B) | 50 mA | - **Note 1:** Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a low level to the \overline{MCLR} pin rather than pulling this pin directly to Vss. - 2: Power Dissipation is calculated as follows: PDIS = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOL x IOL) † NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A AC Characteristics Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}\text{C} \leq \text{Ta} \leq +70^{\circ}\text{C}$ for commercial $-40^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C}$ for industrial $-40^{\circ}\text{C} \leq \text{Ta} \leq +125^{\circ}\text{C}$ for extended | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | Conditions | |--------------|------------|---------------------------------------|------|--------|--------|-------|------------------| | 1 | Tosc | External CLKIN Period ⁽¹⁾ | 250 | | _ | ns | XT osc mode | | | | | 250 | _ | _ | ns | HS osc mode (04) | | | | | 100 | _ | _ | ns | HS osc mode (10) | | | | | 50 | _ | _ | ns | HS osc mode (20) | | | | | 5.0 | _ | _ | μS | LP osc mode | | | | Oscillator Period ⁽¹⁾ | 250 | _ | _ | ns | RC osc mode | | | | | 250 | _ | 10,000 | ns | XT osc mode | | | | | 250 | _ | 250 | ns | HS osc mode (04) | | | | | 100 | _ | 250 | ns | HS osc mode (10) | | | | | 50 | _ | 250 | ns | HS osc mode (20) | | | | | 5.0 | _ | 200 | μS | LP osc mode | | 2 | Tcy | Instruction Cycle Time ⁽²⁾ | _ | 4/Fosc | _ | _ | | | 3 | TosL, TosH | Clock in (OSC1) Low or High | 50* | _ | _ | ns | XT oscillator | | | | Time | 20* | _ | _ | ns | HS oscillator | | | | | 2.0* | _ | _ | μS | LP oscillator | | 4 | TosR, TosF | Clock in (OSC1) Rise or Fall | _ | _ | 25* | ns | XT oscillator | | | | Time | _ | _ | 25* | ns | HS oscillator | | | | | | | 50* | ns | LP oscillator | - * These parameters are characterized but not tested. - † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. - **Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. - 2: Instruction cycle period (TCY) equals four times the input oscillator time base period. #### 15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A Absolute Maximum Ratings(†) Storage temperature ——65°C to +150°C Voltage on all other pins with respect to Vss—0.6V to (VDD + 0.6V) Total power dissipation⁽¹⁾......800 mW Input clamp current, IK (VI < 0 or VI > VDD)......±20 mA Output clamp current, IOK (VO < 0 or VO > VDD)±20 mA Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOL x IOL) † NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ## 15.3 DC Characteristics: PIC16LV54A-02 (Commercial) PIC16LV54A-02I (Industrial) | PIC16LV54A-02
PIC16LV54A-02I
(Commercial, Industrial) | | | Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-20^{\circ}C \le TA \le +85^{\circ}C$ for industrial | | | | | |---|--------|--|--|--------------------|-----------------|----------------|--| | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | Conditions | | D001 | VDD | Supply Voltage
RC and XT modes | 2.0 | _ | 3.8 | V | | | D002 | VDR | RAM Data Retention
Voltage ⁽¹⁾ | _ | 1.5* | _ | V | Device in SLEEP mode | | D003 | VPOR | VDD Start Voltage to ensure Power-on Reset | _ | Vss | _ | V | See Section 5.1 for details on Power-on Reset | | D004 | SVDD | VDD Rise Rate to ensure
Power-on Reset | 0.05* | _ | _ | V/ms | See Section 5.1 for details on
Power-on Reset | | D010 | IDD | Supply Current ⁽²⁾ RC ⁽³⁾ and XT modes LP mode, Commercial LP mode, Industrial | | 0.5
11
14 |
27
35 | mA
μA
μA | Fosc = 2.0 MHz, VDD = 3.0V
Fosc = 32 kHz, VDD = 2.5V WDT disabled
Fosc = 32 kHz, VDD = 2.5V WDT disabled | | D020 | IPD | Power-down Current ^(2,4) Commercial Commercial Industrial | _
_
_ | 2.5
0.25
3.5 | 12
4.0
14 | μΑ
μΑ
μΑ | VDD = 2.5V, WDT enabled
VDD = 2.5V, WDT disabled
VDD = 2.5V, WDT enabled | | | | Industrial | | 0.3 | 5.0 | μA | VDD = 2.5V, WDT disabled | ^{*} These parameters are characterized but not tested. - † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. - Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data. - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption. - a) The test conditions for all IDD measurements in active Operation mode <u>are: OSC1 = external square</u> wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified. - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type. - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in $k\Omega$. - **4:** The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection on wake-up from SLEEP mode or during initial power-up. #### **Timing Parameter Symbology and Load Conditions** 15.5 The timing parameter symbols have been created with one of the following formats: 1. TppS2ppS Low 2. TppS | Т | | | |------|---|--------------------| | F | Frequency | T Time | | Lowe | ercase letters (pp) and their meanings: | | | pp | | | | 2 | to | mc MCLR | | ck | CLKOUT | osc oscillator | | су | cycle time | os OSC1 | | drt | device reset timer | t0 T0CKI | | io | I/O port | wdt watchdog timer | | Uppe | ercase letters and their meanings: | | | S | | | | F | Fall | P Period | | Н | High | R Rise | | I | Invalid (Hi-impedance) | V Valid | Hi-impedance #### **FIGURE 15-1:** LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54A #### FIGURE 15-5: TIMER0 CLOCK TIMINGS - PIC16C54A TABLE 15-4: TIMERO CLOCK REQUIREMENTS - PIC16C54A | TABLE 15-4: | HIMERO CLOC | K REQUIREMENTS | - PIC16C54A | | | | | |-------------|--------------|---------------------|-----------------|-------------------------|---------|----------|------------------------| | | | Standard Operating | Conditions (ur | nless o | therw | ise spe | cified) | | | | Operating Temperatu | ure 0°C ≤ | T A ≤ + 7 | 70°C fo | or comn | nercial | | AC Cha | racteristics | | -40°C ≤ | T A ≤ + 8 | 5°C fo | or indus | trial | | | | | – 20°C ≤ | T A ≤ + 8 | S5°C fo | or indus | trial - PIC16LV54A-02I | | | | | -40°C ≤ | TA ≤ +1 | 25°C | for exte | nded | | | | | | | | | | | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | Conditions | |--------------|--------|------------------------|------------------------------|------|-----|-------|---| | 40 | Tt0H | T0CKI High Pulse Width | | | | | | | | | - No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | - With Prescaler | 10* | _ | _ | ns | | | 41 | Tt0L | T0CKI Low Pulse Width | | | | | | | | | - No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | - With Prescaler | 10* | _ | _ | ns | | | 42 | Tt0P | T0CKI Period | 20 or <u>Tcy + 40</u> *
N | _ | 1 | | Whichever is greater. N = Prescale Value (1, 2, 4,, 256) | ^{*} These parameters are characterized but not tested. [†] Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 16-18: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR vs. VDD FIGURE 16-19: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD NOTES: FIGURE 17-1: PIC16C54C/55A/56A/57C/58B-04, 20 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_{A} \le +70^{\circ}C$ (COMMERCIAL TEMPS) **Note 1:** The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. FIGURE 17-2: PIC16C54C/55A/56A/57C/58B-04, 20 VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \leq T_A < 0^{\circ}C, +70^{\circ}C < T_A \leq +125^{\circ}C \text{ (OUTSIDE OF COMMERCIAL TEMPS)}$ Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. FIGURE 17-3: PIC16LC54C/55A/56A/57C/58B VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \leq T_{A} \leq +85^{\circ}C$ Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. FIGURE 17-4: PIC16LC54C/55A/56A/57C/58B VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 0^{\circ}\text{C}$ Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. ### 17.4 Timing Parameter Symbology and Load Conditions The timing parameter symbols have been created with one of the following formats: - 1. TppS2ppS - 2. TppS | T | | | | | | | |--|--------|--|--|--|--|--| | F Frequency | T Time | | | | | | | Lowercase letters (pp) and their meanings: | | | | | | | | рр | | | |-----|--------------------|--------------------| | 2 | to | mc MCLR | | ck | CLKOUT | osc oscillator | | су | cycle time | os OSC1 | | drt | device reset timer | t0 T0CKI | | io | I/O port | wdt watchdog timer | Uppercase letters and their meanings: | S | | | | |---|------------------------|---|--------------| | F | Fall | Р | Period | | Н | High | R | Rise | | 1 | Invalid (Hi-impedance) | V | Valid | | L | Low | Z | Hi-impedance | ## FIGURE 17-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B-04, 20 **FIGURE 18-4:** TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean - 3s (-40°C to 125°C) 700 R=3.3K 600 500 R=5K Fosc (kHz) 400 300 R=10K 200 100 R=100K 0 2.5 3.0 3.5 5.0 6.0 VDD (Volts) FIGURE 18-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C) FIGURE 18-7: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (-40°C, 85°C) | M | Q | |--|---| | MCLR Reset | Q cycles13 | | Register values on20 | Quick-Turnaround-Production (QTP) Devices | | Memory Map | | | PIC16C54/CR54/C5525 | R | | PIC16C56/CR5625 | RC Oscillator17 | | PIC16C57/CR57/C58/CR5825 | Read Only Memory (ROM) Devices7 | | Memory Organization25 | Read-Modify-Write36 | | MOVF56 | Register File Map | | MOVLW56 | PIC16C54, PIC16CR54, PIC16C55, PIC16C56, | | MOVWF57 | PIC16CR56 | | MPLAB C17 and MPLAB C18 C Compilers61 | PIC16C57/CR5727 | | MPLAB ICD In-Circuit Debugger63 | PIC16C58/CR5827 | | MPLAB ICE High Performance Universal In-Circuit Emulator | Registers | | with MPLAB IDE62 | Special Function | | MPLAB Integrated Development Environment Software 61 | Value on reset | | MPLINK Object Linker/MPLIB Object Librarian62 | Reset | | N | Reset on Brown-Out | | | RETLW | | NOP57 | RRF | | 0 | KKF | | One-Time-Programmable (OTP) Devices7 | S | | OPTION | Serialized Quick-Turnaround-Production (SQTP) Devices 7 | | OPTION Register | SLEEP | | Value on reset | Software Simulator (MPLAB SIM) | | Oscillator Configurations | Special Features of the CPU | | Oscillator Types | Special Function Registers | | HS15 | Stack | | LP15 | STATUS Register | | RC15 | Value on reset | | XT15 | SUBWF59 | | _ | SWAPF59 | | P | - | | PA0 bit29 | Т | | PA1 bit29 | Timer0 | | Paging31 | Switching Prescaler Assignment 40 | | PC31 | Timer0 (TMR0) Module | | Value on reset | TMR0 register - Value on reset | | PD bit | TMR0 with External Clock | | Peripheral Features | Timing Diagrams and Specifications | | PICDEM 1 Low Cost PIC MCU Demonstration Board 63 | PIC16C54/55/56/57 | | PICDEM 17 Demonstration Board | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | | C58B/CR58B140 | | PICDEM 3 Low Cost PIC16CXXX Demonstration Board 64 PICSTART Plus Entry Level Development Programmer 63 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | Pin Configurations | C58B/CR58B-40160 | | Pinout Description - PIC16C54, PIC16CR54, PIC16C56, | PIC16CR54A | | PIC16CR56, PIC16C58, PIC16CR58 | Timing Parameter Symbology and Load Conditions | | Pinout Description - PIC16C55, PIC16C57, PIC16CR57 12 | PIC16C54/55/56/57 | | PORTA35 | PIC16C54A110 | | Value on reset | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | PORTB35 | C58B/CR58B 139 | | Value on reset20 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | PORTC35 | C58B/CR58B-40159 | | Value on reset20 | PIC16CR54A 85 | | Power-Down Mode47 | TO bit | | Power-On Reset (POR)21 | TRIS | | Register values on20 | TRIS Registers35 | | Prescaler40 | Value on reset20 | | PRO MATE II Universal Device Programmer63 | 11 | | Program Counter31 | U | | Program Memory Organization25 | UV Erasable Devices7 | | Program Verification/Code Protection47 | |