Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 4MHz | | Connectivity | - | | Peripherals | POR, WDT | | Number of I/O | 20 | | Program Memory Size | 768B (512 x 12) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 24 x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 6.25V | | Data Converters | - | | Oscillator Type | External | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Through Hole | | Package / Case | 28-DIP (0.300", 7.62mm) | | Supplier Device Package | 28-SPDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16c55-xti-sp | | | | ## 4.0 OSCILLATOR CONFIGURATIONS ### 4.1 Oscillator Types PIC16C5Xs can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes: LP: Low Power Crystal XT: Crystal/Resonator 3. HS: High Speed Crystal/Resonator 4. RC: Resistor/Capacitor **Note:** Not all oscillator selections available for all parts. See Section 9.1. ### 4.2 Crystal Oscillator/Ceramic Resonators In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16C5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2). FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION) - **Note 1:** See Capacitor Selection tables for recommended values of C1 and C2. - **2:** A series resistor (RS) may be required for AT strip cut crystals. - 3: RF varies with the Oscillator mode chosen (approx. value = $10 \text{ M}\Omega$). # FIGURE 4-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION) TABLE 4-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS - PIC16C5X, PIC16CR5X | Osc
Type | Resonator
Freq | Cap. Range
C1 | Cap. Range
C2 | |-------------|-------------------|------------------|------------------| | XT | 455 kHz | 68-100 pF | 68-100 pF | | | 2.0 MHz | 15-33 pF | 15-33 pF | | | 4.0 MHz | 10-22 pF | 10-22 pF | | HS | 8.0 MHz | 10-22 pF | 10-22 pF | | | 16.0 MHz | 10 pF | 10 pF | These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components. TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR - PIC16C5X. PIC16CR5X | | | 000X, 1 10 10 | <u> </u> | |-------------|-----------------------|-----------------|------------------| | Osc
Type | Crystal
Freq | Cap.Range
C1 | Cap. Range
C2 | | LP | 32 kHz ⁽¹⁾ | 15 pF | 15 pF | | XT | 100 kHz | 15-30 pF | 200-300 pF | | | 200 kHz | 15-30 pF | 100-200 pF | | | 455 kHz | 15-30 pF | 15-100 pF | | | 1 MHz | 15-30 pF | 15-30 pF | | | 2 MHz | 15 pF | 15 pF | | | 4 MHz | 15 pF | 15 pF | | HS | 4 MHz | 15 pF | 15 pF | | | 8 MHz | 15 pF | 15 pF | | | 20 MHz | 15 pF | 15 pF | Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components. **Note:** If you change from this device to another device, please verify oscillator characteristics in your application. #### 6.3 STATUS Register This register contains the arithmetic status of the ALU, the RESET status and the page preselect bits for program memories larger than 512 words. The STATUS Register can be the destination for any instruction, as with any other register. If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS Register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS Register as 000u uluu (where u = unchanged). It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS Register because these instructions do not affect the Z, DC or C bits from the STATUS Register. For other instructions which do affect STATUS Bits, see Section 10.0, Instruction Set Summary. #### REGISTER 6-1: STATUS REGISTER (ADDRESS: 03h) | R/W-0 | R/W-0 | R/W-0 | R-1 | R-1 | R/W-x | R/W-x | R/W-x | | |-------|-------|-------|-----|-----|-------|-------|-------|--| | PA2 | PA1 | PA0 | TO | PD | Z | DC | С | | | bit 7 | | | | | | | bit 0 | | bit 7: **PA2**: This bit unused at this time. Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products. bit 6-5: PA<1:0>: Program page preselect bits (PIC16C56/CR56)(PIC16C57/CR57)(PIC16C58/CR58) 00 = Page 0 (000h - 1FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58 01 = Page 1 (200h - 3FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58 10 = Page 2 (400h - 5FFh) - PIC16C57/CR57, PIC16C58/CR58 11 = Page 3 (600h - 7FFh) - PIC16C57/CR57, PIC16C58/CR58 Each page is 512 words. Using the PA<1:0> bits as general purpose read/write bits in devices which do not use them for program page preselect is not recommended since this may affect upward compatibility with future products. bit 4: **TO**: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred bit 3: **PD**: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2: Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1: **DC**: Digit carry/borrow bit (for ADDWF and SUBWF instructions) #### ADDWF 1 = A carry from the 4th low order bit of the result occurred 0 = A carry from the 4th low order bit of the result did not occur #### **SUBWF** 1 = A borrow from the 4th low order bit of the result did not occur 0 = A borrow from the 4th low order bit of the result occurred bit 0: C: Carry/borrow bit (for ADDWF, SUBWF and RRF, RLF instructions) ADDWF SUBWF RRF or RLF 1 = A carry occurred 1 = A borrow did not occur 0 = A carry did not occur 0 = A borrow occurred Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown Loaded with LSb or MSb, respectively ### PIC16C5X NOTES: # PIC16C5X | BSF | | | | | | | | | | |--|----------------------------------|-------------|---------|--|--|--|--|--|--| | Syntax: | [label] | BSF f,b | | | | | | | | | Operands: | $0 \le f \le 31$ $0 \le b \le 7$ | | | | | | | | | | Operation: | $1 \rightarrow (f < b)$ | >) | | | | | | | | | Status Affected: None | | | | | | | | | | | Encoding: | 0101 | bbbf | ffff | | | | | | | | Description: | Bit 'b' in r | egister 'f' | is set. | | | | | | | | Words: | 1 | | | | | | | | | | Cycles: | 1 | | | | | | | | | | Example: | BSF | FLAG_RE | EG, 7 | | | | | | | | Before Instru
FLAG_F
After Instruc | REG = 0 |)x0A | | | | | | | | | FLAG_F | REG = 0 | A8x(| | | | | | | | | BTFSC | Bit Test f, Skip if Clear | | | | | | |---------------------------------------|---|---|--|--|--|--| | Syntax: | [label] BTFSC f,b | | | | | | | Operands: | $\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$ | | | | | | | Operation: | skip if $(f < b >) = 0$ | | | | | | | Status Affected: | None | | | | | | | Encoding: | 0110 bbbf ffff | | | | | | | Description: | If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2-cycle instruction. | | | | | | | Words: | 1 | | | | | | | Cycles: | 1(2) | | | | | | | Example: | HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • • | E | | | | | | Before Instru
PC
After Instruct | = address (HERE) | | | | | | | if FLAG
PC
if FLAG
PC | = address (TRUE); | | | | | | | BTFSS | Bit Test f, Skip if Set | | | | | | | |--|--|---|--|--|--|--|--| | Syntax: | [label] BTFSS f,b | | | | | | | | Operands: | $0 \le f \le 31$
$0 \le b < 7$ | | | | | | | | Operation: | skip if $(f < b >) = 1$ | | | | | | | | Status Affected: | None | | | | | | | | Encoding: | 0111 bbbf ffff | | | | | | | | Description: | If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2-cycle instruction. | | | | | | | | Words: | 1 | | | | | | | | Cycles: | 1(2) | | | | | | | | Example: | HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • • | : | | | | | | | Before Instru
PC
After Instruc
If FLAG-
PC
if FLAG-
PC | = address (HERE) ction <1> = 0, | | | | | | | | SUBWF | Subtract W from f | SWAPF | Swap Nibbles in f | |---|---|--|--| | Syntax: | [<i>label</i>] SUBWF f,d | Syntax: | [label] SWAPF f,d | | Operands: | $0 \le f \le 31$
$d \in [0,1]$ | Operands: | $0 \le f \le 31$
$d \in [0,1]$ | | Operation: Status Affected: | $(f) - (W) \rightarrow (dest)$
C, DC, Z | Operation: | $(f<3:0>) \to (dest<7:4>);$
$(f<7:4>) \to (dest<3:0>)$ | | | | Status Affected: | None | | Encoding: | 0000 10df ffff | Encoding: | 0011 10df ffff | | Description: | Subtract (2's complement method) the W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. | Description: | The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in | | Words: | 1 | | register 'f'. | | Cycles: | 1 | Words: | 1 | | Example 1: | SUBWF REG1, 1 | Cycles: | 1 | | Before Instru | uction | Example | SWAPF REG1, 0 | | REG1
W
C
After Instruc
REG1 | = 3
= 2
= ?
ition
= 1 | Before Instr
REG1
After Instruc
REG1
W | = 0xA5 | | W | = 2 | | | | C
Evernle 2: | = 1 ; result is positive | | | | Example 2:
Before Instru | uction | TRIS | Load TRIS Register | | REG1 | = 2 | Syntax: | [label] TRIS f | | W | = 2 | Operands: | f = 5, 6 or 7 | | С | = ? | Operation: | $(W) \rightarrow TRIS$ register f | | After Instruc | | Status Affected: | • , | | REG1 | = 0 | | | | W | = 2 | Encoding: | 0000 0000 Offf | | C
Example 3:
Before Ins | | Description: | TRIS register 'f' (f = 5, 6, or 7) is loaded with the contents of the W register. | | REG1 | = 1 | Words: | 1 | | W | = 2 | Cycles: | 1 | | C | = ? | • | | | After Instruc
REG1 | · · | Example | TRIS PORTB | | W | = 0xFF
= 2 | Before Instru | | | C | = 0 ; result is negative | W
After Instruc
TRISB | = 0xA5
tion
= 0xA5 | **TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP** | MPLAB® Integrated | > | > > > > > > > | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | > > > > > | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | S S S S S S | , , , , , , , , , , , , , , , , , , , | | | |--|---|---|--|---------------------------------------|---------------------------------------|--------------------|---------------------------------------|----------|---| | MPLAB® C17 C Compiler MPLAB® C18 C Compiler | | | | S S S S S | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | MPLAB® C18 C Compiler | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | S S S S | | | | | MPASM™ Assembler/
MPLINK™ Object Linker ✓ | | >> > > > | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | > > > > | > > > > | S S S S | | | | | MPLAB® ICE In-Circuit Emulator | > > > > | > > > | > > > > | \$ \$ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | , , , | \ \ \ \ \ \ | | | | ICEPIC™ In-Circuit Emulator | > > > | > > > | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \ \ \ \ \ \ | \ \ \ \ \ \ \ | \ | , , | | | | MPLAB® ICD In-Circuit Debugger PICSTART® Plus Entry Level Development Programmer PRO MATE® II Universal Device Programmer PICDEM™ 1 Demonstration Board PICDEM™ 2 Demonstration Board PICDEM™ 3 Demonstration Board PICDEM™ 14A Demonstration Board PICDEM™ 14A Demonstration PICDEM™ 15 | > > | · · · | > > | \ \ \ \ | > > | , , | > > | | | | PICSTART® Plus Entry Level Development Programmer PRO MATE® II Universal Device Programmer PICDEM™ 1 Demonstration Board PICDEM™ 2 Demonstration Board PICDEM™ 3 Demonstration Board PICDEM™ 3 Demonstration Board PICDEM™ 4A Demonstration PICDEM™ 4A Demonstration PICDEM™ 4A Demonstration | > > | > > | > > | > > | > > | , , | > | | | | PRO MATE® II Universal Device Programmer PICDEM™ 1 Demonstration Board PICDEM™ 2 Demonstration Board PICDEM™ 3 Demonstration Board PICDEM™ 4A Demonstration Board PICDEM™ 4A Demonstration Board PICDEM™ 4A Demonstration | > | > | > | ` | > | `` | | | | | W TM 1 Demonstration W TM 2 Demonstration W TM 3 Demonstration | | | | | _ | | ` | <u>`</u> | | | PICDEM™ 2 Demonstration Board PICDEM™ 3 Demonstration Board PICDEM™ 14A Demonstration | + | | | > | | | | | | | PICDEM™ 3 Demonstration Board PICDEM™ 14A Demonstration Board | | | | | | > | ` | | | | PICDEM™ 14A Demonstration
Board | | | > | | | | | | | | | | | | | | | | | | | PICDEM™ 17 Demonstration Board | | | | | > | | | | | | | | | | | | | | > | | | | | | | | | | | > | | | microID™ Programmer's Kit | | | | | | | | | > | | 5 125 kHz microID™
Developer's Kit | | | | | | | | | > | | 125 kHz Anticollision microlD TM Developer's Kit | | | | | | | | | > | | 13.56 MHz Anticollision microlD™ Developer's Kit | | | | | | | | | > | | MCP2510 CAN Developer's Kit | | | | | | | | | | #### 12.2 DC Characteristics: PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial) | PIC16C
(Indus | | 57-RCI, XTI, 10I, HSI, LPI | | Standard Operating Conditions (unless otherwise specified) Operating Temperature −40°C ≤ TA ≤ +85°C for industrial | | | | | | |------------------|--------|--|---------------------------------|---|------------------------------------|----------------------------|---|--|--| | Param
No. | Symbol | Characteristic/Device | Min | Тур† | Max | Units | Conditions | | | | D001 | VDD | Supply Voltage PIC16C5X-RCI PIC16C5X-XTI PIC16C5X-10I PIC16C5X-HSI PIC16C5X-LPI | 3.0
3.0
4.5
4.5
2.5 | | 6.25
6.25
5.5
5.5
6.25 | V
V
V
V | | | | | D002 | VDR | RAM Data Retention Voltage ⁽¹⁾ | _ | 1.5* | _ | V | Device in SLEEP mode | | | | D003 | VPOR | VDD Start Voltage to ensure
Power-on Reset | _ | Vss | _ | V | See Section 5.1 for details on Power-on Reset | | | | D004 | SVDD | VDD Rise Rate to ensure
Power-on Reset | 0.05* | _ | _ | V/ms | See Section 5.1 for details on Power-on Reset | | | | D010 | IDD | Supply Current ⁽²⁾ PIC16C5X-RCI ⁽³⁾ PIC16C5X-XTI PIC16C5X-10I PIC16C5X-HSI PIC16C5X-HSI PIC16C5X-LPI | _
_
_
_ | 1.8
1.8
4.8
4.8
9.0 | 3.3
3.3
10
10
20
40 | mA
mA
mA
mA
μA | FOSC = 4 MHz, VDD = 5.5V
FOSC = 4 MHz, VDD = 5.5V
FOSC = 10 MHz, VDD = 5.5V
FOSC = 10 MHz, VDD = 5.5V
FOSC = 20 MHz, VDD = 5.5V
FOSC = 32 kHz, VDD = 3.0V,
WDT disabled | | | | D020 | IPD | Power-down Current ⁽²⁾ | _
_ | 4.0
0.6 | 14
12 | μ Α
μ Α | VDD = 3.0V, WDT enabled
VDD = 3.0V, WDT disabled | | | ^{*} These parameters are characterized but not tested. - Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data. - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption. - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, $\overline{MCLR} = VDD$; WDT enabled/disabled as specified. - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type. - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ. [†] Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested. # 12.4 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial) PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial) | DC CH | ARACTE | RISTICS | Standard O
Operating Te | | ire 0°C | ≤ TA ≤ + | s otherwise specified)
-70°C for commercial
-85°C for industrial | |--------------|--------|---|--|-------------------------------|--|----------------------------|--| | Param
No. | Symbol | Characteristic/Device | Min | Тур† | Max | Units | Conditions | | D030 | VIL | Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) | Vss
Vss
Vss
Vss
Vss | _
_
_
_ | 0.2 VDD
0.15 VDD
0.15 VDD
0.15 VDD
0.3 VDD | V
V
V
V | Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP | | D040 | VIH | Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) | 0.45 VDD
2.0
0.36 VDD
0.85 VDD
0.85 VDD
0.85 VDD
0.7 VDD | | VDD
VDD
VDD
VDD
VDD
VDD | V
V
V
V
V | For all VDD ⁽⁴⁾ 4.0V < VDD ≤ 5.5V ⁽⁴⁾ VDD > 5.5V PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP | | D050 | VHYS | Hysteresis of Schmitt
Trigger inputs | 0.15 VDD* | _ | _ | V | | | D060 | IIL | Input Leakage Current ^(1,2) I/O ports MCLR MCLR TOCKI OSC1 | -1
-5
-3
-3 | 0.5
—
0.5
0.5
0.5 | +1

+5
+3
+3 | μΑ
μΑ
μΑ
μΑ
μΑ | For Vdd \leq 5.5V:
VSS \leq VPIN \leq VDD,
pin at hi-impedance
VPIN = VSS + 0.25V
VPIN = VDD
VSS \leq VPIN \leq VDD
VSS \leq VPIN \leq VDD,
PIC16C5X-XT, 10, HS, LP | | D080 | Vol | Output Low Voltage I/O ports OSC2/CLKOUT | _ | _ | 0.6
0.6 | V
V | IOL = 8.7 mA, VDD = 4.5V
IOL = 1.6 mA, VDD = 4.5V,
PIC16C5X-RC | | D090 | Voн | Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT | VDD - 0.7
VDD - 0.7 | _
_ | _
_ | V
V | IOH = -5.4 mA, VDD = 4.5V
IOH = -1.0 mA, VDD = 4.5V,
PIC16C5X-RC | ^{*} These parameters are characterized but not tested. - 2: Negative current is defined as coming out of the pin. - **3:** For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode. - 4: The user may use the better of the two specifications. [†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. **Note 1:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage. #### 13.6 Timing Diagrams and Specifications FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A | AC Chara | cteristics | -40 | ${}^{C}C \leq TA$ ${}^{C}C \leq TA$ | ess other
≤ +70°C
≤ +85°C 1
≤ +125°C | for com | mercial
strial | | |--------------|------------|---|-------------------------------------|---|---------|-------------------|------------------| | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | Conditions | | | Fosc | External CLKIN Frequency ⁽¹⁾ | DC | _ | 4.0 | MHz | XT osc mode | | | | | DC | _ | 4.0 | MHz | HS osc mode (04) | | | | | DC | _ | 10 | MHz | HS osc mode (10) | | | | | DC | _ | 20 | MHz | HS osc mode (20) | | | | | DC | _ | 200 | kHz | LP osc mode | | | | Oscillator Frequency ⁽¹⁾ | DC | _ | 4.0 | MHz | RC osc mode | | | | | 0.1 | _ | 4.0 | MHz | XT osc mode | | | | | 4.0 | _ | 4.0 | MHz | HS osc mode (04) | | | | | 4.0 | _ | 10 | MHz | HS osc mode (10) | | | | | 4.0 | _ | 20 | MHz | HS osc mode (20) | | | | | 5.0 | _ | 200 | kHz | LP osc mode | ^{*} These parameters are characterized but not tested. - Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. - 2: Instruction cycle period (TCY) equals four times the input oscillator time base period. [†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. Q1 Q3 Q4 Q2 OSC1 CLKOUT <-18→ 19 14 I/O Pin (input) I/O Pin (output) New Value Old Value 20, 21 Note: Please refer to Figure 13.1 for load conditions. FIGURE 13-3: CLKOUT AND I/O TIMING - PIC16CR54A TABLE 13-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR54A | AC Characteristics | | Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended | | | | | | | | |--------------------|----------|--|--------------|------|------|-------|--|--|--| | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | | | | | 10 | TosH2ckL | OSC1 [↑] to CLKOUT↓ ⁽¹⁾ | _ | 15 | 30** | ns | | | | | 11 | TosH2ckH | OSC1 [†] to CLKOUT ^{†(1)} | _ | 15 | 30** | ns | | | | | 12 | TckR | CLKOUT rise time ⁽¹⁾ | _ | 5.0 | 15** | ns | | | | | 13 | TckF | CLKOUT fall time ⁽¹⁾ | _ | 5.0 | 15** | ns | | | | | 14 | TckL2ioV | CLKOUT↓ to Port out valid ⁽¹⁾ | _ | _ | 40** | ns | | | | | 15 | TioV2ckH | Port in valid before CLKOUT ⁽¹⁾ | 0.25 TCY+30* | | _ | ns | | | | | 16 | TckH2ioI | Port in hold after CLKOUT ⁽¹⁾ | 0* | | _ | ns | | | | | 17 | TosH2ioV | OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾ | _ | _ | 100* | ns | | | | | 18 | TosH2ioI | OSC1 [†] (Q2 cycle) to Port input invalid (I/O in hold time) | TBD | | _ | ns | | | | | 19 | TioV2osH | Port input valid to OSC1↑ (I/O in setup time) | TBD | | _ | ns | | | | | 20 | TioR | Port output rise time ⁽²⁾ | _ | 10 | 25** | ns | | | | | 21 | TioF | Port output fall time ⁽²⁾ | _ | 10 | 25** | ns | | | | ^{*} These parameters are characterized but not tested. ^{**} These parameters are design targets and are not tested. No characterization data available at this time. [†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc. ^{2:} Please refer to Figure 13.1 for load conditions. FIGURE 14-6: MAXIMUM IPD vs. VDD, WATCHDOG DISABLED FIGURE 14-7: TYPICAL IPD vs. VDD, WATCHDOG ENABLED ### FIGURE 14-8: MAXIMUM IPD vs. VDD, WATCHDOG ENABLED IPD, with WDT enabled, has two components: The leakage current, which increases with higher temperature, and the operating current of the WDT logic, which increases with lower temperature. At -40° C, the latter dominates explaining the apparently anomalous behavior. FIGURE 14-17: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR vs. VDD FIGURE 14-18: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD FIGURE 14-21: PORTA, B AND C IOL vs. Vol, VDD = 3 V FIGURE 14-22: PORTA, B AND C IOL vs. Vol, VDD = 5 V ### 17.0 ELECTRICAL CHARACTERISTICS - PIC16LC54A ### Absolute Maximum Ratings(†) | Ambient temperature under bias | 55°C to +125°C | |---|------------------------------------| | Storage temperature | 65°C to +150°C | | Voltage on VDD with respect to Vss | | | Voltage on MCLR with respect to Vss | 0 to +14V | | Voltage on all other pins with respect to Vss | 0.6V to (VDD + 0.6V) | | Total power dissipation ⁽¹⁾ | | | Max. current out of Vss pin | | | Max. current into VDD pin | 100 mA | | Max. current into an input pin (T0CKI only) | ±500 μA | | Input clamp current, Iik (Vi < 0 or Vi > VDD) | ±20 mA | | Output clamp current, loκ (Vo < 0 or Vo > VDD) | ±20 mA | | Max. output current sunk by any I/O pin | 25 mA | | Max. output current sourced by any I/O pin | 20 mA | | Max. output current sourced by a single I/O (Port A, B or C) | 50 mA | | Max. output current sunk by a single I/O (Port A, B or C) | 50 mA | | Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-V | /OH) x IOH} + Σ (VOL x IOL) | † NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X | AC Characteristics | | Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended | | | | | | | | |--------------------|------------|--|------|--------|-----|-------|----------------|--|--| | Param
No. | Symbol | Characteristic | Min | Typ† | Max | Units | Conditions | | | | 2 | Tcy | Instruction Cycle Time ⁽²⁾ | _ | 4/Fosc | _ | _ | | | | | 3 | TosL, TosH | Clock in (OSC1) Low or High | 50* | _ | _ | ns | XT oscillator | | | | | | Time | 20* | _ | _ | ns | HS oscillator | | | | | | | 2.0* | _ | | μS | LP oscillator | | | | 4 | TosR, TosF | Clock in (OSC1) Rise or Fall | _ | _ | 25* | ns | XT oscillator | | | | | | Time | _ | _ | 25* | ns | HS oscillator | | | | | | | | | 50* | ne | I P oscillator | | | ^{*} These parameters are characterized but not tested. - Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. - 2: Instruction cycle period (TCY) equals four times the input oscillator time base period. [†] Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 17-9: TIMERO CLOCK TIMINGS - PIC16C5X, PIC16CR5X TABLE 17-4: TIMERO CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X | | | Standard Operati | | | | - | • | |--------------|----------|---------------------------------------|---|------|-----|-------|--| | A | AC Chara | cteristics Operating Tempera | ture $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended | | | | | | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | Conditions | | 40 | Tt0H | T0CKI High Pulse Width - No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | - With Prescaler | 10* | _ | _ | ns | | | 41 | TtOL | T0CKI Low Pulse Width - No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | - With Prescaler | 10* | _ | _ | ns | | | 42 | Tt0P | T0CKI Period | 20 or <u>Tcy + 40</u> *
N | _ | _ | ns | Whichever is greater.
N = Prescale Value
(1, 2, 4,, 256) | ^{*} These parameters are characterized but not tested. [†] Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 20-5: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (HS MODE) vs. Vdd ### 28-Lead Plastic Dual In-line (P) - 600 mil (PDIP) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | INCHES* | | N | IILLIMETERS | 3 | |----------------------------|-------|-------|---------|-------|-------|-------------|-------| | Dimension | MIN | NOM | MAX | MIN | NOM | MAX | | | Number of Pins | n | | 28 | | | 28 | | | Pitch | р | | .100 | | | 2.54 | | | Top to Seating Plane | Α | .160 | .175 | .190 | 4.06 | 4.45 | 4.83 | | Molded Package Thickness | A2 | .140 | .150 | .160 | 3.56 | 3.81 | 4.06 | | Base to Seating Plane | A1 | .015 | | | 0.38 | | | | Shoulder to Shoulder Width | Е | .595 | .600 | .625 | 15.11 | 15.24 | 15.88 | | Molded Package Width | E1 | .505 | .545 | .560 | 12.83 | 13.84 | 14.22 | | Overall Length | D | 1.395 | 1.430 | 1.465 | 35.43 | 36.32 | 37.21 | | Tip to Seating Plane | L | .120 | .130 | .135 | 3.05 | 3.30 | 3.43 | | Lead Thickness | С | .008 | .012 | .015 | 0.20 | 0.29 | 0.38 | | Upper Lead Width | B1 | .030 | .050 | .070 | 0.76 | 1.27 | 1.78 | | Lower Lead Width | В | .014 | .018 | .022 | 0.36 | 0.46 | 0.56 | | Overall Row Spacing § | eВ | .620 | .650 | .680 | 15.75 | 16.51 | 17.27 | | Mold Draft Angle Top | α | 5 | 10 | 15 | 5 | 10 | 15 | | Mold Draft Angle Bottom | β | 5 | 10 | 15 | 5 | 10 | 15 | Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011 Drawing No. C04-079 ^{*} Controlling Parameter § Significant Characteristic ### 28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | INCHES* | | N | IILLIMETERS | 3 | |--------------------------|--------|------|---------|------|-------|-------------|-------| | Dimension | Limits | MIN | NOM | MAX | MIN | NOM | MAX | | Number of Pins | n | | 28 | | | 28 | | | Pitch | р | | .050 | | | 1.27 | | | Overall Height | Α | .093 | .099 | .104 | 2.36 | 2.50 | 2.64 | | Molded Package Thickness | A2 | .088 | .091 | .094 | 2.24 | 2.31 | 2.39 | | Standoff § | A1 | .004 | .008 | .012 | 0.10 | 0.20 | 0.30 | | Overall Width | Е | .394 | .407 | .420 | 10.01 | 10.34 | 10.67 | | Molded Package Width | E1 | .288 | .295 | .299 | 7.32 | 7.49 | 7.59 | | Overall Length | D | .695 | .704 | .712 | 17.65 | 17.87 | 18.08 | | Chamfer Distance | h | .010 | .020 | .029 | 0.25 | 0.50 | 0.74 | | Foot Length | L | .016 | .033 | .050 | 0.41 | 0.84 | 1.27 | | Foot Angle Top | ф | 0 | 4 | 8 | 0 | 4 | 8 | | Lead Thickness | С | .009 | .011 | .013 | 0.23 | 0.28 | 0.33 | | Lead Width | В | .014 | .017 | .020 | 0.36 | 0.42 | 0.51 | | Mold Draft Angle Top | α | 0 | 12 | 15 | 0 | 12 | 15 | | Mold Draft Angle Bottom | β | 0 | 12 | 15 | 0 | 12 | 15 | Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052 ^{*} Controlling Parameter § Significant Characteristic | INDEX | Extended | 82, 84 | |---|---|----------| | | Industrial | 80, 83 | | A | PIC16LV54A | | | Absolute Maximum Ratings | Commercial | 108, 109 | | PIC16C54/55/56/5767 | Industrial | 108, 109 | | PIC16C54A103 | DECF | 54 | | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | DECFSZ | 54 | | C58B/CR58B131 | Development Support | 61 | | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | Device Characterization | | | C58B/CR58B-40 | PIC16C54/55/56/57/CR54A | 91 | | PIC16CR54A | PIC16C54A | | | ADDWF | PIC16C54C/C55A/C56A/C57C/C58B-40 | | | | Device Reset Timer (DRT) | | | ALU9 | Device Varieties | | | ANDLW | Digit Carry (DC) bit | | | ANDWF51 | DRT | | | Applications5 | DIX1 | 20 | | Architectural Overview9 | E | | | Assembler | | | | MPASM Assembler61 | Electrical Specifications | 07 | | В | PIC16C54/55/56/57 | | | В | PIC16C54A | | | Block Diagram | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/ | | | On-Chip Reset Circuit20 | C58B/CR58B | | | PIC16C5X Series10 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/ | | | Timer037 | C58B/CR58B-40 | | | TMR0/WDT Prescaler41 | PIC16CR54A | 79 | | Watchdog Timer46 | Errata | 3 | | Brown-Out Protection Circuit | External Power-On Reset Circuit | 21 | | BSF | _ | | | BTFSC | F | | | BTFSS | Family of Devices | | | 511 00 | PIC16C5X | 6 | | C | FSR Register | 33 | | CALL31, 53 | Value on reset | | | · | 14,44 | | | Carry (C) bit | G | | | Clocking Scheme | General Purpose Registers | | | CLRF53 | Value on reset | 20 | | CLRW | GOTO | | | CLRWDT53 | GO10 | 51, 55 | | CMOS Technology1 | Н | | | Code Protection43, 47 | | | | COMF54 | High-Performance RISC CPU | 1 | | Compatibility182 | I | | | Configuration Bits44 | • | | | _ | I/O Interfacing | | | D | I/O Ports | | | Data Memory Organization | I/O Programming Considerations | 36 | | DC Characteristics | ICEPIC In-Circuit Emulator | 62 | | PIC16C54/55/56/57 | ID Locations | 43, 47 | | Commercial | INCF | 55 | | Extended | INCFSZ | 55 | | Industrial | INDF Register | 33 | | PIC16C54A | Value on reset | 20 | | Commercial104, 109 | Indirect Data Addressing | | | • | Instruction Cycle | | | Extended | Instruction Flow/Pipelining | | | · | Instruction Set Summary | | | PIC16C54C/C55A/C56A/C57C/C58B-40 | IORLW | | | Commercial | IORUW | | | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | IOIXWF | 56 | | C58B/CR58B | K | | | Commercial134, 138 | | ٠. | | Extended137, 138 | KeeLoq Evaluation and Programming Tools | 64 | | Industrial134, 138 | L | | | PIC16CR54A | | | | Commercial 80, 83 | Loading of PC | 31 |