

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c55a-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C5X

8-Bit EPROM/ROM-Based CMOS Microcontrollers

1.0 GENERAL DESCRIPTION

The PIC16C5X from Microchip Technology is a family of low cost, high performance, 8-bit fully static, EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/ single cycle instructions. All instructions are single cycle except for program branches which take two cycles. The PIC16C5X delivers performance in an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC16C5X products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external RESET circuitry. There are four oscillator configurations to choose from, including the power saving LP (Low Power) oscillator and cost saving RC oscillator. Power saving SLEEP mode, Watchdog Timer and Code Protection features improve system cost, power and reliability.

The UV erasable CERDIP packaged versions are ideal for code development, while the cost effective One Time Programmable (OTP) versions are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

The PIC16C5X products are supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC16C5X series fits perfectly in applications ranging from high speed automotive and appliance motor control to low power remote transmitters/receivers, pointing devices and telecom processors. The EPROM technology makes customizing application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low cost, low power, high performance ease of use and I/O flexibility make the PIC16C5X series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, co-processor applications). NOTES:

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

PIC16C5Xs can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- 1. LP: Low Power Crystal
- 2. XT: Crystal/Resonator
- 3. HS: High Speed Crystal/Resonator
- 4. RC: Resistor/Capacitor

Note: Not all oscillator selections available for all parts. See Section 9.1.

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16C5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

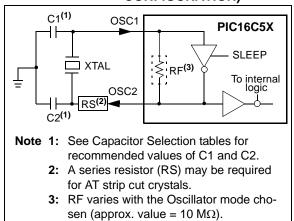
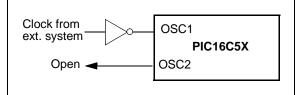



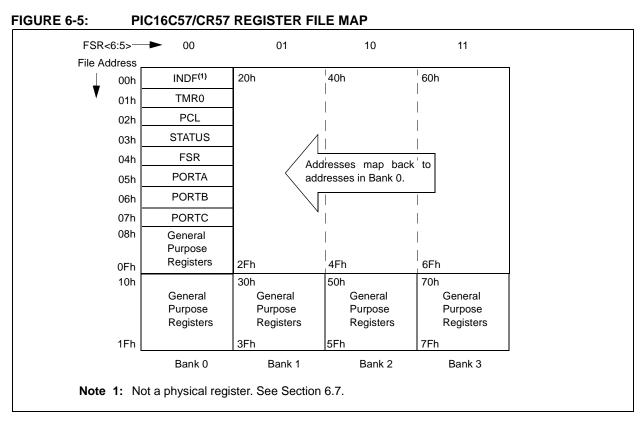
FIGURE 4-2:

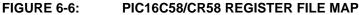
EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

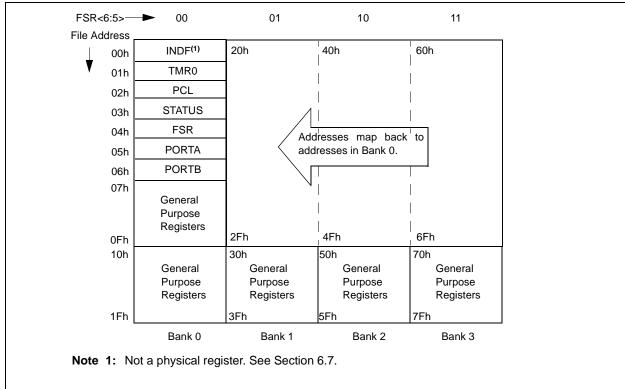
TABLE 4-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS -PIC16C5X, PIC16CR5X

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range C2
XT	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.


TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC16C5X. PIC16CR5X


Osc Type	Crystal Freq	Cap.Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
XT	100 kHz	15-30 pF	200-300 pF
	200 kHz	15-30 pF	100-200 pF
	455 kHz	15-30 pF	15-100 pF
	1 MHz	15-30 pF	15-30 pF
	2 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15 pF	15 pF
	20 MHz	15 pF	15 pF


Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

6.4 **OPTION Register**

The OPTION Register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W Register will be transferred to the OPTION Register. A RESET sets the OPTION<5:0> bits.

REGISTER 6-2: OPTION REGISTER

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
_	_	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

- bit 7-6: Unimplemented: Read as '0'
- bit 5: **TOCS**: Timer0 clock source select bit
 - 1 = Transition on T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4: **TOSE**: Timer0 source edge select bit
 - 1 = Increment on high-to-low transition on T0CKI pin
 - 0 = Increment on low-to-high transition on T0CKI pin
- bit 3: **PSA**: Prescaler assignment bit
 - 1 = Prescaler assigned to the WDT
 - 0 = Prescaler assigned to Timer0

bit 2-0: **PS<2:0>:** Prescaler rate select bits

Bit Value	Timer0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

6.5.1 PAGING CONSIDERATIONS – PIC16C56/CR56, PIC16C57/CR57 AND PIC16C58/CR58

If the Program Counter is pointing to the last address of a selected memory page, when it increments it will cause the program to continue in the next higher page. However, the page preselect bits in the STATUS Register will not be updated. Therefore, the next GOTO, CALL or modify PCL instruction will send the program to the page specified by the page preselect bits (PA0 or PA<1:0>).

For example, a NOP at location 1FFh (page 0) increments the PC to 200h (page 1). A GOTO xxx at 200h will return the program to address xxh on page 0 (assuming that PA<1:0> are clear).

To prevent this, the page preselect bits must be updated under program control.

6.5.2 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page (i.e., the RESET vector).

The STATUS Register page preselect bits are cleared upon a RESET, which means that page 0 is pre-selected.

Therefore, upon a RESET, a GOTO instruction at the RESET vector location will automatically cause the program to jump to page 0.

6.6 Stack

PIC16C5X devices have a 10-bit or 11-bit wide, two-level hardware push/pop stack.

A CALL instruction will push the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will pop the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W Register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

For the RETLW instruction, the PC is loaded with the Top of Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine.

GOTO	Uncondi	tional B	anch
Syntax:	[label]	GOTO	k
Operands:	$0 \le k \le 5^{-1}$	11	
Operation:	$k \rightarrow PC < STATUS$,	PC<10:9>
Status Affected:	None		
Encoding:	101k	kkkk	kkkk
Description:	The 9-bit loaded in upper bit	immedia to PC bit s of PC a <6:5>. GC	ditional branch. te value is s <8:0>. The re loaded from pTO is a two-
Words:	1		
Cycles:	2		
Example:	GOTO TH	IERE	
After Instruct PC =	ion address	G (THER	E)

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	0010 10df ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	INCF CNT, 1
Before Instru CNT Z After Instruct CNT Z	= 0xFF = 0

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None
Encoding:	0011 11df ffff
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two- cycle instruction.
Words:	1
Cycles:	1(2)
Example:	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • •
Before Instru PC After Instruc	= address (HERE)
CNT if CNT PC if CNT PC	<pre>= CNT + 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE +1)</pre>

PIC16C5X

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	1101 kkkk kkkk
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.
Words:	1
Cycles:	1
Example:	IORLW 0x35
Before Instru W = After Instruc W = Z =	0x9A tion

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(W).OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 00df ffff
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	IORWF RESULT, 0
Before Instru RESUL W After Instruct RESUL W Z	Γ = 0x13 = 0x91 tion

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 00df ffff
Description:	The contents of register 'f' is moved to destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination is file register 'f'. 'd' is 1 is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
After Instruct W =	tion - value in FSR register

MOVLW	Move Literal to W								
Syntax:	[label]	MOVLW	k						
Operands:	$0 \le k \le 255$								
Operation:	$k \rightarrow (W)$								
Status Affected:	None								
Encoding:	1100	kkkk	kkkk						
Description:	The eigh the W re		'k' is loaded	d into					
Words:	1								
Cycles:	1								
Example:	MOVLW	0x5A							
After Instruction W = 0x5A									

SUBWF	Subt	ract W	from f
Syntax:	[label	JSL	JBWF f,d
Operands:	$0 \le f$	≤ 31	
•	d ∈ [0	D,1]	
Operation:	(f) – (W) \rightarrow	(dest)
Status Affected:	C, DO	C, Z	
Encoding:	000	- 1	Odf ffff
Description:			s complement method) ter from register 'f'. If 'd'
	is 0 tł regist	ne resu er. If 'o	It is stored in the W I' is 1 the result is in register 'f'.
Words:	1		
Cycles:	1		
Example 1:	SUBW	FF	REG1, 1
Before Instru	ction		
REG1	=	3	
W	=	2	
С	=	?	
After Instruct	ion		
REG1	=	1	
W C	=	2 1	, recult is positive
Example 2:	=	I	; result is positive
Before Instru	ction		
REG1	=	2	
W	=	2	
C	=	?	
After Instruct	ion		
REG1	=	0	
W	=	2	
С	=	1	; result is zero
Example 3:			
Before Ins	tructio		
REG1	=	1	
W	=	2	
C	=	?	
After Instruct		0.VEE	
REG1 W	=	0xFF 2	
C	_	2	; result is negative
Ũ	-	U	, isourio nogativo

SWAPF	Swap Nibbles in f					
Syntax:	[label] SWAPF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$					
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$					
Status Affected:	None					
Encoding:	0011 10df ffff					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Example	SWAPF REG1, 0					
REG1 After Instruct REG1 W	= 0xA5 ion = 0xA5 = 0x5A					
TRIS	Load TRIS Register					
Syntax:	[<i>label</i>] TRIS f					
Operands:	f = 5, 6 or 7					
Operation:	(W) \rightarrow TRIS register f					
Status Affected:	None					
Encoding:	0000 0000 0fff					
Description:	TRIS register 'f' ($f = 5, 6, or 7$) is loaded with the contents of the W register.					
Words:	1					
Cycles:	1					
Example	TRIS PORTB					
Before Instruction W = 0xA5 After Instruction TRISB = 0xA5						

12.3 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)		Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage PIC16C5X-RCE PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-LPE	3.25 3.25 4.5 4.5 2.5		6.0 6.0 5.5 5.5 6.0	V V V V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*		_	V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RCE ⁽³⁾ PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-HSE PIC16C5X-LPE		1.8 1.8 4.8 4.8 9.0 19	3.3 3.3 10 10 20 55	mA mA mA mA μA	Fosc = 4 MHz, VDD = $5.5V$ Fosc = 4 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 16 MHz, VDD = $5.5V$ Fosc = 32 kHz, VDD = $3.25V$, WDT disabled
D020	IPD	Power-down Current ⁽²⁾	—	5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled

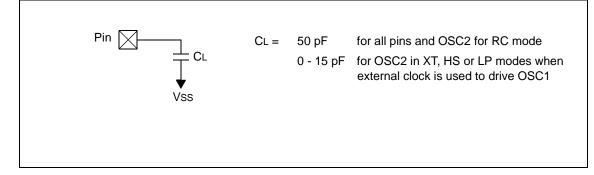
* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

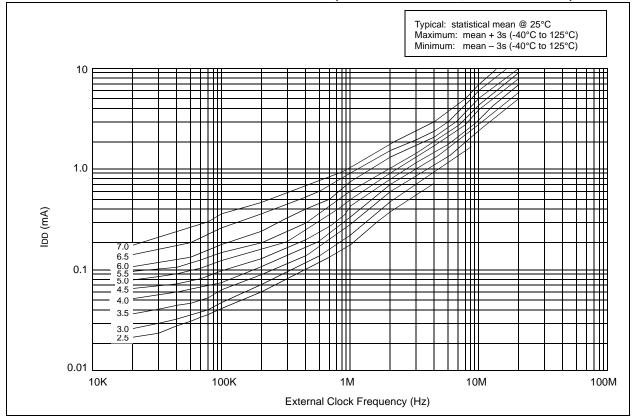
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .


12.6 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:


1. TppS2ppS

2. Tp	nS	
	PO	
Т		
F	Frequency	T Time
Lowe	ercase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	ercase letters and their meanings:	
S		
F	Fall	P Period
Н	High	R Rise
I	Invalid (Hi-impedance)	V Valid
L	Low	Z Hi-impedance

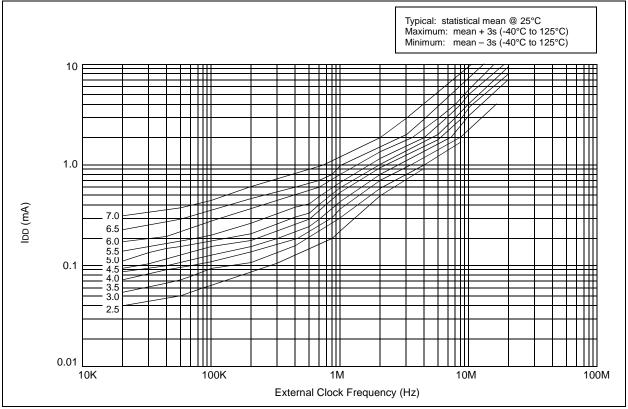
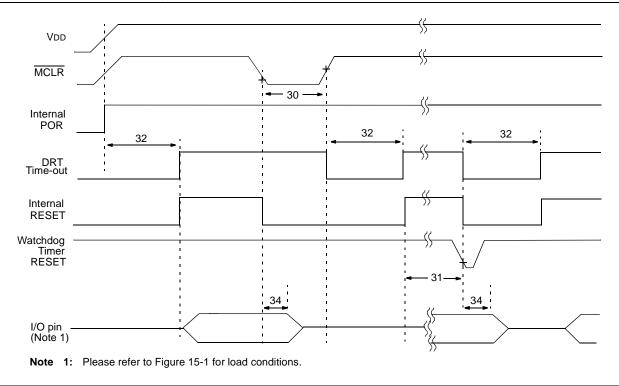

FIGURE 12-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54/55/56/57

TABLE 15-1:	EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A
-------------	--


AC Chara	AC CharacteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-20^{\circ}C \le TA \le +85^{\circ}C$ for industrial - PIC16LV54A-02I $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
1	Tosc	External CLKIN Period ⁽¹⁾	250			ns	XT OSC mode
			500	—		ns	XT osc mode (PIC16LV54A)
			250	—		ns	HS osc mode (04)
			100	—		ns	HS osc mode (10)
			50	—		ns	HS osc mode (20)
			5.0	_		μs	LP OSC mode
		Oscillator Period ⁽¹⁾	250	_		ns	RC osc mode
			500	—		ns	RC osc mode (PIC16LV54A)
			250	—	10,000	ns	XT OSC mode
			500	—		ns	XT osc mode (PIC16LV54A)
			250	—	250	ns	HS osc mode (04)
			100	—	250	ns	HS osc mode (10)
			50	—	250	ns	HS osc mode (20)
			5.0	_	200	μs	LP OSC mode
2	Тсу	Instruction Cycle Time ⁽²⁾		4/Fosc	—	—	
3	TosL, TosH	Clock in (OSC1) Low or	85*	_	_	ns	XT oscillator
		High Time	20*	—	—	ns	HS oscillator
			2.0*	—	—	μS	LP oscillator
4	TosR, TosF	Clock in (OSC1) Rise or	_	—	25*	ns	XT oscillator
		Fall Time	—	—	25*	ns	HS oscillator
			_	_	50*	ns	LP oscillator

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

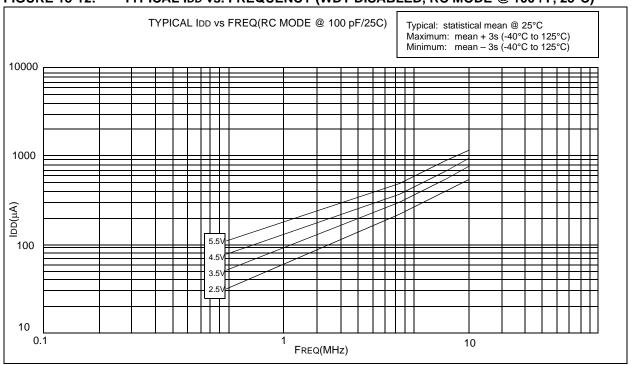
FIGURE 15-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C54A

TABLE 15-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54A

Standard Operating Conditions (unless otherwise specified)							
		Operating Temperature 0	$0^{\circ}C \leq TA$	√≤ + 70°	C for co	mmercia	al
AC Chara	cteristics	-40	$0^{\circ}C \leq TA$	√≤ + 85°	C for ind	dustrial	
		-20	$0^{\circ}C \leq TA$	∖ ≤ + 85°	C for ind	dustrial -	- PIC16LV54A-02I
		-40	$0^{\circ}C \leq TA$	∖ ≤ + 125	°C for e	xtended	ł
Param							
No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100*	_	_	ns	VDD = 5.0V
			1	—	—	μS	VDD = 5.0V (PIC16LV54A only)
31	Twdt	Watchdog Timer Time-out	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
		Period (No Prescaler)					
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
34	Tioz	I/O Hi-impedance from MCLR	_	_	100*	ns	
		Low	—		1μs	—	(PIC16LV54A only)

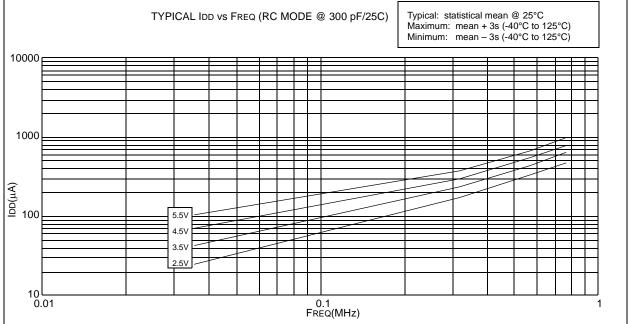
These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)

PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0 4.5		5.5 5.5		RC, XT, LP, and HS mode from 0 - 10 MHz from 10 - 20 MHz
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ XT and RC ⁽³⁾ modes HS mode	_	1.8 9.0	3.3 20	mA mA	Fosc = 4.0 MHz, Vdd = 5.5V Fosc = 20 MHz, Vdd = 5.5V
D020	IPD	Power-down Current ⁽²⁾		0.3 10 12 4.8 18 26	17 50* 60* 31* 68* 90*	μΑ μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled VDD = 4.5V, WDT disabled VDD = 5.5V, WDT disabled VDD = 3.0V, WDT enabled VDD = 4.5V, WDT enabled VDD = 5.5V, WDT enabled

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

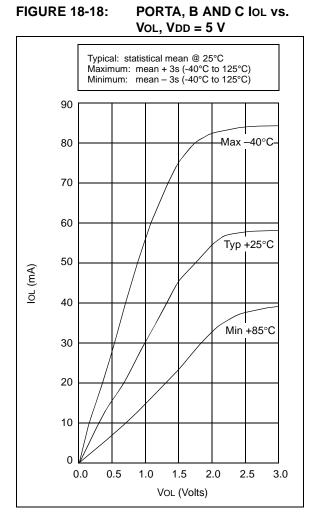
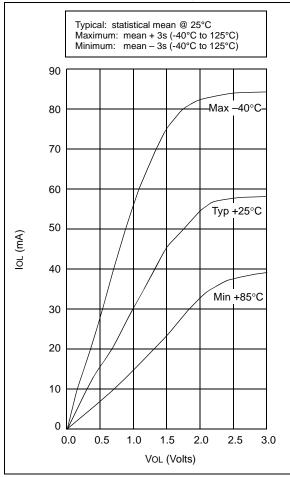

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

TABLE 18-2:INPUT CAPACITANCE

Pin	Typical Capacitance (pF)				
Pin	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
тоскі	3.2	2.8			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.


19.0 ELECTRICAL CHARACTERISTICS - PIC16LC54C 40MHz

Absolute Maximum Ratings^(†)

Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, liк (Vi <0 or Vi > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O (Port A, B or C)	50 mA
Max. output current sunk by a single I/O (Port A, B or C)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH)	x IOH} + Σ (Vol x Iol)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 20-9: IOL vs. VOL, VDD = 5 V

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	- <u>xx</u>	Ť	<u>/xx</u>	<u>xxx</u>	Exa	nples	S:
Device	Frequency Range/OSC Type PIC16C54 PIC16C54A PIC16C54C PIC16C55A PIC16C55A PIC16C55A PIC16C56A PIC16C56A PIC16C57C PIC16C57C PIC16C58B PIC16C58B	Temperature Range	$\begin{array}{c} -(2) \\ \lambda_{T}(2) \\ (2) \\ C_{T}(2) \\ C_{T}(2) \\ 2) \\ -(2) \\ -(2) \\ \lambda_{T}(2) \\ 2) \\ -(2) \\ C_{T}(2) \\ C_{T}(2) \\ -(2) \\ -(2) \\ C_{T}(2) \\ -(2)$	Pattern	a) b) c) d) Note	PDIP QTP PIC16 packa PIC16 cial te dard ' PIC1 temp MHz, #123	C = normal voltage range LC = extended
Frequency Range/ Oscillator Type	04 200 KHz (LI 10 10 MHz (HS 20 20 MHz (HS 40 40 MHz (HS b ⁽⁴⁾ No oscillato *RC/LP/XT/HS a -02 is available for -04/10/20 options	Crystal ystal/Resonator Crystal P) or 2 MHz (XT an P) or 4 MHz (XT an conly) conly) conly) r type for JW packa re for 16C54/55/56/	nd RC) ages ⁽³⁾ /57 devices on all other device	S		3:	T = in tape and reel - SOIC and SSOP packages only JW Devices are UV erasable and can be programmed to any device configura- tion. JW Devices meet the electrical requirements of each oscillator type, including LC devices. b = Blank
Temperature Range	$b^{(4)} = 0^{\circ}C$ $I = -40^{\circ}C$ $E = -40^{\circ}C$	to +85°C					
Package	JW = 28-pin DIP ⁽³⁾ P = 28-pin SO = 300 m SS = 209 m SP = 28-pin	Waffle Pack 600 mil/18-pin 300 600 mil/18-pin 300 il SOIC il SSOP 300 mil Skinny PD for additional packa	0 mil PDIP DIP				
Pattern		I code (factory spe lank for OTP and W					

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)