

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c55a-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

PIC16C5Xs can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- 1. LP: Low Power Crystal
- 2. XT: Crystal/Resonator
- 3. HS: High Speed Crystal/Resonator
- 4. RC: Resistor/Capacitor

Note: Not all oscillator selections available for all parts. See Section 9.1.

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16C5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

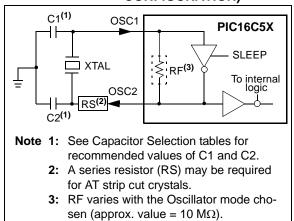
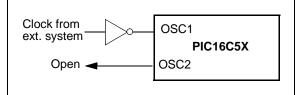



FIGURE 4-2:

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS -PIC16C5X, PIC16CR5X

Osc Type	Resonator Freq				
XT	455 kHz	68-100 pF	68-100 pF		
	2.0 MHz	15-33 pF	15-33 pF		
	4.0 MHz	10-22 pF	10-22 pF		
HS	8.0 MHz	10-22 pF	10-22 pF		
	16.0 MHz	10 pF	10 pF		

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC16C5X. PIC16CR5X

Osc Type	Crystal Freq	Cap.Range C1	Cap. Range C2					
LP	32 kHz ⁽¹⁾	15 pF	15 pF					
XT	100 kHz	15-30 pF	200-300 pF					
	200 kHz	15-30 pF	100-200 pF					
	455 kHz	15-30 pF	15-100 pF					
	1 MHz	15-30 pF	15-30 pF					
	2 MHz	15 pF	15 pF					
	4 MHz	15 pF	15 pF					
HS	4 MHz	15 pF	15 pF					
	8 MHz	15 pF	15 pF					
	20 MHz	15 pF	15 pF					

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

6.5.1 PAGING CONSIDERATIONS – PIC16C56/CR56, PIC16C57/CR57 AND PIC16C58/CR58

If the Program Counter is pointing to the last address of a selected memory page, when it increments it will cause the program to continue in the next higher page. However, the page preselect bits in the STATUS Register will not be updated. Therefore, the next GOTO, CALL or modify PCL instruction will send the program to the page specified by the page preselect bits (PA0 or PA<1:0>).

For example, a NOP at location 1FFh (page 0) increments the PC to 200h (page 1). A GOTO xxx at 200h will return the program to address xxh on page 0 (assuming that PA<1:0> are clear).

To prevent this, the page preselect bits must be updated under program control.

6.5.2 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page (i.e., the RESET vector).

The STATUS Register page preselect bits are cleared upon a RESET, which means that page 0 is pre-selected.

Therefore, upon a RESET, a GOTO instruction at the RESET vector location will automatically cause the program to jump to page 0.

6.6 Stack

PIC16C5X devices have a 10-bit or 11-bit wide, two-level hardware push/pop stack.

A CALL instruction will push the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will pop the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W Register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

For the RETLW instruction, the PC is loaded with the Top of Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine. NOTES:

10.0 INSTRUCTION SET SUMMARY

Each PIC16C5X instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C5X instruction set summary in Table 10-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 10-1:	OPCODE FIELD
	DESCRIPTIONS

DESCRIPTIONS						
Field	Description					
f	Register file address (0x00 to 0x1F)					
W	Working register (accumulator)					
b	Bit address within an 8-bit file register					
k	Literal field, constant data or label					
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for com-					
	patibility with all Microchip software tools.					
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1					
label	Label name					
TOS	Top of Stack					
PC	Program Counter					
WDT	Watchdog Timer Counter					
TO	Time-out bit					
PD	Power-down bit					
dest	Destination, either the W register or the specified register file location					
[]	Options					
()	Contents					
\rightarrow	Assigned to					
< >	Register bit field					
∈	In the set of					
italics	User defined term (font is courier)					

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2 μ s.

Figure 10-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations								
<u>11 6</u>	5	4 0						
OPCODE	d	f (FILE #)						
d = 0 for destination W d = 1 for destination f f = 5-bit file register address								
Bit-oriented file registe	r ope	erations						
11 8	7	5 4 0						
OPCODE	b (Bl	IT #) f (FILE #)						
f = 5-bit file regist	eratio	ons (except GOTO)						
11	8	7 0						
OPCODE		k (literal)						
k = 8-bit immedia	k = 8-bit immediate value							
Literal and control operations - GOTO instruction								
11	9	8 0						
OPCODE		k (literal)						
k = 9-bit immediate value								

^{© 1997-2013} Microchip Technology Inc.

12.5 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

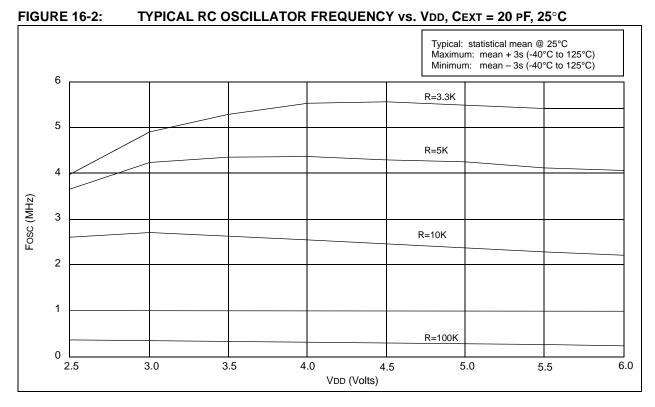
DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
D030	VIL	Input Low Voltage						
		I/O ports	Vss	—	0.15 Vdd	V	Pin at hi-impedance	
		MCLR (Schmitt Trigger)	Vss	—	0.15 Vdd	V	-	
		T0CKI (Schmitt Trigger)	Vss	_	0.15 VDD	V		
		OSC1 (Schmitt Trigger)	Vss	_	0.15 VDD	V	PIC16C5X-RC only ⁽³⁾	
		OSC1 (Schmitt Trigger)	Vss	—	0.3 Vdd	V	PIC16C5X-XT, 10, HS, LP	
D040	Vih	Input High Voltage						
		I/O ports	0.45 Vdd		Vdd	V	For all VDD ⁽⁴⁾	
		I/O ports	2.0	—	Vdd	V	$4.0V < VDD \le 5.5V^{(4)}$	
		I/O ports	0.36 VDD	—	Vdd	V	VDD > 5.5 V	
		MCLR (Schmitt Trigger)	0.85 Vdd	_	Vdd	V		
		T0CKI (Schmitt Trigger)	0.85 Vdd	_	Vdd	V		
		OSC1 (Schmitt Trigger)	0.85 Vdd	_	Vdd	V	PIC16C5X-RC only ⁽³⁾	
		OSC1 (Schmitt Trigger)	0.7 Vdd	—	Vdd	V	PIC16C5X-XT, 10, HS, LP	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	_	—	V		
D060	lı∟	Input Leakage Current (1,2)					For V DD ≤ 5.5 V :	
		I/O ports	-1	0.5	+1	μA	VSS \leq VPIN \leq VDD, pin at hi-impedance	
		MCLR	-5	_	_	μA	VPIN = VSS + 0.25V	
		MCLR	_	0.5	+5	μA	VPIN = VDD	
		тоскі	-3	0.5	+3	μA	$VSS \leq VPIN \leq VDD$	
		OSC1	-3	0.5	+3	μA	$VSS \le VPIN \le VDD$, PIC16C5X-XT, 10, HS, LP	
D080	Vol	Output Low Voltage						
		I/O ports OSC2/CLKOUT	_	_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, PIC16C5X-RC	
D090	Vон	Output High Voltage⁽²⁾ I/O ports OSC2/CLKOUT	Vdd – 0.7 Vdd – 0.7			V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, PIC16C5X-RC	

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

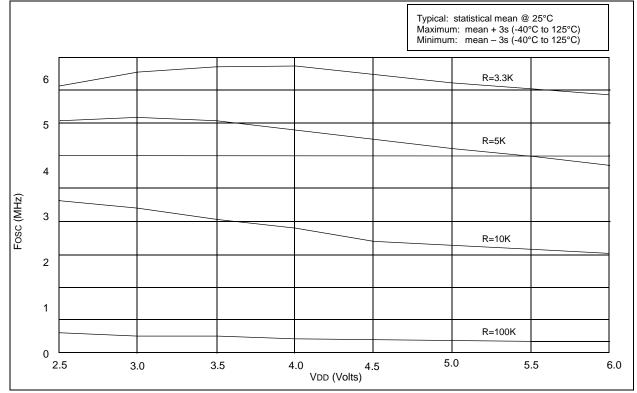
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

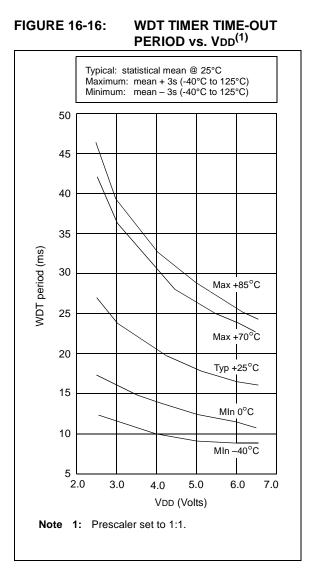
2: Negative current is defined as coming out of the pin.

3: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.


4: The user may use the better of the two specifications.

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)


PIC16LCR54A-04 PIC16LCR54A-04I (Commercial, Industrial)				$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$						
PIC16CR54A-04, 10, 20 PIC16CR54A-04I, 10I, 20I (Commercial, Industrial)			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No. Symbol Characteristic/Device				Тур†	Max	Units	Conditions			
	IPD	Power-down Current ⁽²⁾								
D006		PIC16LCR54A-Commercial		1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			
D006A		PIC16CR54A-Commercial		1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			
D007		PIC16LCR54A-Industrial		1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			
D007A		PIC16CR54A-Industrial		1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			


Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

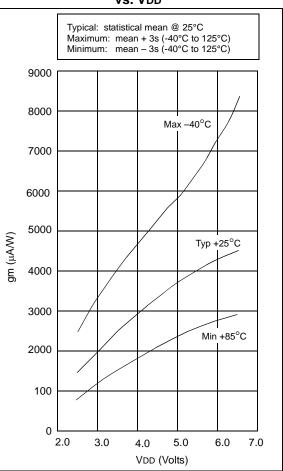


FIGURE 16-17: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

NOTES:

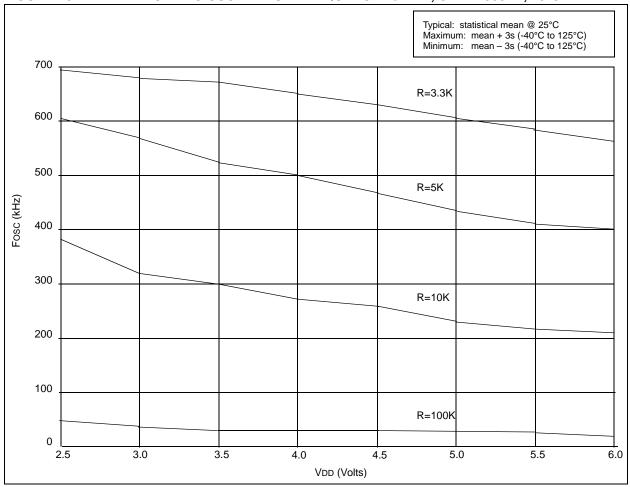
17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)

			Standard Operating Conditions (unless otherwise specifiedOperating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic Min		Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage	3.0 4.5		5.5 5.5		RC, XT, LP, and HS mode from 0 - 10 MHz from 10 - 20 MHz		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current ⁽²⁾ XT and RC ⁽³⁾ modes HS mode	_	1.8 9.0	3.3 20	mA mA	Fosc = 4.0 MHz, Vdd = 5.5V Fosc = 20 MHz, Vdd = 5.5V		
D020	IPD	Power-down Current ⁽²⁾		0.3 10 12 4.8 18 26	17 50* 60* 31* 68* 90*	μΑ μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled VDD = 4.5V, WDT disabled VDD = 5.5V, WDT disabled VDD = 3.0V, WDT enabled VDD = 4.5V, WDT enabled VDD = 5.5V, WDT enabled		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.



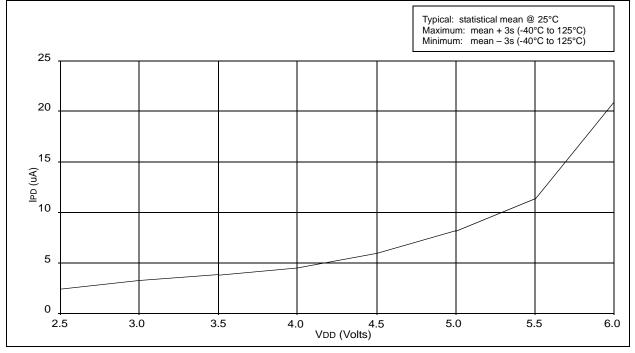
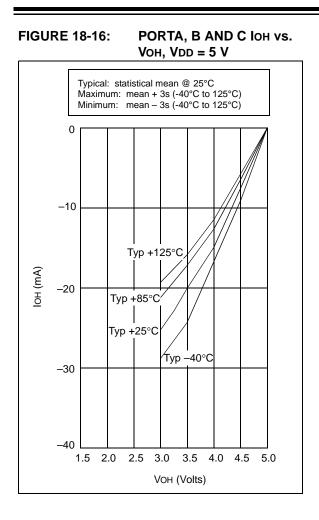
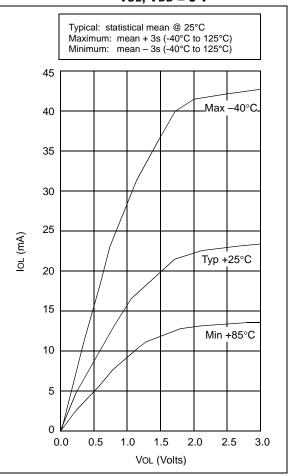



FIGURE 18-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C



© 1997-2013 Microchip Technology Inc.

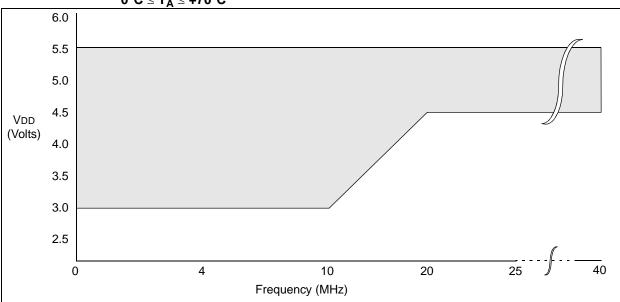
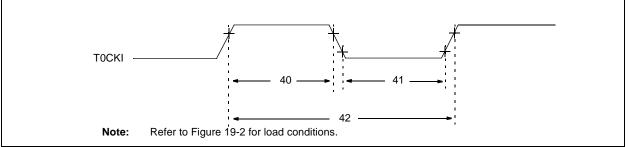


FIGURE 18-17: PORTA, B AND C IOL vs. Vol, VDD = 3 V

PIC16C5X

FIGURE 19-1: PIC16C54C/C55A/C56A/C57C/C58B-40 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_A \le +70^{\circ}C$

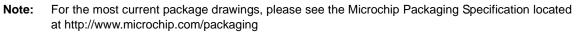


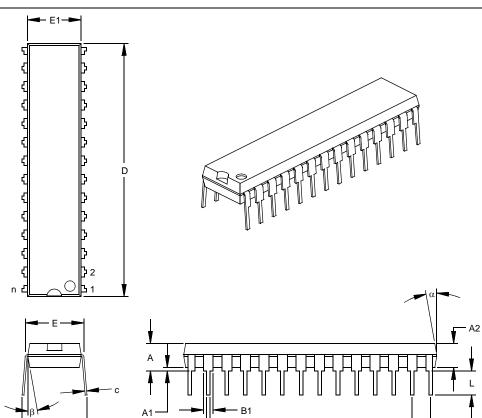
- **2:** The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
- **3:** Operation between 20 to 40 MHz requires the following:
 - VDD between 4.5V. and 5.5V
 - OSC1 externally driven
 - OSC2 not connected
 - HS mode
 - Commercial temperatures

Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C54C-40/P).

4: For operation between DC and 20 MHz, see Section 17.1.

FIGURE 19-6: TIMER0 CLOCK TIMINGS - PIC16C5X-40


TABLE 19-4: TIMER0 CLOCK REQUIREMENTS PIC16C5X-40


A	AC CharacteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					,	
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width					
		- No Prescaler	0.5 Tcy + 20*	—		ns	
		- With Prescaler	10*		—	ns	
41	Tt0L	T0CKI Low Pulse Width					
		- No Prescaler	0.5 TCY + 20*	—		ns	
		- With Prescaler	10*	_	—	ns	
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N	_	_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

в

	Units	ts INCHES*			MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

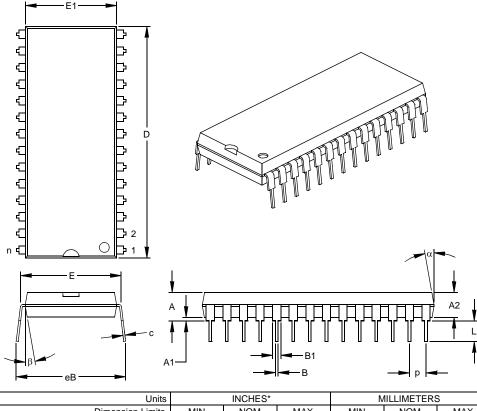
* Controlling Parameter § Significant Characteristic

eВ

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.

JEDEC Equivalent: MO-095


Drawing No. C04-070

- p -

Notes:

28-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS			
Dimer	ision Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83	
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88	
Molded Package Width	E1	.505	.545	.560	12.83	13.84	14.22	
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21	
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing	§ eB	.620	.650	.680	15.75	16.51	17.27	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011 Drawing No. C04-079

APPENDIX A: COMPATIBILITY

To convert code written for PIC16CXX to PIC16C5X, the user should take the following steps:

- 1. Check any CALL, GOTO or instructions that modify the PC to determine if any program memory page select operations (PA2, PA1, PA0 bits) need to be made.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any special function register page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to proper value for processor used.
- 6. Remove any use of the ADDLW, RETURN and SUBLW instructions.
- 7. Rewrite any code segments that use interrupts.

APPENDIX B: REVISION HISTORY

Revision KE (January 2013)

Added a note to each package outline drawing.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent						
RE:	Reader Response							
Fror	m: Name							
	Company							
A	Telephone: ()	FAX: ()						
	blication (optional):							
VVOL	uld you like a reply?YN							
Dev	vice: PIC16C5X Literatur	re Number: DS30453E						
Que	estions:							
1.	What are the best features of this docume	ent?						
2.	How does this document meet your hardv	vare and software development needs?						
3.	3. Do you find the organization of this data sheet easy to follow? If not, why?							
4.	4. What additions to the data sheet do you think would enhance the structure and subject?							
_								
5.	What deletions from the data sheet could	be made without affecting the overall usefulness?						
6	Is there any incorrect or misleading inform	nation (what and where)?						
0.	is there any mooneet of misleading mon							
	-							
7.	How would you improve this document?							
•								
8.	How would you improve our software, sys	stems, and silicon products?						

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	- <u>xx</u>	Ť	<u>/xx</u>	<u>xxx</u>	Exa	nples	S:
Device	Frequency Range/OSC Type PIC16C54 PIC16C54A PIC16C54C PIC16C55A PIC16C55A PIC16C55A PIC16C56A PIC16C57C PIC16C57C PIC16C58B PIC16C58B	Temperature Range	$\begin{array}{c} (2) \\ (1) \\ (2) \\$	Pattern	a) b) c) d) Note	PDIP QTP PIC10 packa PIC10 cial te dard PIC1 temp MHz, #123	C = normal voltage range LC = extended
Frequency Range/ Oscillator Type	04 200 KHz (LI 10 10 MHz (HS 20 20 MHz (HS 40 40 MHz (HS b ⁽⁴⁾ No oscillato *RC/LP/XT/HS a -02 is available for -04/10/20 options	Crystal ystal/Resonator Crystal P) or 2 MHz (XT an P) or 4 MHz (XT an conly) conly) conly) r type for JW packa re for 16C54/55/56	d RC) ages ⁽³⁾ /57 devices on all other device	s		3:	T = in tape and reel - SOIC and SSOP packages only JW Devices are UV erasable and can be programmed to any device configura- tion. JW Devices meet the electrical requirements of each oscillator type, including LC devices. b = Blank
Temperature Range	$b^{(4)} = 0^{\circ}C$ $I = -40^{\circ}C$ $E = -40^{\circ}C$	to +85°C					
Package	JW = 28-pin DIP ⁽³⁾ P = 28-pin SO = 300 m SS = 209 m SP = 28-pin	Waffle Pack 600 mil/18-pin 300 600 mil/18-pin 300 il SOIC il SSOP 300 mil Skinny PE for additional packa) mil PDIP DIP				
Pattern		I code (factory spe lank for OTP and V					

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)