

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c55a-40-sp

5.0 RESET

PIC16C5X devices may be RESET in one of the following ways:

- Power-On Reset (POR)
- MCLR Reset (normal operation)
- MCLR Wake-up Reset (from SLEEP)
- WDT Reset (normal operation)
- WDT Wake-up Reset (from SLEEP)

Table 5-1 shows these RESET conditions for the PCL and STATUS registers.

Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-On Reset (POR), MCLR or WDT Reset. A MCLR or WDT wake-up from SLEEP also results in a device RESET, and not a continuation of operation before SLEEP.

The TO and PD bits (STATUS <4:3>) are set or cleared depending on the different RESET conditions (Table 5-1). These bits may be used to determine the nature of the RESET.

Table 5-3 lists a full description of RESET states of all registers. Figure 5-1 shows a simplified block diagram of the On-chip Reset circuit.

TABLE 5-1: STATUS BITS AND THEIR SIGNIFICANCE

Condition	TO	PD
Power-On Reset	1	1
MCLR Reset (normal operation)	u	u
MCLR Wake-up (from SLEEP)	1	0
WDT Reset (normal operation)	0	1
WDT Wake-up (from SLEEP)	0	0

Legend: u = unchanged, x = unknown, -= unimplemented read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH RESET

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on MCLR and WDT Reset
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

Legend: u = unchanged, x = unknown, q = see Table 5-1 for possible values.

PIC16C5X

NOTES:

6.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device (Table 6-1).

The Special Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

TABLE 6-1: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on Page
N/A	TRIS	I/O Cont	rol Regis	ters (TRIS		1111 1111	35				
N/A	OPTION	Contains	s control b	oits to con	figure Ti	mer0 and	Timer0/V	VDT pres	caler	11 1111	30
00h	INDF	Uses co	ntents of	FSR to ac	ddress da	ata memo	ry (not a	physical r	egister)	XXXX XXXX	32
01h	TMR0	Timer0 N	Module R	egister						XXXX XXXX	38
02h ⁽¹⁾	PCL	Low ord	er 8 bits c	of PC						1111 1111	31
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	29
04h	FSR	Indirect	data mem	ory addre	ess point	er			I.	1xxx xxxx ⁽³⁾	32
05h	PORTA	_	_	_	_	RA3	RA2	RA1	RA0	XXXX	35
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	35
07h ⁽²⁾	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	35

Legend: x = unknown, u = unchanged, -= unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access these bits.

^{2:} File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and PIC16CR58.

^{3:} These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.

6.3 STATUS Register

This register contains the arithmetic status of the ALU, the RESET status and the page preselect bits for program memories larger than 512 words.

The STATUS Register can be the destination for any instruction, as with any other register. If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not

writable. Therefore, the result of an instruction with the STATUS Register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS Register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS Register because these instructions do not affect the Z, DC or C bits from the STATUS Register. For other instructions which do affect STATUS Bits, see Section 10.0, Instruction Set Summary.

REGISTER 6-1: STATUS REGISTER (ADDRESS: 03h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
PA2	PA1	PA0	TO	PD	Z	DC	С	
bit 7							bit 0	

bit 7: **PA2**: This bit unused at this time.

Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward compatibility with future products.

bit 6-5: PA<1:0>: Program page preselect bits (PIC16C56/CR56)(PIC16C57/CR57)(PIC16C58/CR58)

00 = Page 0 (000h - 1FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58

01 = Page 1 (200h - 3FFh) - PIC16C56/CR56, PIC16C57/CR57, PIC16C58/CR58

10 = Page 2 (400h - 5FFh) - PIC16C57/CR57, PIC16C58/CR58

11 = Page 3 (600h - 7FFh) - PIC16C57/CR57, PIC16C58/CR58

Each page is 512 words.

Using the PA<1:0> bits as general purpose read/write bits in devices which do not use them for program page preselect is not recommended since this may affect upward compatibility with future products.

bit 4: **TO**: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

bit 3: **PD**: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

bit 2: Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1: **DC**: Digit carry/borrow bit (for ADDWF and SUBWF instructions)

ADDWF

1 = A carry from the 4th low order bit of the result occurred

0 = A carry from the 4th low order bit of the result did not occur

SUBWF

1 = A borrow from the 4th low order bit of the result did not occur

0 = A borrow from the 4th low order bit of the result occurred

bit 0: C: Carry/borrow bit (for ADDWF, SUBWF and RRF, RLF instructions)

ADDWF SUBWF RRF or RLF

1 = A carry occurred 1 = A borrow did not occur

0 = A carry did not occur 0 = A borrow occurred

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown

Loaded with LSb or MSb, respectively

7.0 I/O PORTS

As with any other register, the I/O Registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers (TRISA, TRISB, TRISC) are all set.

7.1 PORTA

PORTA is a 4-bit I/O Register. Only the low order 4 bits are used (RA<3:0>). Bits 7-4 are unimplemented and read as '0's.

7.2 PORTB

PORTB is an 8-bit I/O Register (PORTB<7:0>).

7.3 PORTC

PORTC is an 8-bit I/O Register for PIC16C55, PIC16C57 and PIC16CR57.

PORTC is a General Purpose Register for PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and PIC16CR58.

7.4 TRIS Registers

The Output Driver Control Registers are loaded with the contents of the W Register by executing the TRIS f instruction. A '1' from a TRIS Register bit puts the corresponding output driver in a hi-impedance (input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low.

The TRIS Registers are "write-only" and are set (output drivers disabled) upon RESET.

7.5 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 7-1. All ports may be used for both input and output operation. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 7-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

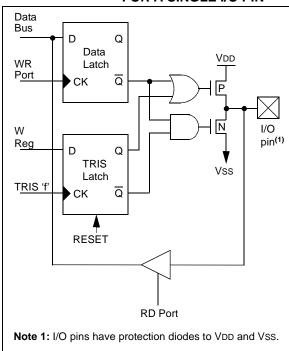


TABLE 7-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on MCLR and WDT Reset
N/A	TRIS		I/O		1111 1111	1111 1111					
05h	PORTA	_	_	_	_	RA3	RA2	RA1	RA0	xxxx	uuuu
06h	PORTB	RB7	RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0								uuuu uuuu
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, — = unimplemented, read as '0', Shaded cells = unimplemented, read as '0'

8.2 **Prescaler**

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 9.2.1). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1,x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

8.2.1 SWITCHING PRESCALER **ASSIGNMENT**

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 8-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 8-1: CHANGING PRESCALER (TIMER0→WDT)

CLRWDT ;Clear WDT ;Clear TMR0 & Prescaler CLRF TMR0 MOVIW B'00xx1111' ;Last 3 instructions in this example OPTION ; are required only if ;desired CLRWDT ;PS<2:0> are 000 or ;001 MOVLW B'00xx1xxx' ;Set Prescaler to OPTION ;desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 8-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 8-2: CHANGING PRESCALER (WDT→TIMER0)

CLRWDT ;Clear WDT and ;prescaler ;Select TMR0, new MOVLW B'xxxx0xxx' ;prescale value and ; clock source

OPTION

PIC16C5X

NOTES:

12.5 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

DC CH	ARACTER	RISTICS	Standard Operating Te				otherwise specified) 125°C for extended
Param No.	Symbol	Characteristic	Min	Typ†	Max	Units	Conditions
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	Vss Vss Vss Vss Vss	11111	0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V	Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP
D040	VHYS	Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) Hysteresis of Schmitt	0.45 VDD 2.0 0.36 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD VDD VDD	V V V V V	For all $VDD^{(4)}$ $4.0V < VDD \le 5.5V^{(4)}$ VDD > 5.5 V PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP
D060	lι∟	Trigger inputs Input Leakage Current (1,2) I/O ports MCLR MCLR TOCKI OSC1	-1 -5 -3 -3	0.5 0.5 0.5 0.5	+1 +5 +3 +3	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5 V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS + 0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, PIC16C5X-XT, 10, HS, LP
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, PIC16C5X-RC
D090	Voн	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	VDD - 0.7 VDD - 0.7	_		V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, PIC16C5X-RC

^{*} These parameters are characterized but not tested.

[†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

^{2:} Negative current is defined as coming out of the pin.

^{3:} For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

^{4:} The user may use the better of the two specifications.

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

PIC16LC	PIC16LCR54A-04 PIC16LCR54A-04I (Commercial, Industrial)				Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16CR	PIC16CR54A-04, 10, 20 PIC16CR54A-04I, 10I, 20I (Commercial, Industrial)				Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \leq TA \leq +70^{\circ}C \text{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for industrial}$							
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions					
	IPD	Power-down Current ⁽²⁾										
D006		PIC16LCR54A-Commercial	_ _ _	1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled					
D006A		PIC16CR54A-Commercial	_ _ _ _	1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled					
D007		PIC16LCR54A-Industrial		1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled					
D007A		PIC16CR54A-Industrial	_ _ _ _	1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled					

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in $k\Omega$.

15.2 DC Characteristics: PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16Le (Extend	C54A-04E ded)						tions (unless otherwise specified) -40°C \leq TA \leq +125°C for extended		
PIC16C (Extend	•	10E, 20E		Standard Operating Conditions (unless otherwise specified Operating Temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
	IPD	Power-down Current ⁽²⁾							
D020		PIC16LC54A		2.5 0.25	15 7.0	μA μA	VDD = 2.5V, WDT enabled, Extended VDD = 2.5V, WDT disabled, Extended		
D020A		PIC16C54A	_	5.0 0.8	22 18*	μA μA	VDD = 3.5V, WDT enabled VDD = 3.5V, WDT disabled		

- Legend: Rows with standard voltage device data only are shaded for improved readability.
 - * These parameters are characterized but not tested.
 - † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode <u>are: OSC1 = external square</u> wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in $k\Omega$.

15.4 DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04E, 10E, 20E, PIC16LC54A-04E (Extended)

DC CH	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-20^{\circ}C \le TA \le +85^{\circ}C$ for industrial-PIC16LV54A-02 $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions				
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss	 - - -	0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V	Pin at hi-impedance RC mode only ⁽³⁾ XT, HS and LP modes				
D040	VIH	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger)	0.2 VDD + 1 2.0 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD	 - - - -	VDD VDD VDD VDD VDD VDD	V V V V	For all $VDD^{(4)}$ $4.0V < VDD \le 5.5V^{(4)}$ RC mode only ⁽³⁾ XT, HS and LP modes				
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 VDD*	_	_	V					
D060	IIL	Input Leakage Current ^(1,2) I/O ports MCLR MCLR TOCKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, XT, HS and LP modes				
D080	VOL	Output Low Voltage I/O ports OSC2/CLKOUT	_		0.6 0.6	V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, RC mode only				
	VOH	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	VDD - 0.7 VDD - 0.7		_	V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only				

^{*} These parameters are characterized but not tested.

[†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

^{2:} Negative current is defined as coming out of the pin.

^{3:} For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

15.6 Timing Diagrams and Specifications

AC Characteristics

FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A

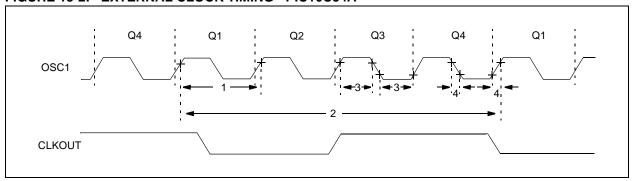


TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A

Standard Operating Conditions (unless otherwise specified)

Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial

-20°C \leq TA \leq +85°C for industrial - PIC16LV54A-02I

 -40° C \leq TA \leq +125 $^{\circ}$ C for extended

Param Symbol Characteristic Min Max Units Conditions Typ† No. External CLKIN Fre-Fosc DC MHz XT osc mode 4.0 quency⁽¹⁾ XT osc mode (PIC16LV54A) DC 2.0 MHz MHz HS osc mode (04) DC 4.0 DC 10 MHz HS osc mode (10) DC 20 MHz HS osc mode (20) DC 200 kHz LP osc mode Oscillator Frequency⁽¹⁾ DC MHz RC osc mode 4.0 DC 2.0 MHz RC osc mode (PIC16LV54A) 0.1 4.0 MHz XT osc mode MHz XT osc mode (PIC16LV54A) 2.0 0.1 4.0 MHz HS osc mode (04) 4.0 4.0 10 MHz HS osc mode (10) 20 MHz HS osc mode (20) 4.0 200 LP osc mode 5.0 kHz

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TcY) equals four times the input oscillator time base period.

^{*} These parameters are characterized but not tested.

[†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

FIGURE 16-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)

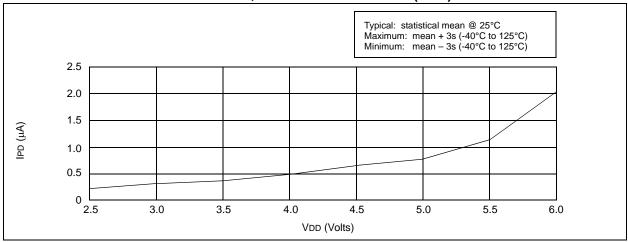
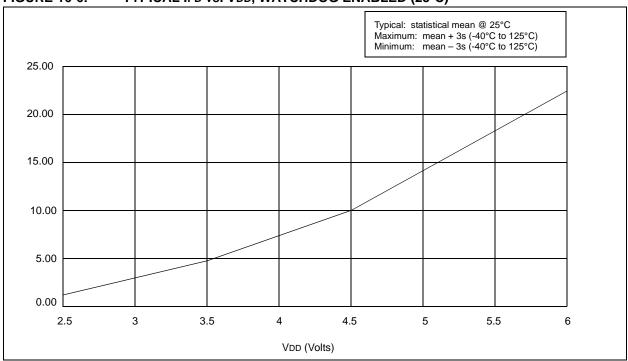
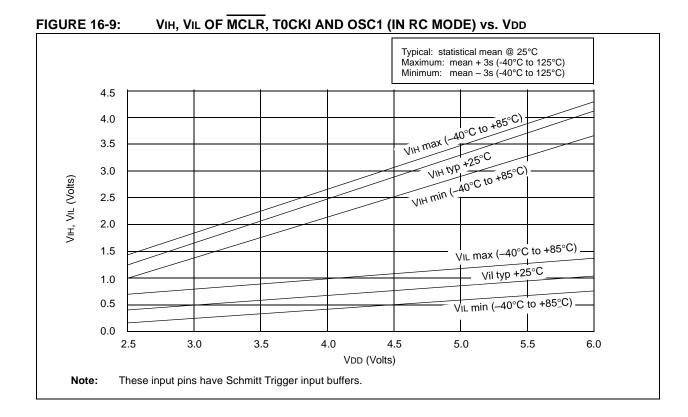




FIGURE 16-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C)

DS30453E-page 122

17.0 ELECTRICAL CHARACTERISTICS - PIC16LC54A

Absolute Maximum Ratings(†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	
Max. current out of Vss pin	
Max. current into VDD pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iik (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loκ (Vo < 0 or Vo > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O (Port A, B or C)	50 mA
Max. output current sunk by a single I/O (Port A, B or C)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-V	/OH) x IOH} + Σ (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 18-10: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (IN XT, HS AND LP MODES) vs. VDD

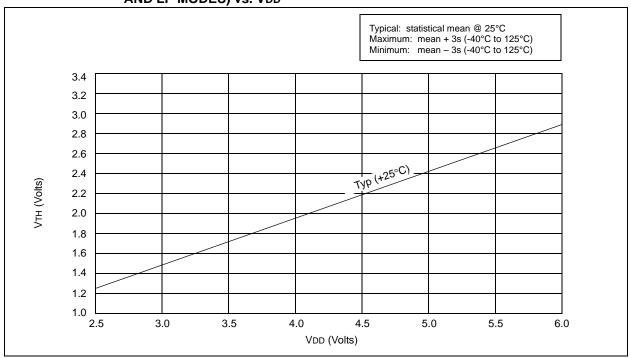
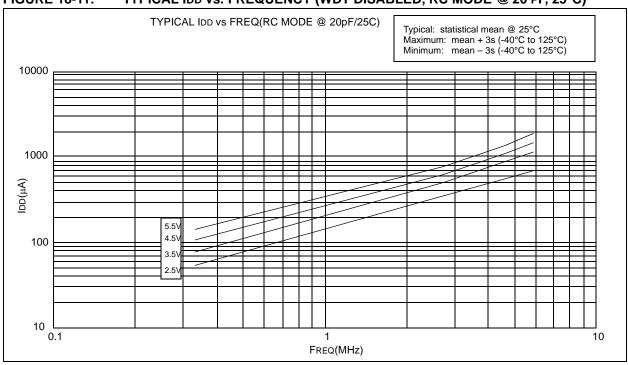



FIGURE 18-11: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 pF, 25°C)

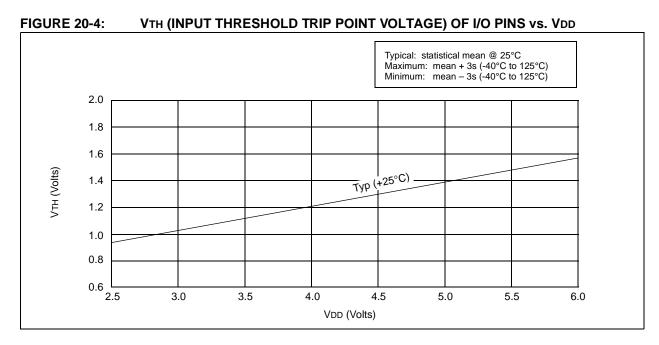
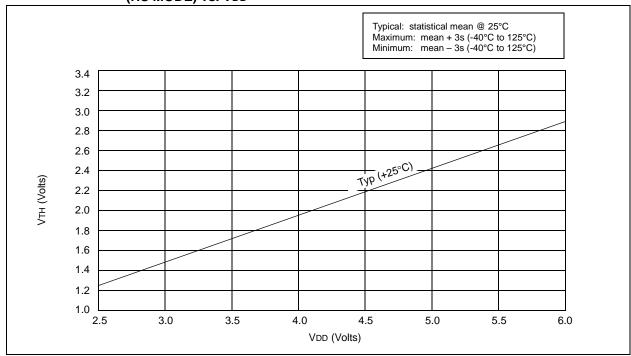
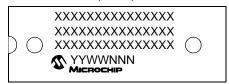



FIGURE 20-5: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (HS MODE) vs. Vdd

21.0 PACKAGING INFORMATION

21.1 Package Marketing Information


18-Lead PDIP

28-Lead Skinny PDIP (.300")

28-Lead PDIP (.600")

18-Lead SOIC

28-Lead SOIC

20-Lead SSOP

28-Lead SSOP

Example

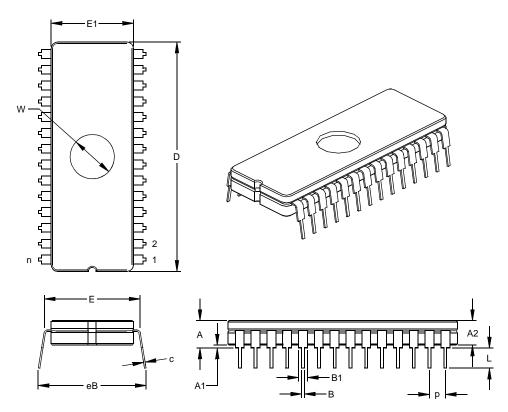
Example

Example

Example

Example

Example



Example

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	ILLIMETERS	3
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eВ	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

^{*} Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-103 Drawing No. C04-013

PIC16C5X

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	: Reader Response	
Fro	om: Name	
	Company	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
	plication (optional):	
Wo	ould you like a reply?Y_N	
Dev	vice: PIC16C5X Literature N	umber: DS30453E
Que	estions:	
1.	What are the best features of this document?	
2.	. How does this document meet your hardware and software development needs?	
	·	
Do you find the organization of this data sheet easy to follow? If not, why?		t easy to follow? If not, why?
4.	What additions to the data sheet do you think would enhance the structure and subject?	
5.	What deletions from the data sheet could be	made without affecting the overall usefulness?
6.	Is there any incorrect or misleading information	on (what and where)?
7.	. How would you improve this document?	
8.	How would you improve our software, system	s, and silicon products?