Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 40MHz | | Connectivity | - | | Peripherals | POR, WDT | | Number of I/O | 20 | | Program Memory Size | 768B (512 x 12) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 25 x 8 | | Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V | | Data Converters | - | | Oscillator Type | External | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | 28-SSOP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16c55a-40-ss | #### **Table of Contents** | 1.0 | General Description | 5 | |--------|--|------| | 2.0 | PIC16C5X Device Varieties | 7 | | 3.0 | Architectural Overview | 9 | | 4.0 | Oscillator Configurations | . 15 | | 5.0 | Reset | . 19 | | 6.0 | Memory Organization | . 25 | | 7.0 | I/O Ports | . 35 | | 8.0 | Timer0 Module and TMR0 Register | . 37 | | 9.0 | Special Features of the CPU | . 43 | | 10.0 | Instruction Set Summary | . 49 | | 11.0 | Development Support | . 61 | | - | Electrical Characteristics - PIC16C54/55/56/57 | _ | | | Electrical Characteristics - PIC16CR54A | _ | | | Device Characterization - PIC16C54/55/56/57/CR54A | | | | Electrical Characteristics - PIC16C54A | | | | Device Characterization - PIC16C54A | | | | Electrical Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B | | | | Device Characterization - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B | | | | Electrical Characteristics - PIC16C54C/C55A/C56A/C57C/C58B 40MHz | | | 20.0 | Device Characterization - PIC16C54C/C55A/C56A/C57C/C58B 40MHz | 165 | | 21.0 | Packaging Information | 171 | | Apper | ndix A: Compatibility | 182 | | On-Lir | ne Support | 187 | | Reade | er Response | 188 | | Produ | ct Identification System | 189 | # TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback. #### **Most Current Data Sheet** To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). #### **Errata** An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: - Microchip's Worldwide Web site; http://www.microchip.com - Your local Microchip sales office (see last page) - The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277 When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using. #### **Customer Notification System** Register on our web site at www.microchip.com/cn to receive the most current information on all of our products. ### 4.3 External Crystal Oscillator Circuit Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance. Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs. FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE) +5V To Other Devices 10K 4.7K 74AS04 PIC16C5X 74AS04 Open OSC2 XTAL 20 pF = 20 pF Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 $k\Omega$ resistors provide the negative feedback to bias the inverters in their linear region. FIGURE 4-4: EXAMPLE OF EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE) # 6.2 Data Memory Organization Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers and General Purpose Registers. The Special Function Registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Purpose Registers are used to control the I/O port configuration and prescaler options. The General Purpose Registers are used for data and control information under command of the instructions. For the PIC16C54, PIC16CR54, PIC16C56 and PIC16CR56, the register file is composed of 7 Special Function Registers and 25 General Purpose Registers (Figure 6-4). For the PIC16C55, the register file is composed of 8 Special Function Registers and 24 General Purpose Registers. For the PIC16C57 and PIC16CR57, the register file is composed of 8 Special Function Registers, 24 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-5). For the PIC16C58 and PIC16CR58, the register file is composed of 7 Special Function Registers, 25 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-6). # 6.2.1 GENERAL PURPOSE REGISTER FILE The register file is accessed either directly or indirectly through the File Select Register (FSR). The FSR Register is described in Section 6.7. FIGURE 6-4: PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56 REGISTER FILE MAP - **Note 1:** Not a physical register. See Section 6.7. - **2:** PIC16C55 only, in all other devices this is implemented as a general purpose register. ### 9.3 Power-Down Mode (SLEEP) A device may be powered down (SLEEP) and later powered up (Wake-up from SLEEP). #### 9.3.1 SLEEP The Power-down mode is entered by executing a SLEEP instruction. If enabled, the Watchdog Timer will be cleared but keeps running, the $\overline{10}$ bit (STATUS<4>) is set, the \overline{PD} bit (STATUS<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low, or hi-impedance). It should be noted that a RESET generated by a WDT time-out does not drive the MCLR/VPP pin low. For lowest current consumption while powered down, the T0CKI input should be at VDD or Vss and the $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level $\overline{\text{(MCLR}} = \text{VIH)}$. #### 9.3.2 WAKE-UP FROM SLEEP The device can wake up from SLEEP through one of the following events: - 1. An external RESET input on MCLR/VPP pin. - 2. A Watchdog Timer Time-out Reset (if WDT was enabled). Both of these events cause a device RESET. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of device RESET. The $\overline{\text{TO}}$ bit is cleared if a WDT timeout occurred (and caused wake-up). The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The WDT is cleared when the device wakes from SLEEP, regardless of the wake-up source. # 9.4 Program Verification/Code Protection If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes. **Note:** Microchip does not recommend code protecting windowed devices. #### 9.5 ID Locations Four memory locations are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '1's. Note: Microchip will assign a unique pattern number for QTP and SQTP requests and for ROM devices. This pattern number will be unique and traceable to the submitted code. | GOTO | Unconditional Branch | | | | | | | | | |--|---|--|--|--|--|--|--|--|--| | Syntax: | [label] GOTO k | | | | | | | | | | Operands: | $0 \le k \le 511$ | | | | | | | | | | Operation: | $k \rightarrow PC < 8:0>$;
STATUS $< 6:5> \rightarrow PC < 10:9>$ | | | | | | | | | | Status Affected: | None | | | | | | | | | | Encoding: | 101k kkkk kkkk | | | | | | | | | | Description: | GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two-cycle instruction. | | | | | | | | | | Words: | 1 | | | | | | | | | | Cycles: | 2 | | | | | | | | | | Example: GOTO THERE | | | | | | | | | | | After Instruction PC = address (THERE) | | | | | | | | | | | INCF | Increment f | | | | | | | |--|--|--|--|--|--|--|--| | Syntax: | [label] INCF f,d | | | | | | | | Operands: | $0 \le f \le 31$
$d \in [0,1]$ | | | | | | | | Operation: | $(f) + 1 \rightarrow (dest)$ | | | | | | | | Status Affected: | Z | | | | | | | | Encoding: | 0010 10df ffff | | | | | | | | Description: | The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. | | | | | | | | Words: | 1 | | | | | | | | Cycles: | 1 | | | | | | | | Example: | INCF CNT, 1 | | | | | | | | Before Instruction $CNT = 0xFF$ $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$ | | | | | | | | | INCFSZ | Increment f, Skip if 0 | |------------------------|--| | Syntax: | [label] INCFSZ f,d | | Operands: | $0 \le f \le 31$
$d \in [0,1]$ | | Operation: | (f) + 1 \rightarrow (dest), skip if result = 0 | | Status Affected: | None | | | | | Encoding: | 0011 11df ffff | | Description: | The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction. | | Words: | 1 | | Cycles: | 1(2) | | Example: | HERE INCFSZ CNT, 1 GOTO LOOP | | | CONTINUE • | | Before Instru | ction | | PC | = address (HERE) | | After Instructi
CNT | on
= CNT + 1; | | if CNT | = 0, | | PC | <pre>= address (CONTINUE);</pre> | | if CNT | ≠ 0, | | PC | = address (HERE +1) | | | | # PIC16C5X NOTES: # 12.2 DC Characteristics: PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial) | PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial) | | | Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for industrial | | | | | |--|--------|--|---|---------------------------------|------------------------------------|----------------------------|---| | Param
No. | Symbol | Characteristic/Device | Min | Тур† | Max | Units | Conditions | | D001 | VDD | Supply Voltage PIC16C5X-RCI PIC16C5X-XTI PIC16C5X-10I PIC16C5X-HSI PIC16C5X-LPI | 3.0
3.0
4.5
4.5
2.5 | | 6.25
6.25
5.5
5.5
6.25 | V
V
V
V | | | D002 | VDR | RAM Data Retention Voltage ⁽¹⁾ | _ | 1.5* | _ | V | Device in SLEEP mode | | D003 | VPOR | VDD Start Voltage to ensure
Power-on Reset | _ | Vss | _ | V | See Section 5.1 for details on Power-on Reset | | D004 | SVDD | VDD Rise Rate to ensure
Power-on Reset | 0.05* | _ | _ | V/ms | See Section 5.1 for details on Power-on Reset | | D010 | IDD | Supply Current ⁽²⁾ PIC16C5X-RCI ⁽³⁾ PIC16C5X-XTI PIC16C5X-10I PIC16C5X-HSI PIC16C5X-HSI PIC16C5X-LPI | _
_
_
_ | 1.8
1.8
4.8
4.8
9.0 | 3.3
3.3
10
10
20
40 | mA
mA
mA
mA
μA | FOSC = 4 MHz, VDD = 5.5V
FOSC = 4 MHz, VDD = 5.5V
FOSC = 10 MHz, VDD = 5.5V
FOSC = 10 MHz, VDD = 5.5V
FOSC = 20 MHz, VDD = 5.5V
FOSC = 32 kHz, VDD = 3.0V,
WDT disabled | | D020 | IPD | Power-down Current ⁽²⁾ | _
_ | 4.0
0.6 | 14
12 | μ Α
μ Α | VDD = 3.0V, WDT enabled
VDD = 3.0V, WDT disabled | ^{*} These parameters are characterized but not tested. - Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data. - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption. - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, $\overline{MCLR} = VDD$; WDT enabled/disabled as specified. - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type. - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ. [†] Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested. # 12.3 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended) | PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended) | | | Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended | | | | | |--|--------|--|--|---------------------------------|------------------------------------|----------------------------|--| | Param
No. | Symbol | Characteristic/Device | Min | Тур† | Max | Units | Conditions | | D001 | VDD | Supply Voltage PIC16C5X-RCE PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-LPE | 3.25
3.25
4.5
4.5
2.5 | 11111 | 6.0
6.0
5.5
5.5
6.0 | V
V
V | | | D002 | Vdr | RAM Data Retention Voltage ⁽¹⁾ | _ | 1.5* | _ | V | Device in SLEEP mode | | D003 | VPOR | VDD Start Voltage to ensure
Power-on Reset | _ | Vss | _ | V | See Section 5.1 for details on Power-on Reset | | D004 | SVDD | VDD Rise Rate to ensure
Power-on Reset | 0.05* | _ | _ | V/ms | See Section 5.1 for details on Power-on Reset | | D010 | IDD | Supply Current ⁽²⁾ PIC16C5X-RCE ⁽³⁾ PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-HSE PIC16C5X-LPE | _
_
_
_ | 1.8
1.8
4.8
4.8
9.0 | 3.3
3.3
10
10
20
55 | mA
mA
mA
mA
μA | Fosc = 4 MHz, VDD = 5.5V
Fosc = 4 MHz, VDD = 5.5V
Fosc = 10 MHz, VDD = 5.5V
Fosc = 10 MHz, VDD = 5.5V
Fosc = 16 MHz, VDD = 5.5V
Fosc = 32 kHz, VDD = 3.25V,
WDT disabled | | D020 | IPD | Power-down Current ⁽²⁾ | _
_ | 5.0
0.8 | 22
18 | μA
μA | VDD = 3.25V, WDT enabled
VDD = 3.25V, WDT disabled | ^{*} These parameters are characterized but not tested. - Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data. - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption. - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified. - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type. - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in $k\Omega$. [†] Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested. ## 13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A # Absolute Maximum Ratings(†) | Ambient Temperature under bias | 55°C to +125°C | |---|----------------------| | Storage Temperature | 65°C to +150°C | | Voltage on VDD with respect to Vss | 0 to +7.5V | | Voltage on MCLR with respect to Vss ⁽¹⁾ | 0 to +14V | | Voltage on all other pins with respect to Vss | 0.6V to (VDD + 0.6V) | | Total power dissipation ⁽²⁾ | 800 mW | | Max. current out of Vss pin | 150 mA | | Max. current into VDD pin | 50 mA | | Max. current into an input pin (T0CKI only) | ±500 μA | | Input clamp current, IIK (VI < 0 or VI > VDD) | ±20 mA | | Output clamp current, IOK (V0 < 0 or V0 > VDD) | ±20 mA | | Max. output current sunk by any I/O pin | 25 mA | | Max. output current sourced by any I/O pin | 20 mA | | Max. output current sourced by a single I/O port (PORTA or B) | 40 mA | | Max. output current sunk by a single I/O port (PORTA or B) | 50 mA | - **Note 1:** Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a low level to the \overline{MCLR} pin rather than pulling this pin directly to Vss. - 2: Power Dissipation is calculated as follows: PDIS = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOL x IOL) † NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. # FIGURE 13-5: TIMERO CLOCK TIMINGS - PIC16CR54A TABLE 13-4: TIMERO CLOCK REQUIREMENTS - PIC16CR54A | | AC Chara | acteristics | Standard Operating
Operating Temperat | | $TA \le +7$ $TA \le +8$ | 70°C fo
35°C fo | or comn
or indus | nercial
strial | |--------------|----------|--------------|--|-------------------------|-------------------------|--------------------|---------------------|-----------------------| | Param
No. | Symbol | C | Characteristic | Min | Тур† | Max | Units | Conditions | | 40 | Tt0H | T0CKI High I | Pulse Width | | | | | | | | | | No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | | With Prescaler | 10* | | _ | ns | | | 41 | Tt0L | T0CKI Low F | Pulse Width | | | | | | | | | | No Prescaler | 0.5 Tcy + 20* | _ | _ | ns | | | | | | - With Prescaler | 10* | | _ | ns | | | 42 | Tt0P | T0CKI Period | t | 20 or <u>Tcy + 40</u> * | _ | _ | ns | Whichever is greater. | ^{*} These parameters are characterized but not tested. Ν N = Prescale Value (1, 2, 4,..., 256) [†] Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. ### 14.0 DEVICE CHARACTERIZATION - PIC16C54A The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. "Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean – 3σ) respectively, where σ is a standard deviation, over the whole temperature range. FIGURE 14-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE TABLE 14-1: RC OSCILLATOR FREQUENCIES | Сехт | REXT | Average
Fosc @ 5 V, 25°C | | | | |--------|------|-----------------------------|-------|--|--| | 20 pF | 3.3K | 5 MHz | ± 27% | | | | | 5K | 3.8 MHz | ± 21% | | | | | 10K | 2.2 MHz | ± 21% | | | | | 100K | 262 kHz | ± 31% | | | | 100 pF | 3.3K | 1.6 MHz | ± 13% | | | | | 5K | 1.2 MHz | ± 13% | | | | | 10K | 684 kHz | ± 18% | | | | | 100K | 71 kHz | ± 25% | | | | 300 pF | 3.3K | 660 kHz | ± 10% | | | | | 5.0K | 484 kHz | ± 14% | | | | | 10K | 267 kHz ± 15% | | | | | | 100K | 29 kHz | ± 19% | | | The frequencies are measured on DIP packages. The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviations from the average value for VDD = 5V. FIGURE 16-16: WDT TIMER TIME-OUT PERIOD vs. VDD⁽¹⁾ FIGURE 16-17: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD FIGURE 17-1: PIC16C54C/55A/56A/57C/58B-04, 20 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_{A} \le +70^{\circ}C$ (COMMERCIAL TEMPS) **Note 1:** The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. FIGURE 17-2: PIC16C54C/55A/56A/57C/58B-04, 20 VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \leq T_A < 0^{\circ}C, +70^{\circ}C < T_A \leq +125^{\circ}C \text{ (OUTSIDE OF COMMERCIAL TEMPS)}$ Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. FIGURE 17-3: PIC16LC54C/55A/56A/57C/58B VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \leq T_{A} \leq +85^{\circ}C$ Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. FIGURE 17-4: PIC16LC54C/55A/56A/57C/58B VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 0^{\circ}\text{C}$ Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts. FIGURE 17-8: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X, PIC16CR5X TABLE 17-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X, PIC16CR5X | AC Charac | teristics | Standard Operating Conditions (L
Operating Temperature $0^{\circ}C \le -40^{\circ}C $ | $TA \le +7$ $TA \le +8$ | 0°C for
5°C for | commei
industria | rcial
al | | |---|-----------|---|-------------------------|--------------------|---------------------|-------------|-------------------| | Param No. Symbol Characteristic Min Typ† Max Units Conditions | | | | | | Conditions | | | 30 | TmcL | MCLR Pulse Width (low) | 1000* | _ | _ | ns | VDD = 5.0V | | 31 | Twdt | Watchdog Timer Time-out Period (No Prescaler) | 9.0* | 18* | 30* | ms | VDD = 5.0V (Comm) | | 32 | TDRT | Device Reset Timer Period | 9.0* | 18* | 30* | ms | VDD = 5.0V (Comm) | | 34 | Tioz | I/O Hi-impedance from MCLR Low | 100* | 300* | 1000* | ns | | ^{*} These parameters are characterized but not tested. [†] Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. **FIGURE 18-4:** TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean - 3s (-40°C to 125°C) 700 R=3.3K 600 500 R=5K Fosc (kHz) 400 300 R=10K 200 100 R=100K 0 2.5 3.0 3.5 5.0 6.0 VDD (Volts) FIGURE 18-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C) FIGURE 18-7: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (-40°C, 85°C) # 19.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾ | PIC16C54C/C55A/C56A/C57C/C58B-40
(Commercial) | | | | | | | tions (unless otherwise specified) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial | |--|--------|---|-------|------------|------------|--------------------------|--| | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | Conditions | | D001 | VDD | Supply Voltage | 4.5 | _ | 5.5 | V | HS mode from 20 - 40 MHz | | D002 | Vdr | RAM Data Retention Voltage ⁽²⁾ | _ | 1.5* | _ | V | Device in SLEEP mode | | D003 | VPOR | VDD Start Voltage to ensure
Power-on Reset | _ | Vss | _ | V | See Section 5.1 for details on
Power-on Reset | | D004 | SVDD | VDD Rise Rate to ensure Power-
on Reset | 0.05* | _ | _ | V/ms | See Section 5.1 for details on
Power-on Reset | | D010 | IDD | Supply Current ⁽³⁾ | _ | 5.2
6.8 | 12.3
16 | mA
mA | FOSC = 40 MHz, VDD = 4.5V, HS mode
FOSC = 40 MHz, VDD = 5.5V, HS mode | | D020 | IPD | Power-down Current ⁽³⁾ | _ | 1.8
9.8 | 7.0
27* | μ Α
μ Α | VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT enabled, Commercial | ^{*} These parameters are characterized but not tested. - **Note 1:** Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 19.1. - 2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data. - **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption. - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified. - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type. [†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. **FIGURE 19-4: CLKOUT AND I/O TIMING - PIC16C5X-40** **CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X-40 TABLE 19-2:** | AC Characteristics | | Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial | | | | | | | | |--------------------|----------|---|--------------|------|------|-------|--|--|--| | Param
No. | Symbol | Characteristic | Min | Тур† | Max | Units | | | | | 10 | TosH2ckL | OSC1↑ to CLKOUT↓ ^(1,2) | _ | 15 | 30** | ns | | | | | 11 | TosH2ckH | OSC1↑ to CLKOUT↑ ^(1,2) | _ | 15 | 30** | ns | | | | | 12 | TckR | CLKOUT rise time ^(1,2) | _ | 5.0 | 15** | ns | | | | | 13 | TckF | CLKOUT fall time ^(1,2) | _ | 5.0 | 15** | ns | | | | | 14 | TckL2ioV | CLKOUT↓ to Port out valid ^(1,2) | _ | _ | 40** | ns | | | | | 15 | TioV2ckH | Port in valid before CLKOUT ^(1,2) | 0.25 TCY+30* | _ | _ | ns | | | | | 16 | TckH2iol | Port in hold after CLKOUT ^(1,2) | 0* | _ | _ | ns | | | | | 17 | TosH2ioV | OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾ | _ | _ | 100 | ns | | | | | 18 | TosH2iol | OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time) | TBD | _ | _ | ns | | | | | 19 | TioV2osH | Port input valid to OSC1↑ (I/O in setup time) | TBD | _ | _ | ns | | | | | 20 | TioR | Port output rise time ⁽²⁾ | _ | 10 | 25** | ns | | | | | 21 | TioF | Port output fall time ⁽²⁾ | _ | 10 | 25** | ns | | | | These parameters are characterized but not tested. Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc. 2: Refer to Figure 19-2 for load conditions. These parameters are design targets and are not tested. No characterization data available at this time. Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. # 18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | INCHES* | | MILLIMETERS | | | | |----------------------------|--------|---------|------|-------------|-------|-------|-------| | Dimension | Limits | MIN | NOM | MAX | MIN | NOM | MAX | | Number of Pins | n | | 18 | | | 18 | | | Pitch | р | | .100 | | | 2.54 | | | Top to Seating Plane | Α | .170 | .183 | .195 | 4.32 | 4.64 | 4.95 | | Ceramic Package Height | A2 | .155 | .160 | .165 | 3.94 | 4.06 | 4.19 | | Standoff | A1 | .015 | .023 | .030 | 0.38 | 0.57 | 0.76 | | Shoulder to Shoulder Width | Е | .300 | .313 | .325 | 7.62 | 7.94 | 8.26 | | Ceramic Pkg. Width | E1 | .285 | .290 | .295 | 7.24 | 7.37 | 7.49 | | Overall Length | D | .880 | .900 | .920 | 22.35 | 22.86 | 23.37 | | Tip to Seating Plane | L | .125 | .138 | .150 | 3.18 | 3.49 | 3.81 | | Lead Thickness | С | .008 | .010 | .012 | 0.20 | 0.25 | 0.30 | | Upper Lead Width | B1 | .050 | .055 | .060 | 1.27 | 1.40 | 1.52 | | Lower Lead Width | В | .016 | .019 | .021 | 0.41 | 0.47 | 0.53 | | Overall Row Spacing § | eВ | .345 | .385 | .425 | 8.76 | 9.78 | 10.80 | | Window Width | W1 | .130 | .140 | .150 | 3.30 | 3.56 | 3.81 | | Window Length | W2 | .190 | .200 | .210 | 4.83 | 5.08 | 5.33 | ^{*} Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-036 Drawing No. C04-010