

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	768B (512 x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c55at-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C5X FAMILY OF DEVICES

Features	PIC16C54	PIC16CR54	PIC16C55	PIC16C56	PIC16CR56		
Maximum Operation Frequency	40 MHz	40 MHz 20 MHz 40 MHz		40 MHz	20 MHz		
EPROM Program Memory (x12 words)	512	—	512	1K	—		
ROM Program Memory (x12 words)	—	512	—	—	1K		
RAM Data Memory (bytes)	25	25	24	25	25		
Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0		
I/O Pins	12	12	20	12	12		
Number of Instructions	33	33	33	33	33		
Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP		
All PIC [®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability.							

PIC16C58 Features **PIC16C57** PIC16CR57 PIC16CR58 Maximum Operation Frequency 20 MHz 40 MHz 40 MHz 20 MHz EPROM Program Memory (x12 words) 2K 2K ____ _ ROM Program Memory (x12 words) 2K 2K _ _ RAM Data Memory (bytes) 72 72 73 73 Timer Module(s) TMR0 TMR0 TMR0 TMR0 I/O Pins 20 20 12 12 Number of Instructions 33 33 33 33 28-pin DIP, SOIC; 28-pin DIP, SOIC; 18-pin DIP, SOIC; 18-pin DIP, SOIC; Packages 28-pin SSOP 28-pin SSOP 20-pin SSOP 20-pin SSOP All PIC® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability.

FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

6.4 **OPTION Register**

The OPTION Register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W Register will be transferred to the OPTION Register. A RESET sets the OPTION<5:0> bits.

REGISTER 6-2: OPTION REGISTER

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
_	—	T0CS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

- bit 7-6: Unimplemented: Read as '0'
- bit 5: **TOCS**: Timer0 clock source select bit
 - 1 = Transition on T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4: **TOSE**: Timer0 source edge select bit
 - 1 = Increment on high-to-low transition on T0CKI pin
 - 0 = Increment on low-to-high transition on T0CKI pin
- bit 3: **PSA**: Prescaler assignment bit
 - 1 = Prescaler assigned to the WDT
 - 0 = Prescaler assigned to Timer0

bit 2-0: **PS<2:0>:** Prescaler rate select bits

Bit Value	Timer0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

7.0 I/O PORTS

As with any other register, the I/O Registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers (TRISA, TRISB, TRISC) are all set.

7.1 PORTA

PORTA is a 4-bit I/O Register. Only the low order 4 bits are used (RA<3:0>). Bits 7-4 are unimplemented and read as '0's.

7.2 PORTB

PORTB is an 8-bit I/O Register (PORTB<7:0>).

7.3 PORTC

PORTC is an 8-bit I/O Register for PIC16C55, PIC16C57 and PIC16CR57.

PORTC is a General Purpose Register for PIC16C54, PIC16CR54, PIC16CR56, PIC16CR56, PIC16CS8 and PIC16CR58.

7.4 TRIS Registers

The Output Driver Control Registers are loaded with the contents of the W Register by executing the TRIS f instruction. A '1' from a TRIS Register bit puts the corresponding output driver in a hi-impedance (input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

The TRIS Registers are "write-only" and are set (output drivers disabled) upon RESET.

TABLE 7-1:	SUMMARY O	F PORT	REGISTERS
			LOIOI LIVO

Value on Value on Bit 4 Bit 3 Bit 1 Bit 0 MCLR and Address Name Bit 7 Bit 6 Bit 5 Bit 2 Power-On Reset WDT Reset TRIS N/A I/O Control Registers (TRISA, TRISB, TRISC) 1111 1111 1111 1111 05h PORTA RA3 RA2 RA1 RA0 _ _ _ _ xxxx _ _ _ _ uuuu PORTB 06h RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 XXXX XXXX uuuu uuuu 07h PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 XXXX XXXX uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', Shaded cells = unimplemented, read as '0'

7.5 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 7-1. All ports may be used for both input and output operation. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 7-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

CONFIGURATION WORD FOR PIC16C54/C55/C56/C57 **REGISTER 9-2:**

—	—	—	—	—	—	—	—	CP	WDTE	FOSC1	FOSC0
bit 11											bit 0
bit 11-4:	Unimple	emented:	Read as '	0'							
bit 3:	CP: Cod 1 = Cod 0 = Code	le protecti de protecti e protectio	on bit. on off on on								
bit 2:	WDTE:	Watchdog	timer ena	ble bit							
	1 = WD7	T enabled									
	0 = VVD	I disabled			. (2)						
bit 1-0:	FOSC1:	FOSC0: (Oscillator s	election b	oits ⁽²⁾						
	00 = L	P oscillato	or								
	01 = X	I oscillato	or								
	$10 = \Pi$	C oscillat) or								
	TT = K		JI								
Note 1:	Refer to	the PIC16	C5X Prog	ramming	Specificat	ions (Liter	ature Nun	nber DS30	0190) to d	etermine h	now to
	access th	he configu	ration wor	d.							
2:	PIC16LV	/54A supp	orts XT, R	C and LP	oscillator	only.					
L a sua a du											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

PIC16C5X

RLF	Rotate Left f through Carry							
Syntax:	[label	[<i>label</i>] RLF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$							
Operation:	See d	escript	ion be	elow				
Status Affected:	С							
Encoding:	0011	. 01	df	ffff				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	RLF	REG	£1,0					
Before Instru REG1 C After Instruct	ction = = ion	1110 0	0110	0				
REG1	=	1110	0110	C				
W	=	1100	1100	C				
С	=	1						

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Encoding:	0011 00df ffff					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	RRF REG1,0					
Before Instru REG1 C	uction = 1110 0110 = 0					
REG1	= 1110 0110					
W C	= 0111 0011 = 0					

SLEEP	Enter SLEEP Mode					
Syntax:	[label]	SLEEP				
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler; \ if \ assigned \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	0000	0000	0011			
Description:	Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See section on SLEEP for more					
Words:	1					
Cycles:	1					
Example:	SLEEP					

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12CXXX	PIC14000	PIC16C5X	X92912IA	PIC16CXXX	PIC16F62X	X7D81DI9	XX7O91OIG	78291219	PIC16F8XX	PIC16C9XX	PIC17C4X	XXTOTIOI9	PIC18CXX2	PIC18FXXX	63CXX 52CXX/ 54CXX/	хххсэн	мсвеххх	MCP2510
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB® C17 C Compiler												>	>						
MPLAB® C18 C Compiler														~	>				
MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	^	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	<	>	>	~	~	×*`	~	>	>	>	>	>	>	~	>				
ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
et MPLAB® ICD In-Circuit Debugger Debugger				*			*			>					>				
ଏ PICSTART® Plus Entry Level ଅପେତା Programmer	<	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
ମୁ ସୁସ୍ଟୁ C Universal Device Programmer ଜ	>	>	>	>	>	** ⁄	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		* +		>			>							
PICDEM TM 2 Demonstration Board				∕+			<↓ ↓							>	>				
PICDEM TM 3 Demonstration Board											>								
면 PICDEM TM 14A Demonstration Board		>																	
☐ PICDEM [™] 17 Demonstration B Board													>						
KEELoq® Evaluation Kit																	>		
KEELoa® Transponder Kit																	>		
e microlD™ Programmer's Kit																		>	
₫ 125 kHz microID™ Developer's Kit																		>	
125 kHz Anticollision microlD TM Developer's Kit																		~	
13.56 MHz Anticollision microlD TM Developer's Kit																		~	
MCP2510 CAN Developer's Kit																			>
* Contact the Microchip Technology In ** Contact Microchip Technology Inc. fo [†] Development tool is available on sel	nc. web s or avails lect devi	site at w ability da ices.	ww.micr tte.	ochip.cc	om for inf	ormation	on how 1	to use the	9 MPLAB	® ICD In	Circuit I	Debugg	er (DV16	4001) w	ith PIC16	SC62, 63,	64, 65, 7	2, 73, 74,	76, 77.

© 1997-2013 Microchip Technology Inc.

TABLE 12-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57

AC Char	acteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless operating Temperature} & 0^{\circ}C \leq TA \leq \\ -40^{\circ}C \leq TA \leq \\ -40^{\circ}C \leq TA \leq \end{array}$	s otherwise sp +70°C for comm +85°C for indust +125°C for exter	ecified) ercial rial nded)	
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	—	15	30**	ns
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	15	30**	ns
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	40**	ns
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	_	—	ns
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	_	—	ns
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	_	100*	ns
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	—	ns
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns
21	TioF	Port output fall time ⁽²⁾	_	10	25**	ns

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 12-1 for load conditions.

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

PIC16LC PIC16LC (Comm	R54A-04 R54A-04I ercial, Indus	trial)	Standa Operat	ard Opei ting Tem	ating C perature	ondition • 0° -40°	s (unless otherwise specified) $C \le TA \le +70^{\circ}C$ for commercial $C \le TA \le +85^{\circ}C$ for industrial
PIC16CR PIC16CR (Comm	254A-04, 10 254A-04I, 10 ercial, Indus	, 20 01, 201 strial)	Standa Operat	ard Oper ting Tem	ating C perature	ondition 0° –40°	s (unless otherwise specified) C \leq TA \leq +70°C for commercial C \leq TA \leq +85°C for industrial
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions
	Vdd	Supply Voltage					
D001		PIC16LCR54A	2.0		6.25	V	
D001 D001A		PIC16CR54A	2.5 4.5		6.25 5.5	V V	RC and XT modes HS mode
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in SLEEP mode
D003	Vpor	VDD Start Voltage to ensure Power-on Reset	_	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	Svdd	VDD Rise Rate to ensure Power-on Reset	0.05*		—	V/ms	See Section 5.1 for details on Power-on Reset
	IDD	Supply Current ⁽²⁾					
D005		PICLCR54A	—	10	20 70	μA μA	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 6.0V
D005A		PIC16CR54A		2.0 0.8 90 4.8	3.6 1.8 350 10	mA mA μA	RC ⁽³⁾ and XT modes: Fosc = 4.0 MHz, VDD = 6.0V Fosc = 4.0 MHz, VDD = 3.0V Fosc = 200 kHz, VDD = 2.5V HS mode: Fosc = 10 MHz, VDD = 5.5V
			—	9.0	20	mA	FOSC = 20 MHz, VDD = 5.5 V

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 13-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR54A

TABLE 13-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54A

AC Chara	cteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	1.0*	_	_	μS	VDD = 5.0V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7.0*	18*	40*	ms	VDD = 5.0V (Comm)		
32	Tdrt	Device Reset Timer Period	7.0*	18*	30*	ms	VDD = 5.0V (Comm)		
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	1.0*	μS			

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED

FIGURE 16-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS - VDD

17.0 ELECTRICAL CHARACTERISTICS - PIC16LC54A

Absolute Maximum Ratings^(†)

Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	
Max. current out of Vss pin	150 mA
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo > Voo)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O (Port A, B or C)	50 mA
Max. output current sunk by a single I/O (Port A, B or C)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VD	D-VOH) X IOH} + Σ (VOL X IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC PIC16LC (Comm PIC16CS PIC16CF (Comm	5X R5X hercial, Indi X SX R5X hercial, Indi	ustrial) ustrial)	Stand Opera Stand Opera	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrialStandard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions		
	Vdd	Supply Voltage							
D001		PIC16LC5X	2.5 2.7 2.5		5.5 5.5 5.5	V V V	$\begin{array}{l} -40^{\circ}C \leq TA \leq +\ 85^{\circ}C,\ 16LCR5X \\ -40^{\circ}C \leq TA \leq 0^{\circ}C,\ 16LC5X \\ 0^{\circ}C \leq TA \leq +\ 85^{\circ}C\ 16LC5X \end{array}$		
D001A		PIC16C5X	3.0 4.5		5.5 5.5	V V	RC, XT, LP and HS mode from 0 - 10 MHz from 10 - 20 MHz		
D002	Vdr	RAM Data Retention Volt- age ⁽¹⁾	-	1.5*	-	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	_	Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	_	V/ms	See Section 5.1 for details on Power-on Reset		

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	1ILLIMETERS	6
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

* Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-036

Drawing No. C04-010

Μ

MCLR Reset	
Register values on2	20
Memory Map	
PIC16C54/CR54/C55	25
PIC16C56/CR56	25
PIC16C57/CR57/C58/CR582	25
Memory Organization	25
MOVF	56
MOVLW	56
MOVWF	57
MPLAB C17 and MPLAB C18 C Compilers	31
MPLAB ICD In-Circuit Debugger	33
MPLAB ICE High Performance Universal In-Circuit Emulat	or
with MPLAB IDE	32
MPLAB Integrated Development Environment Software	31
MPLINK Object Linker/MPLIB Object Librarian	32

Ν

NOP	

0

One Time Dreasemmehle (OTD) Devices	7
One-Time-Programmable (OTP) Devices	
OPTION	57
OPTION Register	
Value on reset	
Oscillator Configurations	15
Oscillator Types	
HS	15
LP	
RC	
ХТ	

Ρ

PA0 bit	29
PA1 bit	29
Paging	31
PC	31
Value on reset2	20
PD bit	29
Peripheral Features	. 1
PICDEM 1 Low Cost PIC MCU Demonstration Board6	33
PICDEM 17 Demonstration Board6	64
PICDEM 2 Low Cost PIC16CXX Demonstration Board 6	33
PICDEM 3 Low Cost PIC16CXXX Demonstration Board 6	64
PICSTART Plus Entry Level Development Programmer 6	33
Pin Configurations	. 2
Pinout Description - PIC16C54, PIC16CR54, PIC16C54	6,
PIC16CR56, PIC16C58, PIC16CR58 1	11
Pinout Description - PIC16C55, PIC16C57, PIC16CR57 1	12
PORTA	35
Value on reset2	20
PORTB	35
Value on reset2	20
PORTC	35
Value on reset2	20
Power-Down Mode4	17
Power-On Reset (POR)	21
Register values on2	20
Prescaler4	10
PRO MATE II Universal Device Programmer6	33
Program Counter	31
Program Memory Organization	25
Program Verification/Code Protection4	17

Q

S

evices 7
43, 47, 58
62
43
32
9, 29
20
59
59

Т

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
Fror	m: Name		
	Company		
	Address		
	City / State / ZIP / Country		
A	Telephone: ()	FAX: ()	
VVOL	uid you like a reply?YN		
Device: PIC16C5X Literature Number: DS30453E			
Que	estions:		
1. What are the best features of this document?			
2.	. How does this document meet your hardware and software development needs?		
3.	. Do you find the organization of this data sheet easy to follow? If not, why?		
4.	4. What additions to the data sheet do you think would enhance the structure and subject?		
_			
5.	5. What deletions from the data sheet could be made without affecting the overall usefulness?		
6	Is there any incorrect or misleading inform	nation (what and where)?	
0.	s. To there any mooneet of misleading mornation (what and where):		
	-		
7.	How would you improve this document?		
•			
8.	How would you improve our software, sys	stems, and silicon products?	

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1997-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769355

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.