

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56-10-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C5X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C5X uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle except for program branches.

The PIC16C54/CR54 and PIC16C55 address 512 x 12 of program memory, the PIC16C56/CR56 address 1K x 12 of program memory, and the PIC16C57/CR57 and PIC16C58/CR58 address 2K x 12 of program memory. All program memory is internal.

The PIC16C5X can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C5X has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C5X simple yet efficient. In addition, the learning curve is reduced significantly. The PIC16C5X device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1 (for PIC16C54/56/58) and Table 3-2 (for PIC16C55/57).

Pi	n Numb	er	Pin	Buffer	Description
DIP	SOIC	SSOP	Туре	Туре	Description
17	17	19	I/O	TTL	Bi-directional I/O port
18	18	20	I/O	TTL	
1	1	1	I/O	TTL	
2	2	2	I/O	TTL	
6	6	7	I/O	TTL	Bi-directional I/O port
7	7	8	I/O	TTL	
8	8	9	I/O	TTL	
9	9	10	I/O	TTL	
10	10	11	I/O	TTL	
11	11	12	I/O	TTL	
12	12	13	I/O	TTL	
13	13	14	I/O	TTL	
3	3	3	Ι	ST	Clock input to Timer0. Must be tied to Vss or VDD, if not in
					use, to reduce current consumption.
4	4	4	Ι	ST	Master clear (RESET) input/programming voltage input.
					This pin is an active low RESET to the device. Voltage on
					the MCLR/VPP pin must not exceed VDD to avoid unin-
					tended entering of Programming mode.
16	16	18	I	ST	Oscillator crystal input/external clock source input.
15	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator
					in crystal Oscillator mode. In RC mode, OSC2 pin outputs
					CLKOUT, which has 1/4 the frequency of OSC1 and
					denotes the instruction cycle rate.
14	14	15,16	Р	_	Positive supply for logic and I/O pins.
5	5	5,6	Р	—	Ground reference for logic and I/O pins.
	Pi DIP 17 18 1 2 6 7 8 9 10 11 12 13 3 4 16 15 14	Pin Numb DIP SOIC 17 17 18 18 1 1 2 2 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 3 3 4 4 16 16 15 15 14 14	Pin Number DIP SOIC SSOP 17 17 19 18 18 20 1 1 1 2 2 2 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 3 3 3 4 4 4 15 15 17 14 14 15,16	Pin Pin DIP SOIC SSOP Type 17 17 19 I/O 18 18 20 I/O 1 1 1 I/O 2 2 2 I/O 6 6 7 I/O 7 7 8 I/O 8 9 I/O I/O 9 9 10 I/O 10 10 11 I/O 11 11 12 I/O 12 12 13 I/O 13 13 14 I/O 3 3 3 I 16 16 18 I 15 15 17 O 14 14 15,16 P	Pin Buffer DIP SOIC SSOP Type Type 17 17 19 I/O TTL 18 18 20 I/O TTL 1 1 1/O TTL 2 2 2 I/O TTL 6 6 7 I/O TTL 7 7 8 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 11 11 12 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 12 12 13 I/O TTL 13 13 14 I/O TTL 3 3 3 I ST 16 16 18 I ST 15 15 17 <td< td=""></td<>

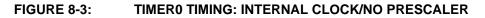
TABLE 3-1:PINOUT DESCRIPTION - PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58,
PIC16CR58

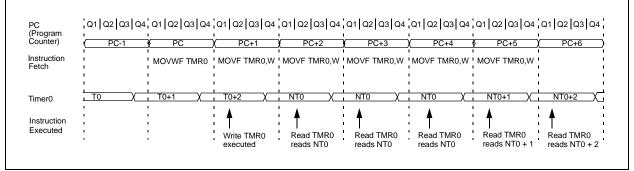
Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input

6.2.2 SPECIAL FUNCTION REGISTERS

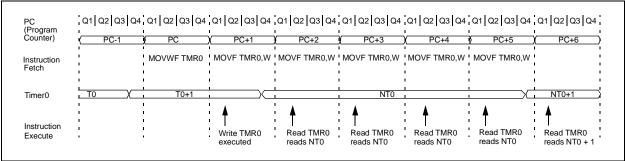
The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device (Table 6-1).

The Special Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on Page
N/A	TRIS	I/O Cont	rol Regis	ters (TRIS	SA, TRIS	B, TRISC	;)			1111 1111	35
N/A	OPTION	Contains	Contains control bits to configure Timer0 and Timer0/WDT prescaler11 1111 30							30	
00h	INDF	Uses co	Uses contents of FSR to address data memory (not a physical register) xxxx xxxx 32						32		
01h	TMR0	Timer0	Timer0 Module Register XXXX XXXX 38							38	
02h ⁽¹⁾	PCL	Low ord	er 8 bits c	of PC						1111 1111	31
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	29
04h	FSR	Indirect	Indirect data memory address pointer							1xxx xxxx (3)	32
05h	PORTA	—	—	—	—	RA3	RA2	RA1	RA0	xxxx	35
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	35
07h ⁽²⁾	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	35


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused

Note 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access these bits.


2: File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58 and PIC16CR58.

3: These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.

FIGURE 8-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0 -	Timer0 - 8-bit real-time clock/counter						xxxx xxxx	uuuu uuuu	
N/A	OPTION	_		TOCS	TOSE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells not used by Timer0.

NOTES:

10.0 INSTRUCTION SET SUMMARY

Each PIC16C5X instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C5X instruction set summary in Table 10-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 10-1:	OPCODE FIELD
	DESCRIPTIONS

DESCRIPTIONS				
Field	Description			
f	Register file address (0x00 to 0x1F)			
W	Working register (accumulator)			
b	Bit address within an 8-bit file register			
k	Literal field, constant data or label			
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for com-			
	patibility with all Microchip software tools.			
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1			
label	Label name			
TOS	Top of Stack			
PC	Program Counter			
WDT	Watchdog Timer Counter			
TO	Time-out bit			
PD	Power-down bit			
dest	Destination, either the W register or the specified register file location			
[]	Options			
()	Contents			
\rightarrow	Assigned to			
< >	Register bit field			
∈	In the set of			
italics	User defined term (font is courier)			

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2 μ s.

Figure 10-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file regis	ter o	perations				
<u>11 6</u>	5	4 0				
OPCODE	d	f (FILE #)				
d = 1 for destination	d = 0 for destination W d = 1 for destination f f = 5-bit file register address					
Bit-oriented file registe	r ope	erations				
11 8	7	5 4 0				
OPCODE	b (Bl	IT #) f (FILE #)				
f = 5-bit file regist	eratio	ons (except GOTO)				
11	8	7 0				
OPCODE		k (literal)				
k = 8-bit immedia	te va	alue				
Literal and control ope	eratio	ons - GOTO instruction				
11	9	8 0				
OPCODE		k (literal)				
k = 9-bit immedia	k = 9-bit immediate value					

^{© 1997-2013} Microchip Technology Inc.

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 31$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	0000 001f ffff
Description:	Move data from the W register to
	register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF TEMP_REG
W After Instruct	REG = 0xFF $= 0x4F$

NOP	No Operation					
Syntax:	[label] NOP					
Operands:	None					
Operation:	No operation					
Status Affected:	None					
Encoding:	0000	0000	0000			
Description:	No operation.					
Words:	1					
Cycles:	1					
Example:	NOP					

OPTION	Load Ol		egister	
Syntax:	[label]	OPTIO	N	
Operands:	None			
Operation:	$(W) \rightarrow C$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:		tent of the	0	
Words:	1			
Cycles:	1			
Example	OPTION			
Before Instru				
W	•	07		
After Instruction				
OPTION	= 0x	07		

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None
Encoding:	1000 kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE ;W contains ;table offset ;value. • ;W now has table • ;value.
TABLE	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>
Before Instru	
W After Instruct	= 0x07
After Instruct W	ion = value of k8

SUBWF	Subti	ract W	/ from f
Syntax:	[label] SU	JBWF f,d
Operands:	$0 \le f \le$	≤ 31	
	d ∈ [0),1]	
Operation:	(f) – (W) \rightarrow	(dest)
Status Affected:	C, DC	C, Z	
Encoding:	000	0 10	Odf ffff
Description:	the W is 0 th regist	/ regist ne resu er. If 'd	's complement method) ter from register 'f'. If 'd' ult is stored in the W d' is 1 the result is c in register 'f'.
Words:	1		
Cycles:	1		
Example 1:	SUBW	FR	REG1, 1
Before Instruct REG1 W C After Instruct REG1 W C Example 2: Before Instruct REG1 W C After Instruct REG1 W C Example 3: Before Ins REG1 W C After Instruct REG1	= = = = = ion = = truction = = = =	1 2 ? 0xFF	; result is positive ; result is zero
W C	= =	2 0	; result is negative
-		-	,

SWAPF	Swap Nibbles in f						
Syntax:	[label] SWAPF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$						
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$						
Status Affected:	None						
Encoding:	0011 10df ffff						
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Example	SWAPF REG1, 0						
REG1 After Instruct REG1 W	= 0xA5 ion = 0xA5 = 0x5A						
TRIS	Load TRIS Register						
Syntax:	[<i>label</i>] TRIS f						
Operands:	f = 5, 6 or 7						
Operation:	(W) \rightarrow TRIS register f						
Status Affected:	None						
Encoding:	0000 0000 0fff						
Description:	TRIS register 'f' ($f = 5, 6, or 7$) is loaded with the contents of the W register.						
Words:	1						
Cycles:	1						
Example	TRIS PORTB						
Before Instru W After Instructi TRISB	= 0xA5 on						

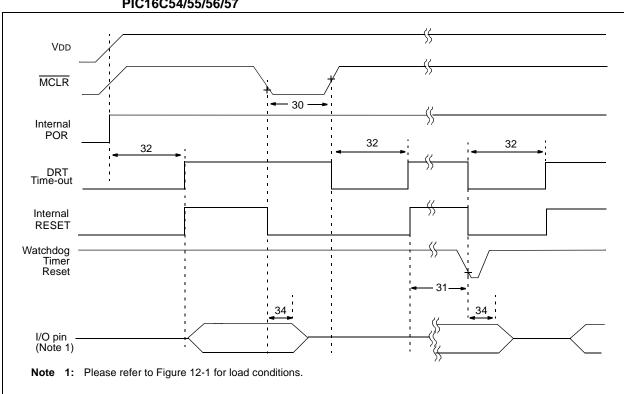
TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

MPLA® Integrated V		
MPLAB [®] C17 C complex I	> > > > > > > > > >	
MPLAB [®] C18 C compiler Implement Implement </th <th>> > > > > > > ></th> <th></th>	> > > > > > > >	
MPASM™ Assembler/ MPLINK™ Object Linker C	> > >	
MPLAB® ICE In-Circuit Emulator //		>
ICEPIC** In-Circuit Emulator ✓ <td< th=""><th></th><th></th></td<>		
MPLAB® ICD In-Circuit *	· · · · · · · · · · · · · · · · · · ·	
PICSTART® Plus Entry Level	> 	
PRO MATE® II · · · · · · · · · · · · · · · · · · ·		
PICDEM™ 1 Demonstration </th <td></td> <td>></td>		>
PICDEM™ 2 Demonstration	>	
PICDEMTM 3 Demonstration Board Image: Control of the constration Image: Control of the constration PICDEMTM 14 Demonstration Image: Control of the constration Image: Control of the constration Image: Control of the constration PICDEMTM 17 Demonstration Image: Control of the constration ReeLoo® Transponder Kit Image: Control of the control of the constration Image: Control of the cont	>	
PICDEM TM 14A Demonstration Board PICDEM TM 17 Demonstration Board KEELoa [®] Evaluation Kit KEELoa [®] Transponder Kit microlD TM Programmer's Kit 125 kHz microlD TM	· ·	
	· ·	
		>
		>
		>
		>
125 kHz Anticollision microlD TM Developer's Kit		>
13.56 MHz Anticollision microlD TM Developer's Kit		>
MCP2510 CAN Developer's Kit		

© 1997-2013 Microchip Technology Inc.

12.1 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)

	PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)		Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage PIC16C5X-RC PIC16C5X-XT PIC16C5X-10 PIC16C5X-HS PIC16C5X-LP	3.0 3.0 4.5 4.5 2.5		6.25 6.25 5.5 5.5 6.25	V V V V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	_	V	Device in SLEEP Mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset		Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*		—	V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RC ⁽³⁾ PIC16C5X-XT PIC16C5X-10 PIC16C5X-HS PIC16C5X-HS PIC16C5X-LP	 	1.8 1.8 4.8 4.8 9.0 15	3.3 3.3 10 10 20 32	mA mA mA mA μA	Fosc = 4 MHz, VDD = $5.5V$ Fosc = 4 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 20 MHz, VDD = $5.5V$ Fosc = 32 kHz, VDD = $3.0V$, WDT disabled		
D020	Ipd	Power-down Current ⁽²⁾	—	4.0 0.6	12 9	μΑ μΑ	VDD = 3.0V, WDT enabled VDD = 3.0V, WDT disabled		


* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

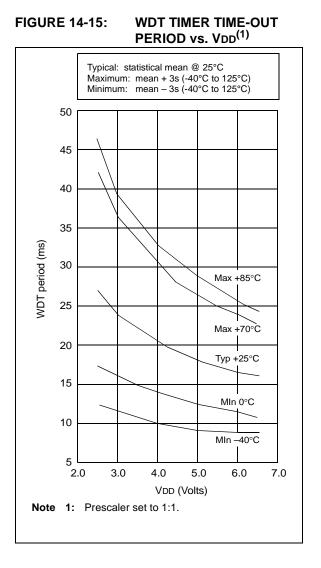
FIGURE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -PIC16C54/55/56/57

TABLE 12-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57

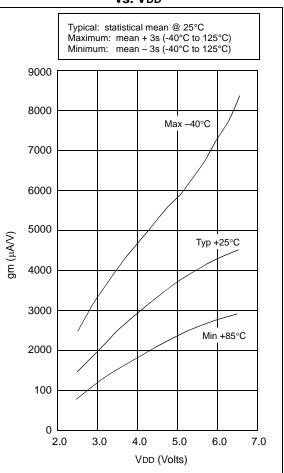
AC Chara	cteristics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic Min Typ† Max Units Conditions						
30	TmcL	MCLR Pulse Width (low)	100*	—	—	ns	VDD = 5.0V	
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)	
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)	
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	100*	ns		

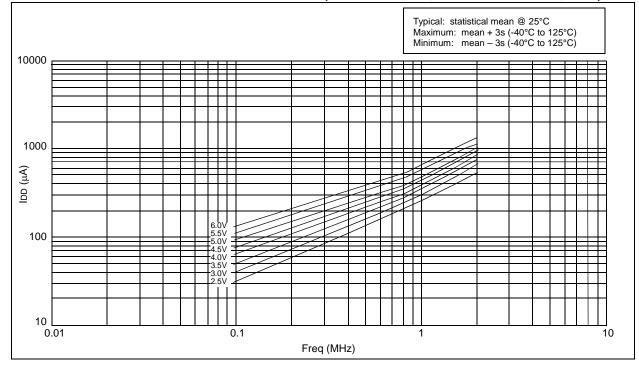
* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A

Absolute Maximum Ratings(†)


Ambient Temperature under bias	–55°C to +125°C
Storage Temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	
Max. current out of Vss pin	150 mA
Max. current into Vod pin	50 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (VI < 0 or VI > Vod)	±20 mA
Output clamp current, IOK (V0 < 0 or V0 > VDD)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O port (PORTA or B)	
Max. output current sunk by a single I/O port (PORTA or B)	50 mA


- **Note 1:** Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a low level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.
 - **2:** Power Dissipation is calculated as follows: PDIS = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

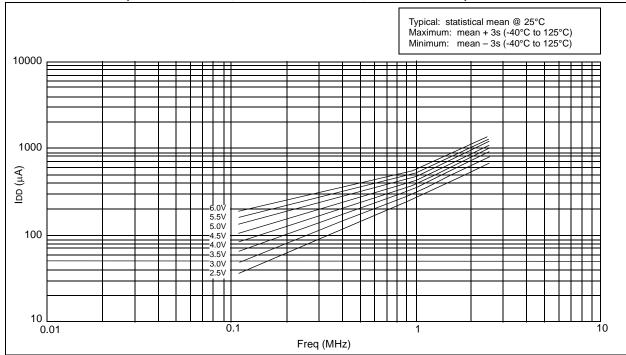
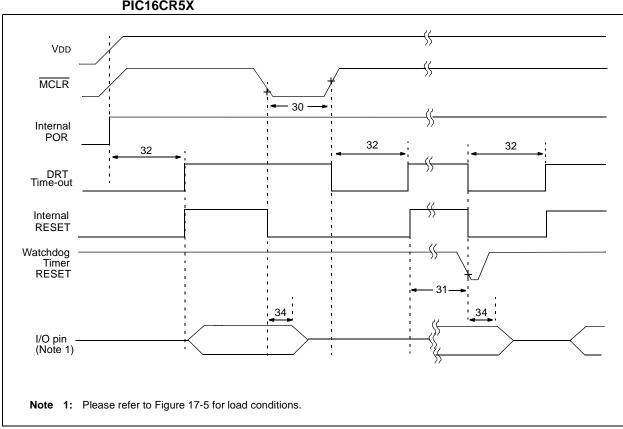

FIGURE 14-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

FIGURE 16-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

FIGURE 16-13: MAXIMUM IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, -40°C to +85°C)


TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Chara	cteristics	-40°C	$C \le TA :$ $C \le TA :$	ss otherv ≤ +70°C f ≤ +85°C f ≤ +125°C	or com or indu	mercial strial	-	
Param No.	Symbol	Characteristic Min Typ† Max Units Conditions						
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc		—		
3	TosL, TosH	Clock in (OSC1) Low or High Time		_		ns ns	XT oscillator HS oscillator	
4	TosR, TosF	Clock in (OSC1) Rise or Fall Time	2.0*	_	 25*	μS ns	LP oscillator XT oscillator	
				_	25* 50*	ns ns	HS oscillator LP oscillator	

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

FIGURE 17-8: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X, PIC16CR5X

TABLE 17-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X, PIC16CR5X

AC Charac	teristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (u} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq \\ -40^{\circ}C \leq \\ -40^{\circ}C \leq \end{array}$	TA ≤ +7 TA ≤ +8	0°C for 5°C for	commer industria	cial al	
Param No.	Symbol	Characteristic Min Typ† Max Units Conditions					
30	TmcL	MCLR Pulse Width (low)	1000*		_	ns	VDD = 5.0V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
34	Tioz	I/O Hi-impedance from MCLR Low	100*	300*	1000*	ns	

* These parameters are characterized but not tested.

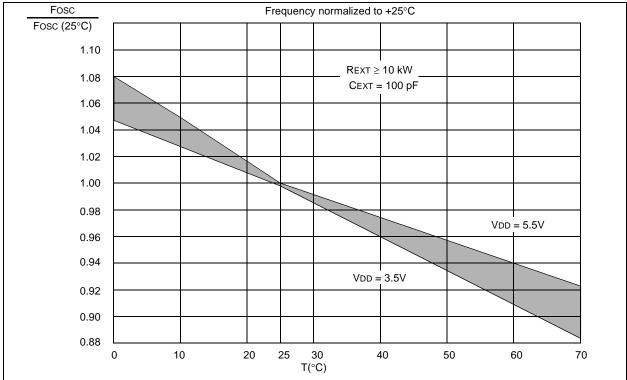
† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

© 1997-2013 Microchip Technology Inc.

18.0 DEVICE CHARACTERIZATION - PIC16LC54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



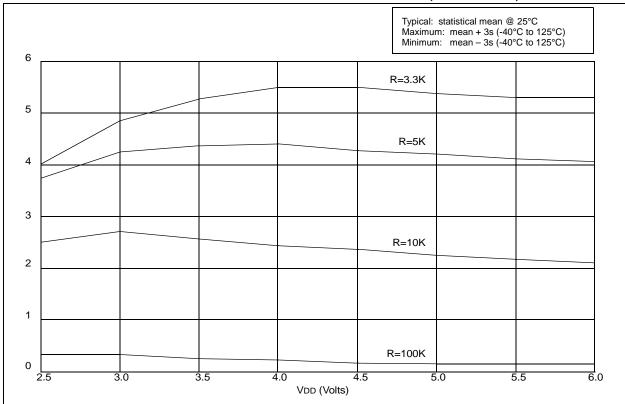
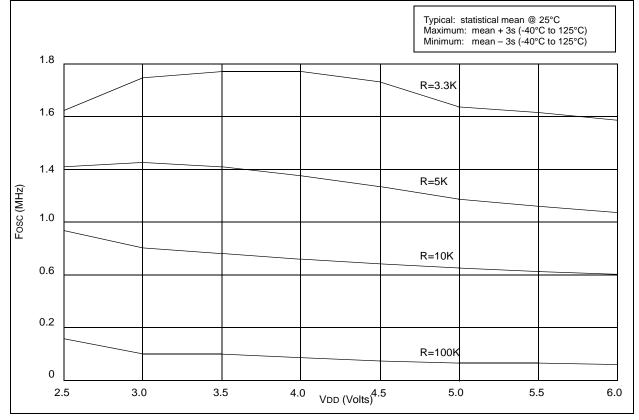

FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

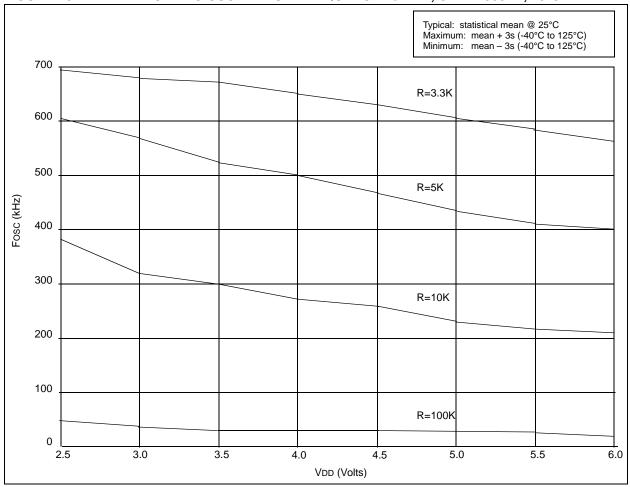
TABLE 18-1: RC OSCILLATOR FREQUENCIES

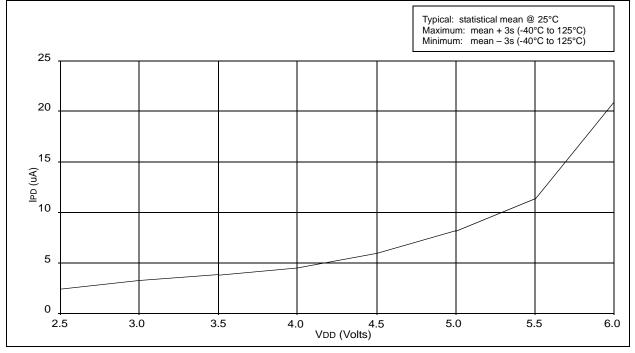
Сехт	Rext	Average Fosc @ 5V, 25°C				
20 pF	3.3K	5 MHz	± 27%			
	5K	3.8 MHz	± 21%			
	10K	2.2 MHz	± 21%			
	100K	262 kHz	± 31%			
100 pF	3.3K	1.63 MHz	± 13%			
	5K	1.2 MHz	± 13%			
	10K	684 kHz	± 18%			
	100K	71 kHz	± 25%			
300 pF	3.3K	660 kHz	± 10%			
	5.0K	484 kHz	± 14%			
	10K	267 kHz	± 15%			
	100K	29 kHz	± 19%			

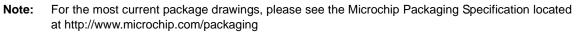

The frequencies are measured on DIP packages.

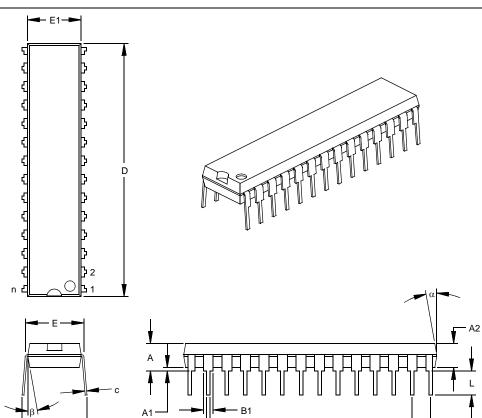
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C






FIGURE 18-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C



© 1997-2013 Microchip Technology Inc.

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

в

	Units		INCHES*		MILLIMETERS		
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

eВ

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.

JEDEC Equivalent: MO-095

Drawing No. C04-070

- p -

Notes: