

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56-10i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.0		-
1.0	General Description	
2.0	PIC16C5X Device Varieties	
3.0	Architectural Overview	
4.0	Oscillator Configurations	. 15
5.0	Reset	. 19
6.0	Memory Organization	. 25
7.0	I/O Ports	. 35
8.0	Timer0 Module and TMR0 Register	. 37
9.0	Special Features of the CPU	. 43
10.0	Instruction Set Summary	. 49
11.0	Development Support	. 61
12.0	Electrical Characteristics - PIC16C54/55/56/57	. 67
13.0	Electrical Characteristics - PIC16CR54A	
14.0	Device Characterization - PIC16C54/55/56/57/CR54A	. 91
15.0	Electrical Characteristics - PIC16C54A	103
16.0	Device Characterization - PIC16C54A	117
17.0	Electrical Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B	131
18.0	Device Characterization - PIC16C54C/CR54C/C55A/C56A/CR56A/CR56A/CR57C/CR57C/C58B/CR58B	145
19.0	Electrical Characteristics - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	155
20.0	Device Characterization - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	165
21.0	Packaging Information	171
Appe	ndix A: Compatibility	182
On-L	ne Support	187
Read	er Response	188
Produ	uct Identification System	189

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

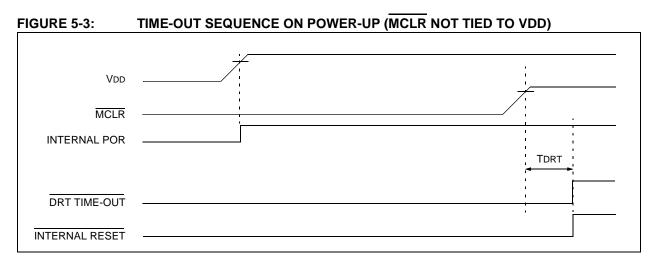
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

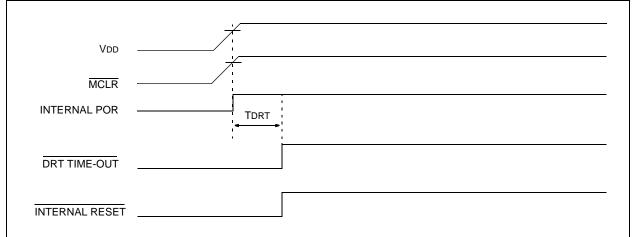
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277


When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System


Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

NOTES:

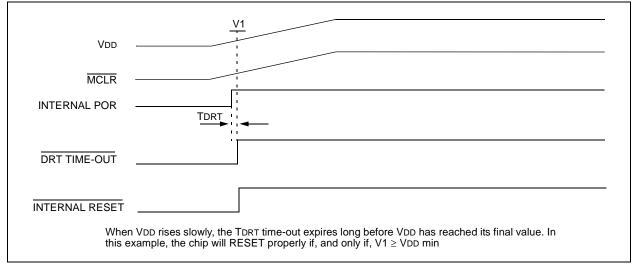

PIC16C5X

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

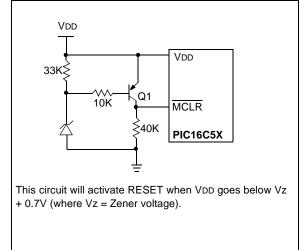
FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

5.2 Device Reset Timer (DRT)

The Device Reset Timer (DRT) provides an 18 ms nominal time-out on RESET regardless of Oscillator mode used. The DRT operates on an internal RC oscillator. The processor is kept in RESET as long as the DRT is active. The DRT delay allows VDD to rise above VDD min., and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a RESET condition for approximately 18 ms after the voltage on the MCLR/VPP pin has reached a logic high (VIH) level. Thus, external RC networks connected to the MCLR input are not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications.

The Device Reset time delay will vary from chip to chip due to VDD, temperature, and process variation. See AC parameters for details.


The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake the PIC16C5X from SLEEP mode automatically.

5.3 Reset on Brown-Out

A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be RESET in the event of a brown-out.

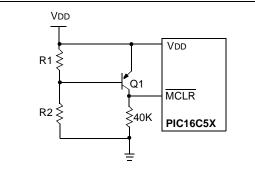
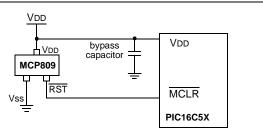

To RESET PIC16C5X devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 5-6, Figure 5-7 and Figure 5-8.

FIGURE 5-7:

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2



This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

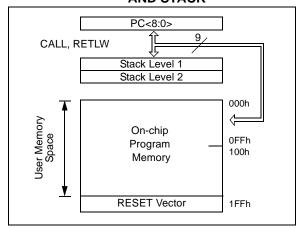
$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

FIGURE 5-8:

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs with both "active high and active low" RESET pins. There are 7 different trip point selections to accommodate 5V and 3V systems.

6.0 MEMORY ORGANIZATION


PIC16C5X memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one or two STATUS Register bits. For devices with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Selection Register (FSR).

6.1 Program Memory Organization

The PIC16C54, PIC16CR54 and PIC16C55 have a 9bit Program Counter (PC) capable of addressing a 512 x 12 program memory space (Figure 6-1). The PIC16C56 and PIC16CR56 have a 10-bit Program Counter (PC) capable of addressing a 1K x 12 program memory space (Figure 6-2). The PIC16CR57, PIC16C58 and PIC16CR58 have an 11-bit Program Counter capable of addressing a 2K x 12 program memory space (Figure 6-3). Accessing a location above the physically implemented address will cause a wraparound.

A NOP at the RESET vector location will cause a restart at location 000h. The RESET vector for the PIC16C54, PIC16CR54 and PIC16C55 is at 1FFh. The RESET vector for the PIC16C56 and PIC16CR56 is at 3FFh. The RESET vector for the PIC16C57, PIC16CR57, PIC16C58, and PIC16CR58 is at 7FFh. See Section 6.5 for additional information using CALL and GOTO instructions.

FIGURE 6-1: PIC16C54/CR54/C55 PROGRAM MEMORY MAP AND STACK

FIGURE 6-2:

PIC16C56/CR56 PROGRAM MEMORY MAP AND STACK

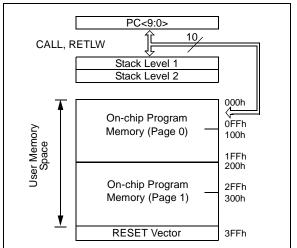
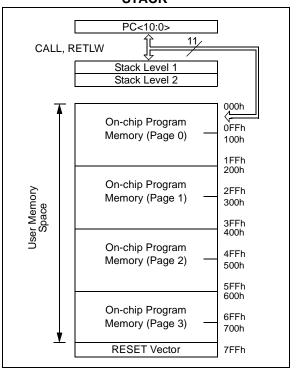
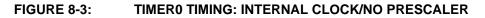
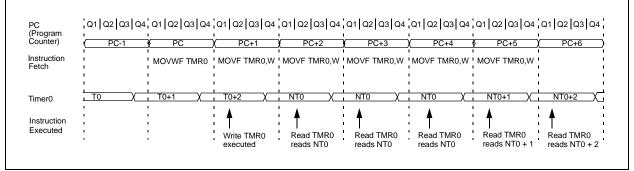





FIGURE 6-3:

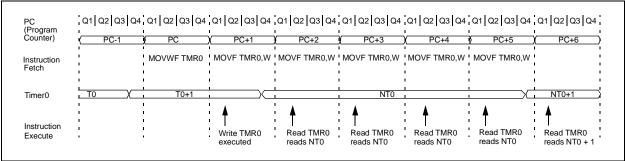

PIC16C57/CR57/C58/ CR58 PROGRAM MEMORY MAP AND STACK

FIGURE 8-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0 -	Timer0 - 8-bit real-time clock/counter							xxxx xxxx	uuuu uuuu
N/A	OPTION	_		TOCS	TOSE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells not used by Timer0.

10.0 INSTRUCTION SET SUMMARY

Each PIC16C5X instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C5X instruction set summary in Table 10-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 10-1:	OPCODE FIELD
	DESCRIPTIONS

DESCRIPTIONS					
Field	Description				
f	Register file address (0x00 to 0x1F)				
W	Working register (accumulator)				
b	Bit address within an 8-bit file register				
k	Literal field, constant data or label				
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. t is the recommended form of use for com-				
	patibility with all Microchip software tools.				
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1				
label	Label name				
TOS	Top of Stack				
PC	Program Counter				
WDT	Watchdog Timer Counter				
TO	Time-out bit				
PD	Power-down bit				
dest	Destination, either the W register or the specified register file location				
[]	Options				
()	Contents				
\rightarrow	Assigned to				
< >	Register bit field				
∈	In the set of				
italics	User defined term (font is courier)				

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2 μ s.

Figure 10-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations						
<u>11 6</u>	5	4 0				
OPCODE	d	f (FILE #)				
d = 0 for destination W d = 1 for destination f f = 5-bit file register address						
Bit-oriented file registe	r ope	erations				
11 8	7	5 4 0				
OPCODE	b (Bl	IT #) f (FILE #)				
Literal and control ope	 b = 3-bit bit address f = 5-bit file register address Literal and control operations (except GOTO) 					
11	8	7 0				
OPCODE		k (literal)				
k = 8-bit immedia	k = 8-bit immediate value					
Literal and control operations - GOTO instruction						
11	9	8 0				
OPCODE	OPCODE k (literal)					
k = 9-bit immediate value						

^{© 1997-2013} Microchip Technology Inc.

MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \leq f \leq 31$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Encoding:	0000 001f ffff				
Description: Move data from the W register to					
	register 'f'.				
Words:	1				
Cycles:	1				
Example:	MOVWF TEMP_REG				
W After Instruct	REG = 0xFF $= 0x4F$				

NOP	No Operation				
Syntax:	[label]	NOP			
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	0000	0000	0000		
Description:	No opera	ation.			
Words:	1				
Cycles:	1				
Example:	NOP				

OPTION	Load Ol		egister	
Syntax:	[label]	OPTIO	N	
Operands:	None			
Operation:	$(W) \rightarrow C$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:		tent of the	0	
Words:	1			
Cycles:	1			
Example	OPTION			
Before Instruction				
W	•	07		
After Instructi				
OPTION	= 0x	07		

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None
Encoding:	1000 kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE ;W contains ;table offset ;value. • ;W now has table • ;value.
TABLE	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>
Before Instru	
W After Instruct	= 0x07
After Instruct W	ion = value of k8

13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A

Absolute Maximum Ratings(†)

Ambient Temperature under bias	–55°C to +125°C
Storage Temperature	–65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0 to +14V
Voltage on all other pins with respect to Vss0	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	50 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (V0 < 0 or V0 > VDD)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O port (PORTA or B)	40 mA
Max. output current sunk by a single I/O port (PORTA or B)	50 mA

- **Note 1:** Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a low level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.
 - **2:** Power Dissipation is calculated as follows: PDIS = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 14-2: INPUT CAPACITANCE FOR PIC16C54/56

Pin	Typical Capacitance (pF)			
Pin	18L PDIP	18L SOIC		
RA port	5.0	4.3		
RB port	5.0	4.3		
MCLR	17.0	17.0		
OSC1	4.0	3.5		
OSC2/CLKOUT	4.3	3.5		
TOCKI	3.2	2.8		

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

TABLE 14-3:	INPUT CAPACITANCE FOR
	PIC16C55/57

	Typical Capacitance (pF)				
Pin	28L PDIP (600 mil)	28L SOIC			
RA port	5.2	4.8			
RB port	5.6	4.7			
RC port	5.0	4.1			
MCLR	17.0	17.0			
OSC1	6.6	3.5			
OSC2/CLKOUT	4.6	3.5			
TOCKI	4.5	3.5			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

15.5 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

oS	
Frequency	T Time
case letters (pp) and their meanings:	
to	mc MCLR
CLKOUT	osc oscillator
cycle time	os OSC1
device reset timer	t0 T0CKI
I/O port	wdt watchdog timer
case letters and their meanings:	
Fall	P Period
High	R Rise
Invalid (Hi-impedance)	V Valid
Low	Z Hi-impedance
	case letters (pp) and their meanings: o CLKOUT cycle time device reset timer /O port case letters and their meanings: Fall High Invalid (Hi-impedance)

FIGURE 15-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54A

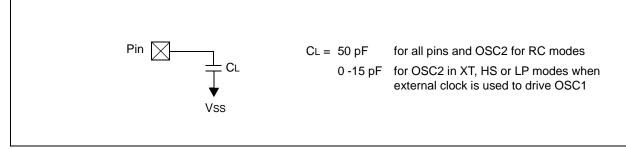
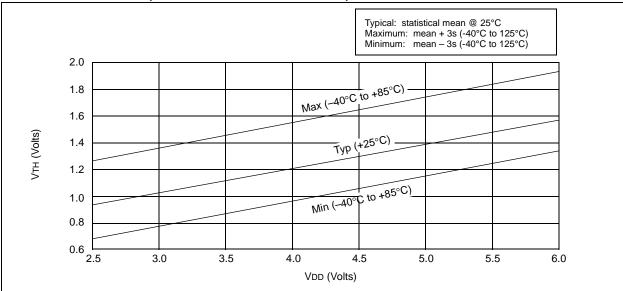
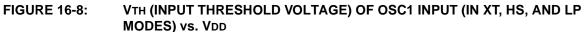
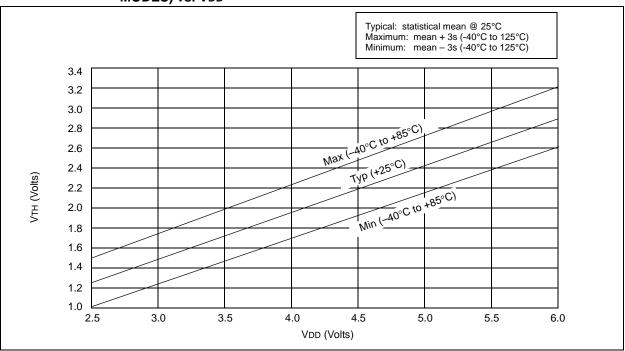
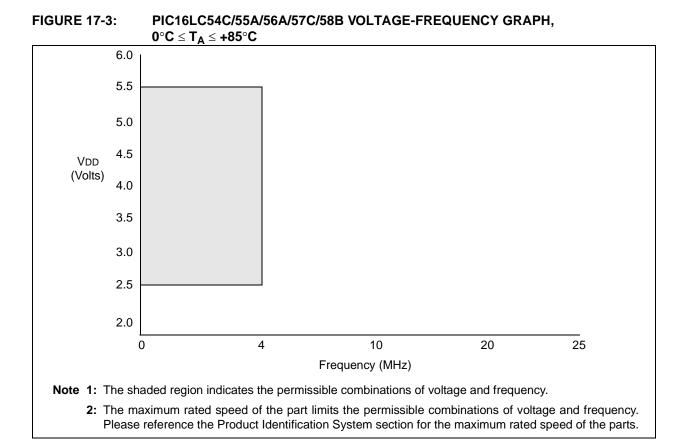
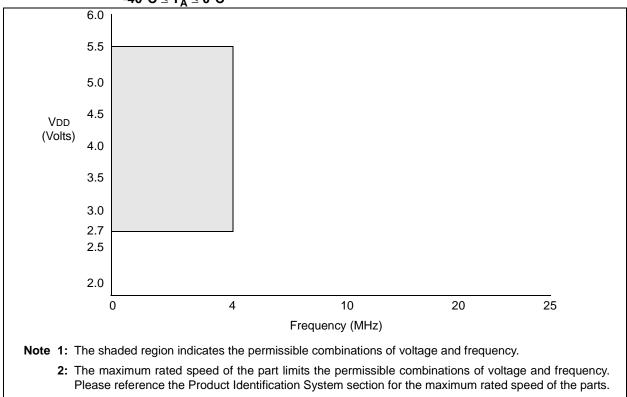
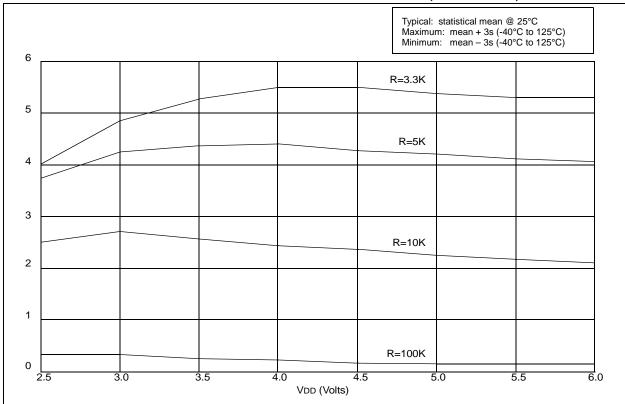
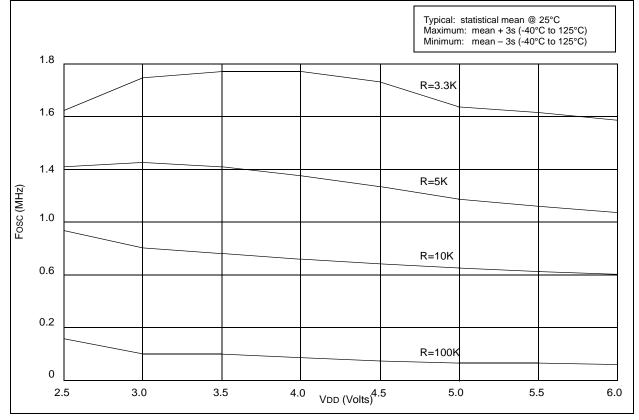






FIGURE 16-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS - VDD







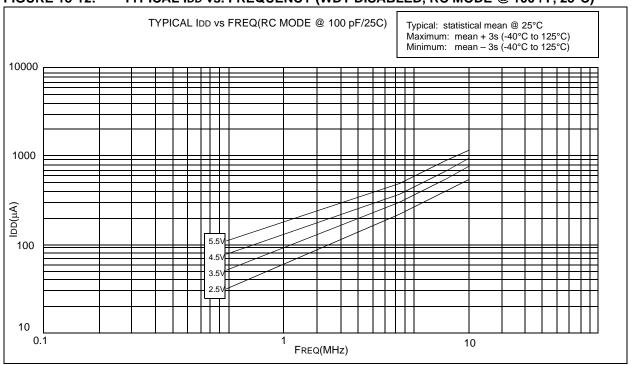


FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C

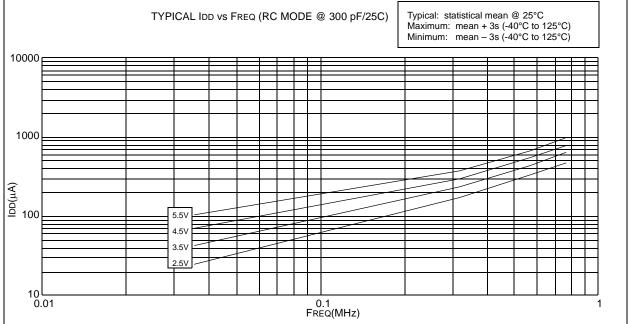
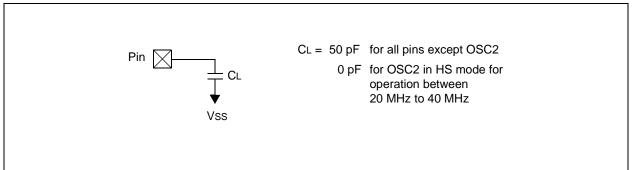
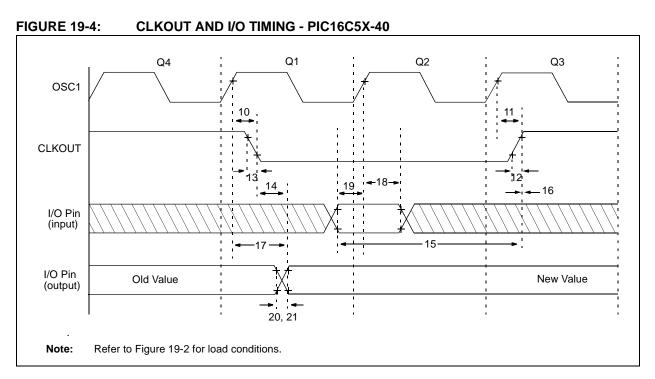


FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)


19.3 Timing Parameter Symbology and Load Conditions


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

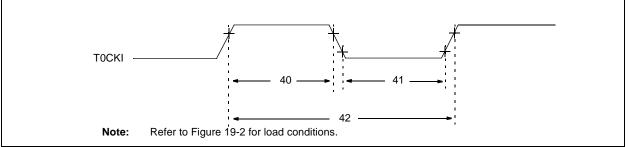
2. Tp	pS	
Т		
F	Frequency	T Time
Lowe	ercase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	ercase letters and their meanings:	
S		
F	Fall	P Period
н	High	R Rise
Ι	Invalid (Hi-impedance)	V Valid
L	Low	Z Hi-impedance

FIGURE 19-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -PIC16C54C/C55A/C56A/C57C/C58B-40

TABLE 19-2 :	CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X-40

AC Char	acteristics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units		
10	TosH2ckL	OSC1↑ to CLKOUT↓ ^(1,2)	—	15	30**	ns		
11	TosH2ckH	OSC1↑ to CLKOUT↑ ^(1,2)	—	15	30**	ns		
12	TckR	CLKOUT rise time ^(1,2)	—	5.0	15**	ns		
13	TckF	CLKOUT fall time ^(1,2)	—	5.0	15**	ns		
14	TckL2ioV	CLKOUT↓ to Port out valid ^(1,2)	—	—	40**	ns		
15	TioV2ckH	Port in valid before CLKOUT ^(1,2)	0.25 TCY+30*	—	_	ns		
16	TckH2iol	Port in hold after CLKOUT ^(1,2)	0*	—	_	ns		
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	—	100	ns		
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	—	ns		
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns		
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns		
21	TioF	Port output fall time ⁽²⁾	—	10	25**	ns		

* These parameters are characterized but not tested.

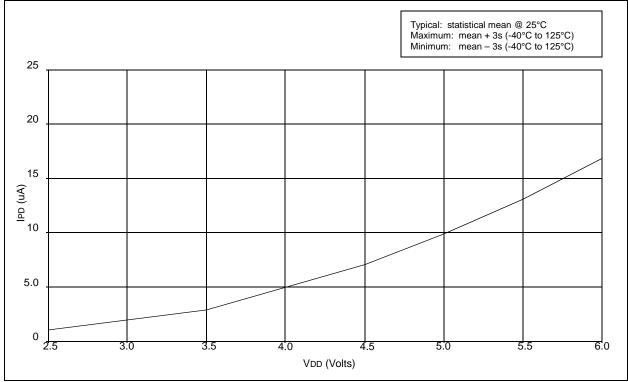

- ** These parameters are design targets and are not tested. No characterization data available at this time.
- † Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

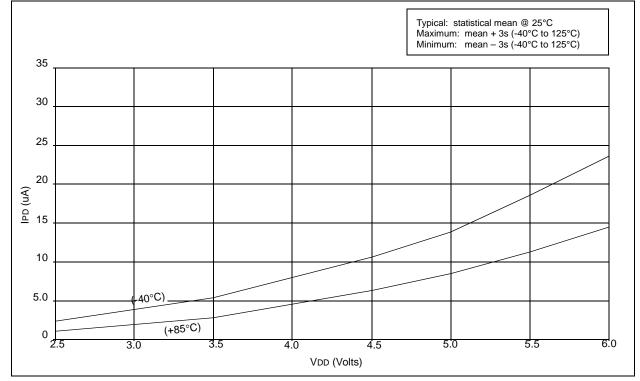
2: Refer to Figure 19-2 for load conditions.

© 1997-2013 Microchip Technology Inc.

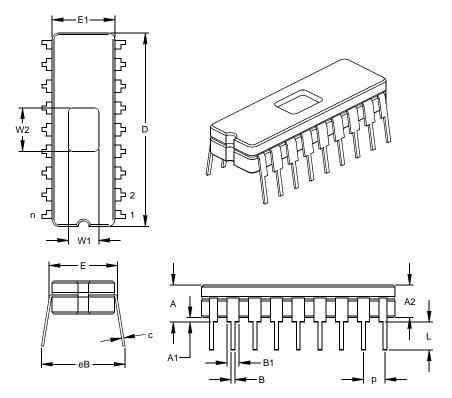
FIGURE 19-6: TIMER0 CLOCK TIMINGS - PIC16C5X-40


TABLE 19-4: TIMER0 CLOCK REQUIREMENTS PIC16C5X-40

A	C Charac	toristics '	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width					
		- No Prescaler	0.5 Tcy + 20*	—		ns	
		- With Prescaler	10*		—	ns	
41	Tt0L	T0CKI Low Pulse Width					
		- No Prescaler	0.5 TCY + 20*	—		ns	
		- With Prescaler	10*		—	ns	
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N	_	_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)


* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES*			MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eВ	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

* Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-036

Drawing No. C04-010