

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56-hsi-p

Email: info@E-XFL.COM

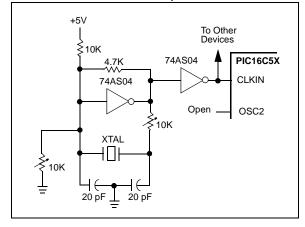
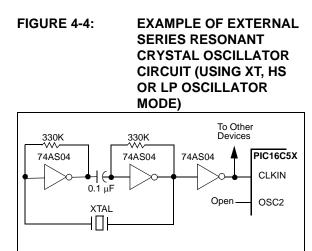
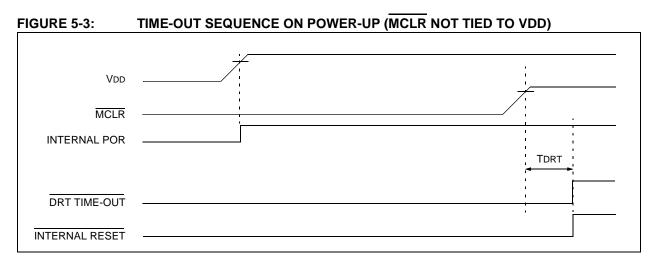
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

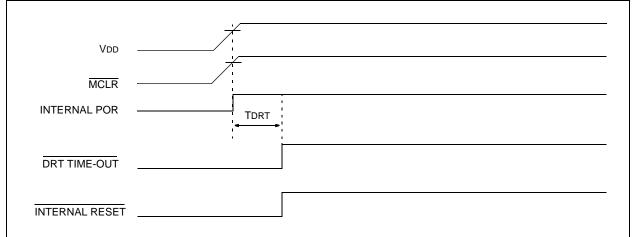
4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)


Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

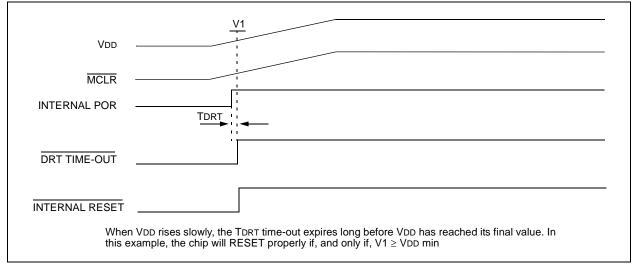

PIC16C5X

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

6.7 Indirect Data Addressing; INDF and FSR Registers

The INDF Register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 6-1: INDIRECT ADDRESSING

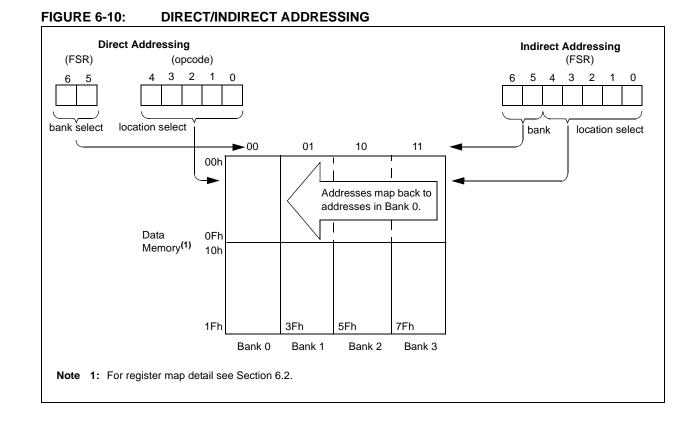
- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- · Load the value 08 into the FSR Register
- A read of the INDF Register will return the value of 10h
- Increment the value of the FSR Register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF Register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 6-2.

EXAMPLE 6-2:

HOW TO CLEAR RAM USING INDIRECT ADDRESSING


	MOVLW	H'10'	;initialize pointer
	MOVWF	FSR	; to RAM
NEXT	CLRF	INDF	;clear INDF Register
	INCF	FSR,F	;inc pointer
	BTFSC	FSR,4	;all done?
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56) or 7-bit (PIC16C57, PIC16CR57, PIC16CR58, PIC16CR58) wide register. It is used in conjunction with the INDF Register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56: These do not use banking. FSR<6:5> bits are unimplemented and read as '1's.

PIC16C57, **PIC16CR57**, **PIC16C58**, **PIC16CR58**: FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = bank 0, 01 = bank 1, 10 = bank 2, 11 = bank 3).

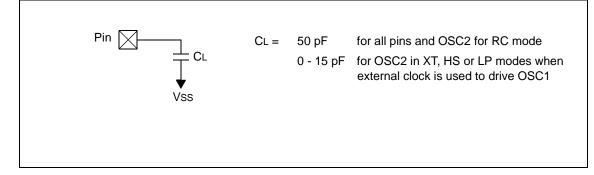
© 1997-2013 Microchip Technology Inc.

ADDWF	Add W	and f				
Syntax:	[label] A	[label] ADDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f)	\rightarrow (dest)				
Status Affected:	C, DC, Z					
Encoding:	0001	11df	ffff			
Description:	Add the contents of the W register and register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	ADDWF	TEMP_RE	G, 0			
Before Instr W TEMP_I After Instruc W TEMP_F	= REG = ction =	0x17 0xC2 0xD9 0xC2				

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	0001 01df ffff				
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is '1' the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	ANDWF TEMP_REG, 1				
Example: ANDWF TEMP_REG, 1 Before Instruction W = 0x17 TEMP_REG = 0xC2 After Instruction W = 0x17 TEMP_REG = 0x17 TEMP_REG = 0x02					

ANDLW	AND literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W).AND. (k) \rightarrow (W)				
Status Affected:	Z				
Encoding:	1110 kkkk kkkk				
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W regis- ter.				
Words:	1				
Cycles:	1				
Example:	ANDLW H'5F'				
Before Instru W = After Instruc W =	0xA3				

BCF	Bit Clear f						
Syntax:	[label]	[label] BCF f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 3^{\prime} \\ 0 \leq b \leq 7 \end{array}$	-					
Operation:	$0 \rightarrow (f < b$	>)					
Status Affected:	None						
Encoding:	0100	bbbf	ffff				
Description:	Bit 'b' in	register 'f'	is cleared.				
Words:	1						
Cycles:	1						
Example:	BCF	FLAG_RE	IG, 7				
Before Instruction FLAG_REG = 0xC7 After Instruction							
FLAG_F	REG =	0x47					


12.6 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. Tp	nS	
	PO	
Т		
F	Frequency	T Time
Lowe	ercase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	ercase letters and their meanings:	
S		
F	Fall	P Period
Н	High	R Rise
I	Invalid (Hi-impedance)	V Valid
L	Low	Z Hi-impedance

FIGURE 12-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16C54/55/56/57

13.4 DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
D030	VIL	Input Low Voltage					
		I/O ports	Vss		0.15 Vdd	V	Pin at hi-impedance
		MCLR (Schmitt Trigger)	Vss		0.15 VDD	V	
		T0CKI (Schmitt Trigger)	Vss		0.15 VDD	V	
		OSC1 (Schmitt Trigger)	Vss		0.15 VDD	V	RC mode only ⁽³⁾
		OSC1	Vss	—	0.3 Vdd	V	XT, HS and LP modes
D040	Vін	Input High Voltage					
		I/O ports	0.45 Vdd		Vdd	V	For all VDD ⁽⁴⁾
		I/O ports	2.0		Vdd	V	$4.0V < VDD \le 5.5V^{(4)}$
		I/O ports	0.36 Vdd		Vdd	V	VDD > 5.5V
		MCLR (Schmitt Trigger)	0.85 VDD		Vdd	V	
		T0CKI (Schmitt Trigger)	0.85 VDD		Vdd	V	
		OSC1 (Schmitt Trigger)	0.85 VDD		Vdd	V	RC mode only ⁽³⁾
		OSC1	0.7 Vdd	—	Vdd	V	XT, HS and LP modes
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	_	V	
D060	lı∟	Input Leakage Current ^(1,2)					For VDD ≤ 5.5 V:
		I/O ports	-1.0	0.5	+1.0	μA	$VSS \leq VPIN \leq VDD$,
						•	pin at hi-impedance
		MCLR	-5.0		_	μA	VPIN = VSS + 0.25V
		MCLR	_	0.5	+5.0	μΑ	VPIN = VDD
		TOCKI	-3.0	0.5	+3.0	μΑ	$VSS \leq VPIN \leq VDD$
		OSC1	-3.0	0.5	+3.0	μA	$VSS \leq VPIN \leq VDD$,
							XT, HS and LP modes
D080	Vol	Output Low Voltage					
		I/O ports	l —	—	0.6	V	IOL = 8.7 mA, VDD = 4.5V
		OSC2/CLKOUT			0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
							RC mode only
D090	Voh	Output High Voltage ⁽²⁾					
		I/O ports	Vdd - 0.7	—	—	V	IOH = −5.4 mA, VDD = 4.5\
		OSC2/CLKOUT	Vdd - 0.7	—	-	V	IOH = -1.0 mA, VDD = 4.5 V RC mode only

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

4: The user may use the better of the two specifications.

AC Char	acteristics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
1	Tosc	External CLKIN Period ⁽¹⁾	250	_	_	ns	XT osc mode	
			250	—	—	ns	HS osc mode (04)	
			100	—		ns	HS osc mode (10)	
			50	—		ns	HS osc mode (20)	
			5.0	_	_	μS	LP OSC mode	
		Oscillator Period ⁽¹⁾	250		_	ns	RC OSC mode	
			250	—	10,000	ns	XT OSC mode	
			250	—	250	ns	HS OSC mode (04)	
			100	—	250	ns	HS osc mode (10)	
			50	—	250	ns	HS osc mode (20)	
			5.0	_	200	μS	LP OSC mode	
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc		_		
3	TosL, TosH	Clock in (OSC1) Low or High	50*		_	ns	XT oscillator	
		Time	20*	—	—	ns	HS oscillator	
			2.0*	_	—	μS	LP oscillator	
4	TosR, TosF	Clock in (OSC1) Rise or Fall	_	—	25*	ns	XT oscillator	
		Time	—	—	25*	ns	HS oscillator	
			_	—	50*	ns	LP oscillator	

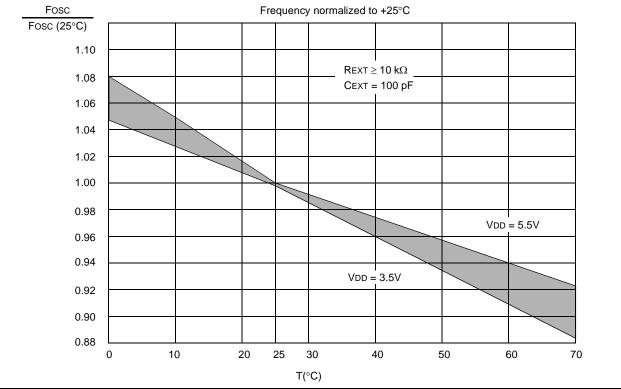
TABLE 13-1:	EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A
-------------	---

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

when an external clock input is used, the "max" cycle time limit is "Du" (no clock) for all device


2: Instruction cycle period (TcY) equals four times the input oscillator time base period.

14.0 DEVICE CHARACTERIZATION - PIC16C54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

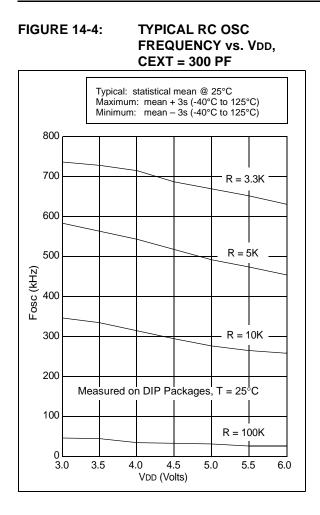
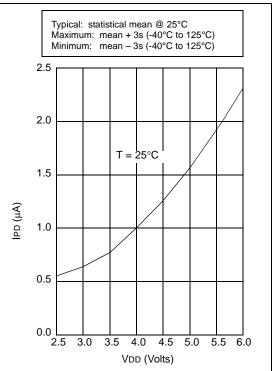


TABLE 14-1: RC OSCILLATOR FREQUENCIES


Сехт	Rext	Average Fosc @ 5 V, 25°C			
20 pF	3.3K	5 MHz	± 27%		
	5K	3.8 MHz	± 21%		
	10K	2.2 MHz	± 21%		
	100K	262 kHz	± 31%		
100 pF	3.3K	1.6 MHz	± 13%		
	5K	1.2 MHz	± 13%		
	10K	684 kHz	± 18%		
	100K	71 kHz	± 25%		
300 pF	3.3K	660 kHz	± 10%		
	5.0K	484 kHz	± 14%		
	10K	267 kHz	± 15%		
	100K	29 kHz	± 19%		

The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviations from the average value for VDD = 5V.

FIGURE 14-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED

15.2 DC Characteristics: PIC16

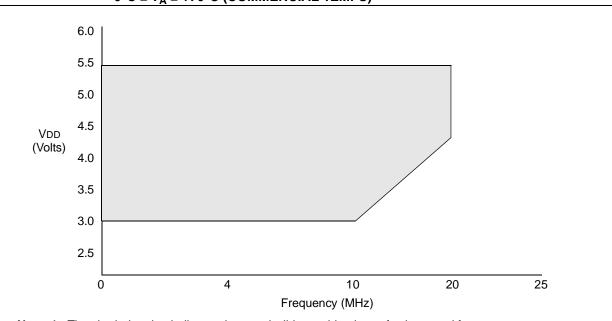
PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

	PIC16LC54A-04EStandard Operating Conditions (unless otherwise spect Operating Temperature(Extended) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
PIC16C (Extend	,	10E, 20E	Standard Operating Conditions (unless otherwise spectrum)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for external			tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended	
Param No.	Symbol	Characteristic	Min Typ† Max Units Conditions				Conditions
	IPD	Power-down Current ⁽²⁾					
D020		PIC16LC54A	_	2.5 0.25	15 7.0	μΑ μΑ	VDD = 2.5V, WDT enabled, Extended VDD = 2.5V, WDT disabled, Extended
D020A		PIC16C54A		5.0 0.8	22 18*	μΑ μΑ	VDD = 3.5V, WDT enabled VDD = 3.5V, WDT disabled

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

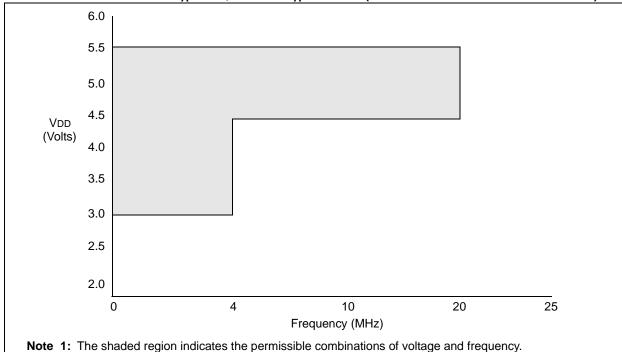
- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .


© 1997-2013 Microchip Technology Inc.

NOTES:

NOTES:

PIC16C5X



2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.

Please reference the Product Identification System section for the maximum rated speed of the parts.

17.3 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial, Extended) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial, Extended) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

DC CHARACTERISTICS			Standard Operat Operating Tempe	nditions (unless otherwise specified) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended			
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D030	VIL	Input Low Voltage I/O Ports I/O Ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss Vss Vss	 	0.8 V 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V V	4.5V <v<sub>DD ≤ 5.5V Otherwise RC mode only⁽³⁾ XT, HS and LP modes</v<sub>
D040	Viн	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	2.0 0.25 Vdd+0.8 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.7 Vdd	 	Vdd Vdd Vdd Vdd Vdd Vdd Vdd	V V V V V	4.5V < VDD ≤ 5.5V Otherwise RC mode only ⁽³⁾ XT, HS and LP modes
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	_	V	
D060	Ιι∟	Input Leakage Current ^(1,2) I/O ports <u>MCLR</u> MCLR T0CKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 — 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, XT, HS and LP modes
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, RC mode only
D090	Vон	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.7 Vdd - 0.7	_	_	V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
 - **2:** Negative current is defined as coming out of the pin.
 - 3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

18.0 DEVICE CHARACTERIZATION - PIC16LC54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

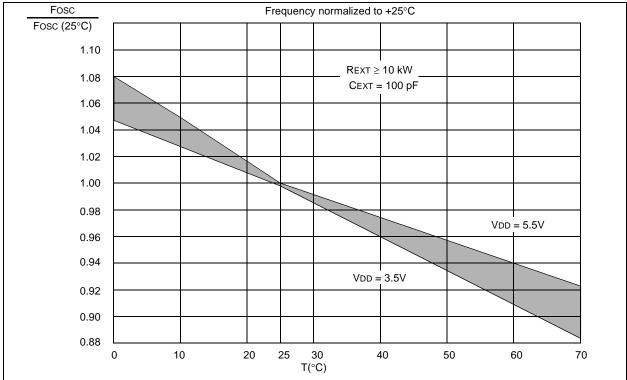


FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

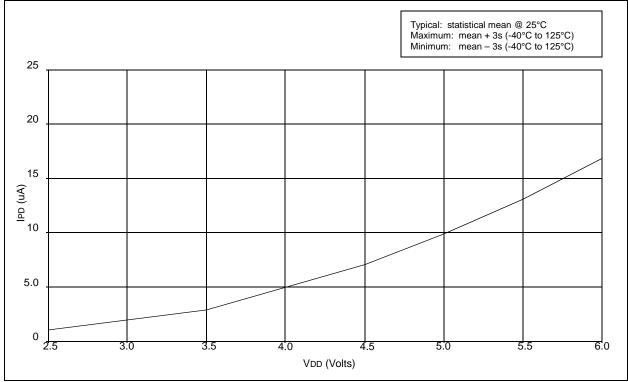
TABLE 18-1: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Average Fosc @ 5V, 25°C	
20 pF	3.3K	5 MHz	± 27%
	5K	3.8 MHz	± 21%
	10K	2.2 MHz	± 21%
	100K	262 kHz	± 31%
100 pF	3.3K	1.63 MHz	± 13%
	5K	1.2 MHz	± 13%
	10K	684 kHz	± 18%
	100K	71 kHz	± 25%
300 pF	3.3K	660 kHz	± 10%
	5.0K	484 kHz	± 14%
	10K	267 kHz	± 15%
	100K	29 kHz	± 19%

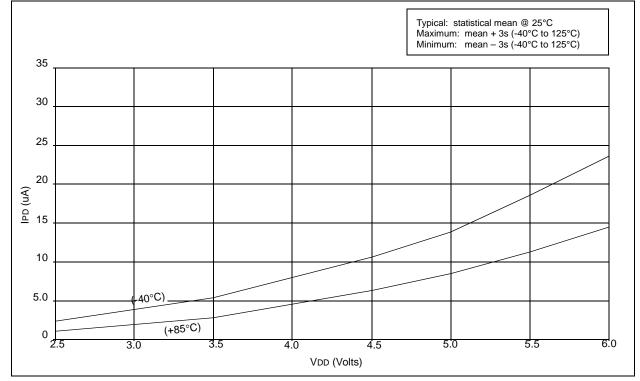
The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

19.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾


	54C/C55 mercial)	A/C56A/C57C/C58B-40		ard Ope ing Tem	-		tions (unless otherwise specified) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	-	5.5	V	HS mode from 20 - 40 MHz
D002	Vdr	RAM Data Retention Voltage ⁽²⁾		1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset
D010	Idd	Supply Current ⁽³⁾	_	5.2 6.8	12.3 16	mA mA	Fosc = 40 MHz, VDD = $4.5V$, HS mode Fosc = 40 MHz, VDD = $5.5V$, HS mode
D020	IPD	Power-down Current ⁽³⁾	_	1.8 9.8	7.0 27*	μΑ μΑ	VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT enabled, Commercial

* These parameters are characterized but not tested.

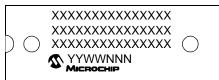

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- **Note 1:** Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 19.1.
 - **2:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.



21.0 PACKAGING INFORMATION

21.1 Package Marketing Information


18-Lead PDIP

28-Lead Skinny PDIP (.300")

28-Lead PDIP (.600")

18-Lead SOIC

28-Lead SOIC

20-Lead SSOP

28-Lead SSOP



Example

Example

Example

Example

Example

Example

w

W Register	
Value on reset	20
Wake-up from SLEEP	19, 47
Watchdog Timer (WDT)	43, 46
Period	
Programming Considerations	
Register values on reset	
WWW, On-Line Support	
X	
XORLW	60
XORWF	
Z	
Zero (Z) bit	9, 29