

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6.25V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56-rc-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

4.0		-
1.0	General Description	5
2.0	PIC16C5X Device Varieties	7
3.0	Architectural Overview	9
4.0	Oscillator Configurations	. 15
5.0	Reset	. 19
6.0	Memory Organization	. 25
7.0	I/O Ports	. 35
8.0	Timer0 Module and TMR0 Register	. 37
9.0	Special Features of the CPU	. 43
10.0	Instruction Set Summary	. 49
11.0	Development Support	. 61
12.0	Electrical Characteristics - PIC16C54/55/56/57	. 67
13.0	Electrical Characteristics - PIC16CR54A	. 79
14.0	Device Characterization - PIC16C54/55/56/57/CR54A	. 91
15.0	Electrical Characteristics - PIC16C54A	103
16.0	Device Characterization - PIC16C54A	117
17.0	Electrical Characteristics - PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B	131
18.0	Device Characterization - PIC16C54C/CR54C/C55A/C56A/CR56A/CR56A/CR57C/CR57C/C58B/CR58B	145
19.0	Electrical Characteristics - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	155
20.0	Device Characterization - PIC16C54C/C55A/C56A/C57C/C58B 40MHz	165
21.0	Packaging Information	171
Appe	ndix A: Compatibility	182
On-L	ne Support	187
Read	er Response	188
Produ	uct Identification System	189

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

NOTES:

6.0 MEMORY ORGANIZATION

PIC16C5X memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one or two STATUS Register bits. For devices with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Selection Register (FSR).

6.1 Program Memory Organization

The PIC16C54, PIC16CR54 and PIC16C55 have a 9bit Program Counter (PC) capable of addressing a 512 x 12 program memory space (Figure 6-1). The PIC16C56 and PIC16CR56 have a 10-bit Program Counter (PC) capable of addressing a 1K x 12 program memory space (Figure 6-2). The PIC16CR57, PIC16C58 and PIC16CR58 have an 11-bit Program Counter capable of addressing a 2K x 12 program memory space (Figure 6-3). Accessing a location above the physically implemented address will cause a wraparound.

A NOP at the RESET vector location will cause a restart at location 000h. The RESET vector for the PIC16C54, PIC16CR54 and PIC16C55 is at 1FFh. The RESET vector for the PIC16C56 and PIC16CR56 is at 3FFh. The RESET vector for the PIC16C57, PIC16CR57, PIC16C58, and PIC16CR58 is at 7FFh. See Section 6.5 for additional information using CALL and GOTO instructions.

FIGURE 6-1: PIC16C54/CR54/C55 PROGRAM MEMORY MAP AND STACK

FIGURE 6-2:

PIC16C56/CR56 PROGRAM MEMORY MAP AND STACK

FIGURE 6-3:

PIC16C57/CR57/C58/ CR58 PROGRAM MEMORY MAP AND STACK

8.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (Section 9.2.1). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a RESET, the prescaler contains all '0's.

8.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 8-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 8-1: CHANGING PRESCALER (TIMER0→WDT)

CLRWDT	;Clear WDT
CLRF TMR0	;Clear TMR0 & Prescaler
MOVLW B'00xx1111'	;Last 3 instructions in
	this example
OPTION	;are required only if
	;desired
CLRWDT	;PS<2:0> are 000 or
	;001
MOVLW B'00xx1xxx'	;Set Prescaler to
OPTION	;desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 8-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 8-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	B'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source

OPTION

ADDWF	Add	W	and f			
Syntax:	[lab	e/]/	ADDWF	f,d		
Operands:	$0 \le 1$ $d \in 1$	í ≤ 3 [0,1]	1			
Operation:	(W)	+ (f)	\rightarrow (dest)			
Status Affected:	C, D	C, Z				
Encoding:	00	01	11df	ff	ff	
	and is st '1' th regi	regi ored ne re ister	ster 'f'. If 'e I in the W sult is sto 'f'.	d' is regi red	0 the ster. I back	result If 'd' is in
Words:	1					
Cycles:	1					
Example:	ADD	WF	TEMP_RE	G,	0	
Before Instr	uctio	n				
W		=	0x17			
TEMP_I After Instruc	REG ction	=	0xC2			
W		=	0xD9			
TEMP_F	REG	=	0xC2			

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Ζ
Encoding:	0001 01df ffff
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is '1' the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	ANDWF TEMP_REG, 1
Before Instru W TEMP_I After Instruct W TEMP_I	action = $0x17$ REG = $0xC2$ ion = $0x17$ REG = $0x02$

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W).AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	1110 kkkk kkkk
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W regis- ter.
Words:	1
Cycles:	1
Example:	ANDLW H'5F'
Before Instru W = After Instruct W =	ction 0xA3 ion 0x03

BCF	Bit Clea	rf		
Syntax:	[label]	BCF f,t)	
Operands:	$\begin{array}{l} 0 \leq f \leq 3^{\prime} \\ 0 \leq b \leq 7 \end{array}$	1		
Operation:	$0 \rightarrow (f < b$)		
Status Affected:	None			
Encoding:	0100	bbbf	ffff	
Description:	Bit 'b' in	register 'f'	is cleare	d.
Words:	1			
Cycles:	1			
Example:	BCF	FLAG_RE	G, 7	
Before Instru FLAG_R After Instruct	ction EG = ion	0xC7		
FLAG_R	EG =	0x47		

PIC16C5X

RLF	Rotate	e Left f	thro	ugh Carı	у
Syntax:	[label] RLF	f,c		
Operands:	$0 \le f \le d \in [0]$	31 ,1]			
Operation:	See d	escript	ion be	elow	
Status Affected:	С				
Encoding:	0011	. 01	df	ffff	
Description:	The corrotated the Caris 0 th register stored register	ontents d one k arry Fla e resul er. If 'd' I back i er 'f'.	of re bit to t g (ST t is pl is 1 t n regi	gister 'f' a he left thi ATUS<0: aced in th he result	are rough >). If 'd' ne W is
Words:	1				
Cycles:	1				
Example:	RLF	REG	£1,0		
Before Instru REG1 C After Instruct	ction = = ion	1110 0	0110	0	
REG1	=	1110	0110	C	
W	=	1100	1100	C	
С	=	1			

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	0011 00df ffff
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example:	RRF REG1,0
Before Instru REG1 C	uction = 1110 0110 = 0
REG1	= 1110 0110
W C	= 0111 0011 = 0

SLEEP	Enter SL	EEP Mo	de	
Syntax:	[label]	SLEEP		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow W \\ 0 \rightarrow WD \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow PD \end{array}$	/DT; T prescal	er; if assi	gned
Status Affected:	TO, PD			
Encoding:	0000	0000	0011	
Description:	Time-out power-do cleared. caler are The proc mode wit See sect details.	status bit own statu The WDT cleared. essor is p h the osc ion on SL	t (TO) is s s bit (PD) and its p out into S sillator sto EEP for	et. The is pres- LEEP opped. more
Words:	1			
Cycles:	1			
Example:	SLEEP			

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	X7D81DI9	XX7O91OIG	78291219	PIC16F8XX	PIC16C9XX	PIC17C4X	XXTOTIOI9	PIC18CXX2	PIC18FXXX	63CXX 52CXX/ 54CXX/	хххсэн	мсвеххх	MCP2510
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB® C17 C Compiler												>	>						
MPLAB® C18 C Compiler														~	>				
MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	^	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	<	>	>	~	~	×*`	~	>	>	>	>	>	>	~	>				
ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
et MPLAB® ICD In-Circuit Debugger Debugger				*			*			>					>				
ଏ PICSTART® Plus Entry Level ଅପେତା Programmer	<	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
PRO MATE® II Do Universal Device Programmer D	>	>	>	>	>	** ⁄	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		* +		>			>							
PICDEM TM 2 Demonstration Board				∕+			<↓ ↓							>	>				
PICDEM TM 3 Demonstration Board											>								
면 PICDEM TM 14A Demonstration Board		>																	
☐ PICDEM™ 17 Demonstration B Board													>						
KEELoq® Evaluation Kit																	>		
KEELoa® Transponder Kit																	>		
e microlD™ Programmer's Kit																		>	
₫ 125 kHz microID™ Developer's Kit																		>	
125 kHz Anticollision microlD TM Developer's Kit																		~	
13.56 MHz Anticollision microlD TM Developer's Kit																		~	
MCP2510 CAN Developer's Kit																			>
* Contact the Microchip Technology In ** Contact Microchip Technology Inc. fo [†] Development tool is available on sel	nc. web s or avails lect devi	site at w ability da ices.	ww.micr tte.	ochip.cc	om for inf	ormation	on how 1	to use the	9 MPLAB	® ICD In	Circuit I	Debugg	er (DV16	4001) w	ith PIC16	SC62, 63,	64, 65, 7	2, 73, 74,	76, 77.

© 1997-2013 Microchip Technology Inc.

12.7 Timing Diagrams and Specifications

FIGURE 12-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

		Standard Operating Conditions (unless otherwise specified)									
AC Characteristics		Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial									
		$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
		-40)°C ≤ 1	「A ≤ +125	°C for ex	tended					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions				
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode				
			DC	—	10	MHz	10 MHz mode				
			DC	—	20	MHz	HS OSC mode (Comm/Ind)				
			DC	—	16	MHz	HS OSC mode (Ext)				
			DC	—	40	kHz	LP OSC mode				
		Oscillator Frequency ⁽¹⁾	DC	—	4.0	MHz	RC OSC mode				
			0.1	—	4.0	MHz	XT OSC mode				
			4.0	—	10	MHz	10 MHz mode				
			4.0	—	20	MHz	HS OSC mode (Comm/Ind)				
			4.0	—	16	MHz	HS OSC mode (Ext)				
			DC	_	40	kHz	LP osc mode				

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

FIGURE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -PIC16C54/55/56/57

TABLE 12-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57

AC Chara	cteristics	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	100*	—	_	ns	VDD = 5.0V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
34	Tioz	I/O Hi-impedance from MCLR Low		_	100*	ns			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C5X

FIGURE 14-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54A

AC Chara	cteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \ \mbox{for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ \mbox{for industrial} \\ -20^{\circ}C \leq TA \leq +85^{\circ}C \ \mbox{for industrial} - PIC16LV54A-02I \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \mbox{for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units			
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾		15	30**	ns			
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾		15	30**	ns			
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns			
13	TckF	CLKOUT fall time ⁽¹⁾		5.0	15**	ns			
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾		—	40**	ns			
15	TioV2ckH	Port in valid before CLKOUT↑ ⁽¹⁾	0.25 TCY+30*	_	_	ns			
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	—	_	ns			
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	_	100*	ns			
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD		_	ns			
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	_	ns			
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns			
21	TioF	Port output fall time ⁽²⁾		10	25**	ns			

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 15-1 for load conditions.

17.5 Timing Diagrams and Specifications

FIGURE 17-6: EXTERNAL CLOCK TIMING - PIC16C5X, PIC16CR5X

TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Characteristics		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions			
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode			
			DC	—	4.0	MHz	HS osc mode (04)			
			DC	—	20	MHz	HS osc mode (20)			
			DC	_	200	kHz	LP OSC mode			
		Oscillator Frequency ⁽¹⁾	DC	—	4.0	MHz	RC osc mode			
			0.45	—	4.0	MHz	XT OSC mode			
			4.0	—	4.0	MHz	HS osc mode (04)			
			4.0	—	20	MHz	HS osc mode (20)			
			5.0	_	200	kHz	LP OSC mode			
1	Tosc	External CLKIN Period ⁽¹⁾	250		—	ns	XT OSC mode			
			250	—	—	ns	HS osc mode (04)			
			50	—	—	ns	HS osc mode (20)			
			5.0		—	μS	LP OSC mode			
		Oscillator Period ⁽¹⁾	250		—	ns	RC osc mode			
			250	—	2,200	ns	XT osc mode			
			250	—	250	ns	HS osc mode (04)			
			50	—	250	ns	HS osc mode (20)			
			5.0	—	200	μS	LP OSC mode			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Characteristics		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array} $							
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions		
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc					
3	TosL, TosH	osL, TosH Clock in (OSC1) Low or High			_	ns	XT oscillator		
		Time	20*	—	_	ns	HS oscillator		
			2.0*	—	_	μS	LP oscillator		
4	TosR, TosF Clock in (OSC1) Rise or Fall		_		25*	ns	XT oscillator		
		Time		—	25*	ns	HS oscillator		
			—	_	50*	ns	LP oscillator		

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

TABLE 18-2:INPUT CAPACITANCE

Bin	Typical Capacitance (pF)					
FIII	18L PDIP	18L SOIC				
RA port	5.0	4.3				
RB port	5.0	4.3				
MCLR	17.0	17.0				
OSC1	4.0	3.5				
OSC2/CLKOUT	4.3	3.5				
TOCKI	3.2	2.8				

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

19.0 ELECTRICAL CHARACTERISTICS - PIC16LC54C 40MHz

Absolute Maximum Ratings^(†)

Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	
Total power dissipation ⁽¹⁾	
Max. current out of Vss pin	
Max. current into Vod pin	
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo > Voo)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O (Port A, B or C)	
Max. output current sunk by a single I/O (Port A, B or C)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VI	ор-Voн) x Ioн} + ∑(Vol x Iol)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

19.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)				Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage	4.5		5.5	V	HS mode from 20 - 40 MHz		
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	—	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	-	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	_		V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current ⁽³⁾	-	5.2 6.8	12.3 16	mA mA	FOSC = 40 MHz, VDD = 4.5V, HS mode FOSC = 40 MHz, VDD = 5.5V, HS mode		
D020	IPD	Power-down Current ⁽³⁾		1.8 9.8	7.0 27*	μΑ μΑ	VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT enabled, Commercial		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- **Note 1:** Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 19.1.
 - **2:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

DC CH	ARACTER	RISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions		
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 Vdd 0.15 Vdd 0.2 Vdd	V V V V	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>		
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd		Vdd Vdd Vdd Vdd	V V V V	4.5V < VDD ≤ 5.5V HS, 20 MHz ≤ Fosc ≤ 40 MHz		
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V			
D060	ΙιL	Input Leakage Current ^(2,3) I/O ports MCLR MCLR	-1.0 -5.0 —	0.5 — 0.5	+1.0 +5.0 +3.0	μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD		
		T0CKI OSC1	-3.0 -3.0	0.5 0.5	+3.0	μA μA	$\begin{array}{l} Vss \leq VPIN \leq VDD \\ Vss \leq VPIN \leq VDD, \textbf{HS} \end{array}$		
D080	Vol	Output Low Voltage I/O ports	_	_	0.6	V	IOL = 8.7 mA, VDD = 4.5V		
D090	Vон	Output High Voltage ⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Iон = -5.4 mA, Vdd = 4.5V		

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Sontolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013