

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6.25V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56-xt-ss

Email: info@E-XFL.COM

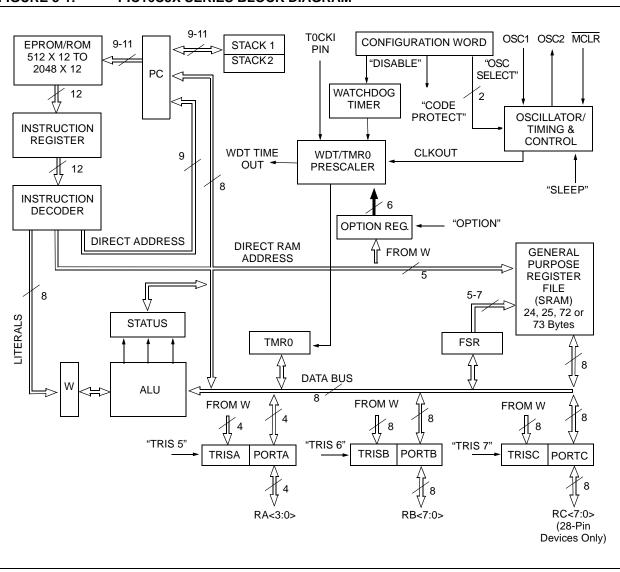
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C5X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C5X uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle except for program branches.

The PIC16C54/CR54 and PIC16C55 address 512 x 12 of program memory, the PIC16C56/CR56 address 1K x 12 of program memory, and the PIC16C57/CR57 and PIC16C58/CR58 address 2K x 12 of program memory. All program memory is internal.


The PIC16C5X can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C5X has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C5X simple yet efficient. In addition, the learning curve is reduced significantly. The PIC16C5X device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1 (for PIC16C54/56/58) and Table 3-2 (for PIC16C55/57).

FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

Pi	n Numb	er	Pin	Buffer	Description
DIP	SOIC	SSOP	Туре	Туре	Description
17	17	19	I/O	TTL	Bi-directional I/O port
18	18	20	I/O	TTL	
1	1	1	I/O	TTL	
2	2	2	I/O	TTL	
6	6	7	I/O	TTL	Bi-directional I/O port
7	7	8	I/O	TTL	
8	8	9	I/O	TTL	
9	9	10	I/O	TTL	
10	10	11	I/O	TTL	
11	11	12	I/O	TTL	
12	12	13	I/O	TTL	
13	13	14	I/O	TTL	
3	3	3	Ι	ST	Clock input to Timer0. Must be tied to Vss or VDD, if not in
					use, to reduce current consumption.
4	4	4	Ι	ST	Master clear (RESET) input/programming voltage input.
					This pin is an active low RESET to the device. Voltage on
					the MCLR/VPP pin must not exceed VDD to avoid unin-
					tended entering of Programming mode.
16	16	18	I	ST	Oscillator crystal input/external clock source input.
15	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator
					in crystal Oscillator mode. In RC mode, OSC2 pin outputs
					CLKOUT, which has 1/4 the frequency of OSC1 and
					denotes the instruction cycle rate.
14	14	15,16	Р	_	Positive supply for logic and I/O pins.
5	5	5,6	Р	—	Ground reference for logic and I/O pins.
	Pi DIP 17 18 1 2 6 7 8 9 10 11 12 13 3 3 4 16 15	Pin Numb DIP SOIC 17 17 18 18 1 1 2 2 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 3 3 4 4 16 16 15 15 14 14	Pin Number DIP SOIC SSOP 17 17 19 18 18 20 1 1 1 2 2 2 6 6 7 7 7 8 8 9 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 3 3 3 4 4 4 15 15 17 14 14 15,16	Pin Pin DIP SOIC SSOP Type 17 17 19 I/O 18 18 20 I/O 1 1 1 I/O 2 2 2 I/O 6 6 7 I/O 7 7 8 I/O 8 9 I/O I/O 9 9 10 I/O 10 10 11 I/O 11 11 12 I/O 12 12 13 I/O 13 13 14 I/O 3 3 3 I 16 16 18 I 15 15 17 O 14 14 15,16 P	Pin Buffer DIP SOIC SSOP Type Type 17 17 19 I/O TTL 18 18 20 I/O TTL 1 1 1/O TTL 2 2 2 I/O TTL 6 6 7 I/O TTL 7 7 8 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 11 11 12 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 12 12 13 I/O TTL 13 13 14 I/O TTL 3 3 3 I ST 16 16 18 I ST 15 15 17 <td< td=""></td<>

TABLE 3-1:PINOUT DESCRIPTION - PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58,
PIC16CR58

Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input

6.5.1 PAGING CONSIDERATIONS – PIC16C56/CR56, PIC16C57/CR57 AND PIC16C58/CR58

If the Program Counter is pointing to the last address of a selected memory page, when it increments it will cause the program to continue in the next higher page. However, the page preselect bits in the STATUS Register will not be updated. Therefore, the next GOTO, CALL or modify PCL instruction will send the program to the page specified by the page preselect bits (PA0 or PA<1:0>).

For example, a NOP at location 1FFh (page 0) increments the PC to 200h (page 1). A GOTO xxx at 200h will return the program to address xxh on page 0 (assuming that PA<1:0> are clear).

To prevent this, the page preselect bits must be updated under program control.

6.5.2 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page (i.e., the RESET vector).

The STATUS Register page preselect bits are cleared upon a RESET, which means that page 0 is pre-selected.

Therefore, upon a RESET, a GOTO instruction at the RESET vector location will automatically cause the program to jump to page 0.

6.6 Stack

PIC16C5X devices have a 10-bit or 11-bit wide, two-level hardware push/pop stack.

A CALL instruction will push the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will pop the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W Register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

For the RETLW instruction, the PC is loaded with the Top of Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine. NOTES:

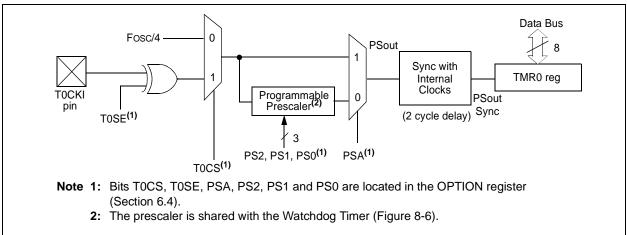
8.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

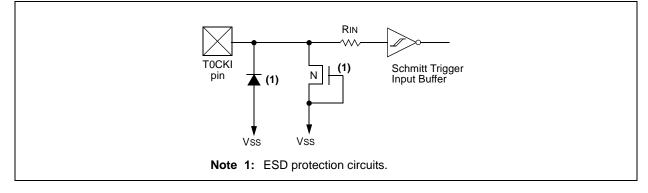
- 8-bit timer/counter register, TMR0
 - Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Edge select for external clock

Figure 8-1 is a simplified block diagram of the Timer0 module, while Figure 8-2 shows the electrical structure of the Timer0 input.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 8-3 and Figure 8-4). The user can work around this by writing an adjusted value to the TMR0 register.



Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 8.1.


Note: The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both.

The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 8.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 8-1.

FIGURE 8-2: ELECTRICAL STRUCTURE OF TOCKI PIN

9.2 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT Reset or Wake-up Reset generates a device RESET.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset (Section 6.3).

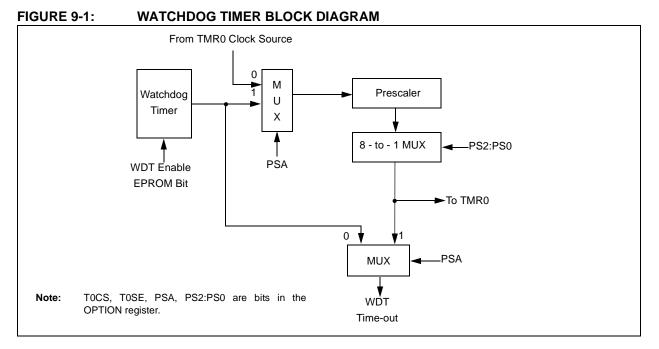
The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 9.1). Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to access the configuration word.

9.2.1 WDT PERIOD

An 8-bit counter is available as a prescaler for the Timer0 module (Section 8.2), or as a postscaler for the Watchdog Timer (WDT), respectively. For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not

both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio (Section 6.4).


The WDT has a nominal time-out period of 18 ms (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, time-out a period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see Device Characterization).

Under worst case conditions (VDD = Min., Temperature = Max., WDT prescaler = 1:128), it may take several seconds before a WDT time-out occurs.

9.2.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction RESETS the WDT and the prescaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	<u>Value</u> on MCLR and WDT Reset
N/A	OPTION	—		Tosc	Tose	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: u = unchanged, - = unimplemented, read as '0'. Shaded cells not used by Watchdog Timer.

9.3 Power-Down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (Wake-up from SLEEP).

9.3.1 SLEEP

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the TO bit (STATUS<4>) is set, the PD bit (STATUS<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low, or hi-impedance).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR/VPP pin low.

For lowest current consumption while powered down, the T0CKI input should be at VDD or Vss and the $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level ($\overline{\text{MCLR}} = \text{VIH}$).

9.3.2 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. An external RESET input on MCLR/VPP pin.
- 2. A Watchdog Timer Time-out Reset (if WDT was enabled).

Both of these events cause a device RESET. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of device RESET. The $\overline{\text{TO}}$ bit is cleared if a WDT timeout occurred (and caused wake-up). The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked.

The WDT is cleared when the device wakes from SLEEP, regardless of the wake-up source.

9.4 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

9.5 ID Locations

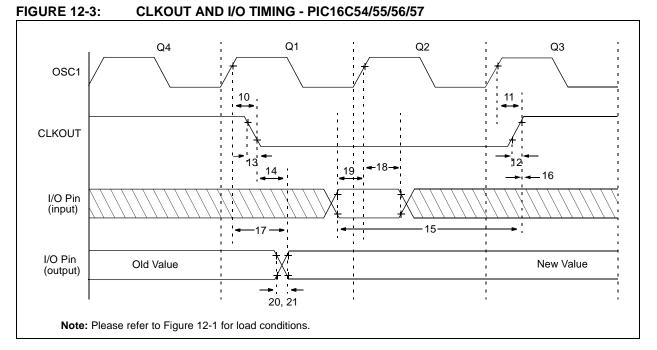
Four memory locations are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify.

Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '1's.

Note: Microchip will assign a unique pattern number for QTP and SQTP requests and for ROM devices. This pattern number will be unique and traceable to the submitted code.

		Standard Operating Condition	•			-			
AC Chara	cteristics			ΓΑ ≤ +70° ΓΑ ≤ +85°			l		
		$-40^{\circ}C \le TA \le +85^{\circ}C \text{ for industrial} -40^{\circ}C \le TA \le +125^{\circ}C \text{ for extended}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
1	Tosc	External CLKIN Period ⁽¹⁾	250	_	_	ns	XT osc mode		
			100	—	—	ns	10 MHz mode		
			50	—	—	ns	HS osc mode (Comm/Ind)		
			62.5	—	—	ns	HS osc mode (Ext)		
			25	—	_	μS	LP osc mode		
		Oscillator Period ⁽¹⁾	250	_		ns	RC osc mode		
			250	—	10,000	ns	XT OSC mode		
			100	—	250	ns	10 MHz mode		
			50	—	250	ns	HS OSC mode (Comm/Ind)		
			62.5	—	250	ns	HS osc mode (Ext)		
			25	—	_	μS	LP OSC mode		
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	_	_			
3	TosL,	Clock in (OSC1) Low or High	85*	—	—	ns	XT oscillator		
	TosH	Time	20*	—	—	ns	HS oscillator		
			2.0*	—		μS	LP oscillator		
4	TosR,	Clock in (OSC1) Rise or Fall	—	—	25*	ns	XT oscillator		
	TosF	Time	—	—	25*	ns	HS oscillator		
			—	—	50*	ns	LP oscillator		

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57


* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

TABLE 12-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57

AC Char	acteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units				
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	—	15	30**	ns				
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	_	15	30**	ns				
12	TckR	CLKOUT rise time ⁽¹⁾		5.0	15**	ns				
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns				
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾			40**	ns				
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	_	_	ns				
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	_	_	ns				
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid ⁽²⁾	_		100*	ns				
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—		ns				
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns				
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns				
21	TioF	Port output fall time ⁽²⁾	—	10	25**	ns				

* These parameters are characterized but not tested.

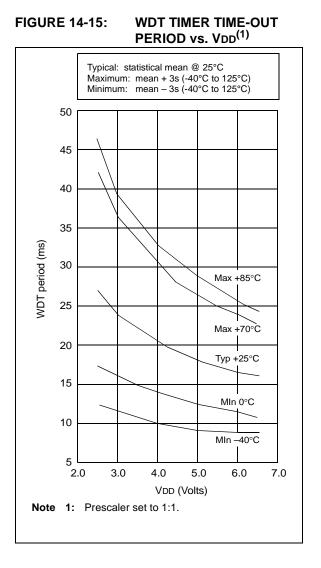
** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

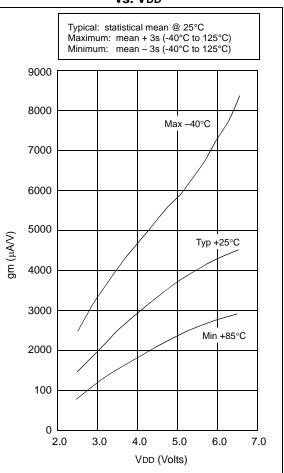
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 12-1 for load conditions.

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)


PIC16LC	PIC16LCR54A-04 PIC16LCR54A-04I (Commercial, Industrial)				$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$						
PIC16CR	C16CR54A-04, 10, 20 C16CR54A-04I, 10I, 20I Commercial, Industrial)			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified } \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$							
Param No. Symbol Characteristic/Device				Тур†	Max	Units	Conditions				
	Vdd	Supply Voltage									
D001		PIC16LCR54A	2.0		6.25	V					
D001 D001A		PIC16CR54A	2.5 4.5	_	6.25 5.5	V V	RC and XT modes HS mode				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	_	V	Device in SLEEP mode				
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset				
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset				
	Idd	Supply Current ⁽²⁾									
D005		PICLCR54A	_	10	20 70	μΑ μΑ	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 6.0V				
D005A		PIC16CR54A		2.0 0.8 90	3.6 1.8 350	mA mA μA	RC ⁽³⁾ and XT modes: Fosc = 4.0 MHz, VDD = 6.0V Fosc = 4.0 MHz, VDD = 3.0V Fosc = 200 kHz, VDD = 2.5V				
			_	4.8 9.0	10 20	mA mA	HS mode: Fosc = 10 MHz, VDD = 5.5V Fosc = 20 MHz, VDD = 5.5V				

Legend: Rows with standard voltage device data only are shaded for improved readability.


- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 14-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

15.3 DC Characteristics: PIC16LV54A-02 (Commercial) PIC16LV54A-02I (Industrial)

PIC16LV54A-02 PIC16LV54A-02I (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq T\mbox{A} \leq +70^{\circ}\mbox{C for commercial} \\ -20^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \end{array}$						
Param No.	Symbol Characteristic		Min	Тур†	Max	Units	Conditions			
D001	Vdd	Supply Voltage RC and XT modes	2.0	_	3.8	V				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*		—	V/ms	See Section 5.1 for details on Power-on Reset			
D010	IDD	Supply Current⁽²⁾ RC ⁽³⁾ and XT modes LP mode, Commercial LP mode, Industrial		0.5 11 14	— 27 35	μA	Fosc = 2.0 MHz, VDD = 3.0V Fosc = 32 kHz, VDD = 2.5V WDT disabled Fosc = 32 kHz, VDD = 2.5V WDT disabled			
D020	IPD	Power-down Current^(2,4) Commercial Commercial Industrial Industrial		2.5 0.25 3.5 0.3	12 4.0 14 5.0	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT enabled VDD = 2.5V, WDT disabled VDD = 2.5V, WDT enabled VDD = 2.5V, WDT disabled			

These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.
 - 4: The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection on wake-up from SLEEP mode or during initial power-up.

15.4 DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04E, 10E, 20E, PIC16LC54A-04E (Extended)

DC CH	ARACTE	RISTICS	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$								
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions				
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss Vss		0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V	Pin at hi-impedance RC mode only ⁽³⁾ XT, HS and LP modes				
D040	VIH	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	0.2 VDD + 1 2.0 0.85 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD VDD	V V V V V V	For all V _{DD} ⁽⁴⁾ 4.0V < V _{DD} ≤ 5.5V ⁽⁴⁾ RC mode only ⁽³⁾ XT, HS and LP modes				
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	_	—	V					
D060	IIL	Input Leakage Current ^(1,2) I/O ports MCLR MCLR TOCKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, XT, HS and LP modes				
D080	VOL	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5 V IOL = 1.6 mA, VDD = 4.5 V, RC mode only				
	VOH	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.7 Vdd - 0.7			V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only				

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

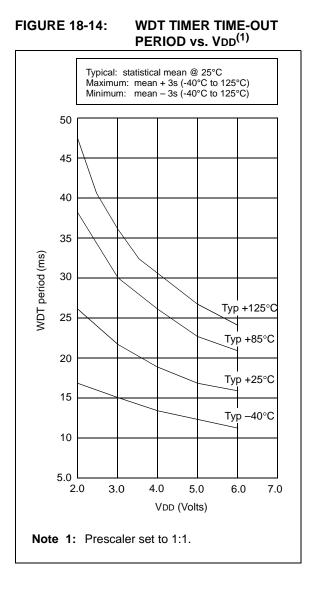
Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

*

NOTES:


17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)

PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)			Standard Operating Conditions (unless otherwise specified Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended														
Param No.	Symbol	ol Characteristic		Characteristic		Characteristic		Characteristic		Characteristic		Characteristic		Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0 4.5		5.5 5.5		RC, XT, LP, and HS mode from 0 - 10 MHz from 10 - 20 MHz										
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode										
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset										
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset										
D010	IDD	Supply Current ⁽²⁾ XT and RC ⁽³⁾ modes HS mode	_	1.8 9.0	3.3 20	mA mA	Fosc = 4.0 MHz, VDD = 5.5V Fosc = 20 MHz, VDD = 5.5V										
D020	IPD	Power-down Current ⁽²⁾		0.3 10 12 4.8 18 26	17 50* 60* 31* 68* 90*	μΑ μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled VDD = 4.5V, WDT disabled VDD = 5.5V, WDT disabled VDD = 3.0V, WDT enabled VDD = 4.5V, WDT enabled VDD = 5.5V, WDT enabled										

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

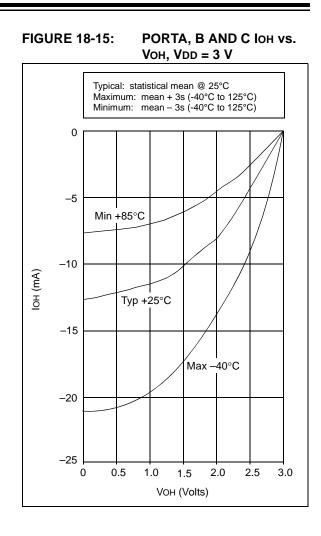
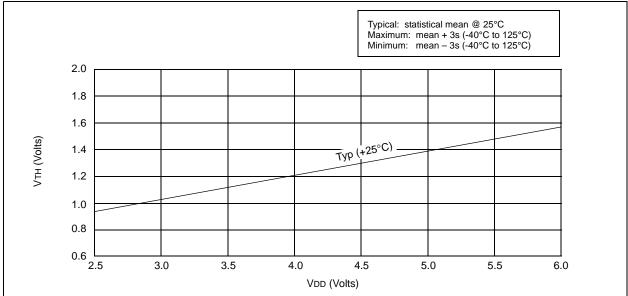
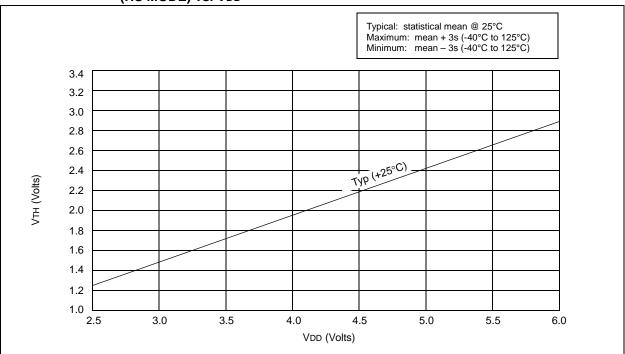
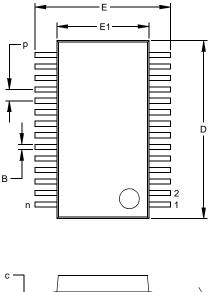
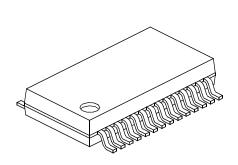
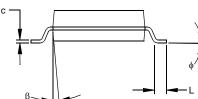
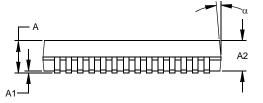


FIGURE 20-4: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF I/O PINS vs. VDD


FIGURE 20-5: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (HS MODE) vs. VDD




28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				N	IILLIMETERS)*
Dimensio	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-150 Drawing No. C04-073