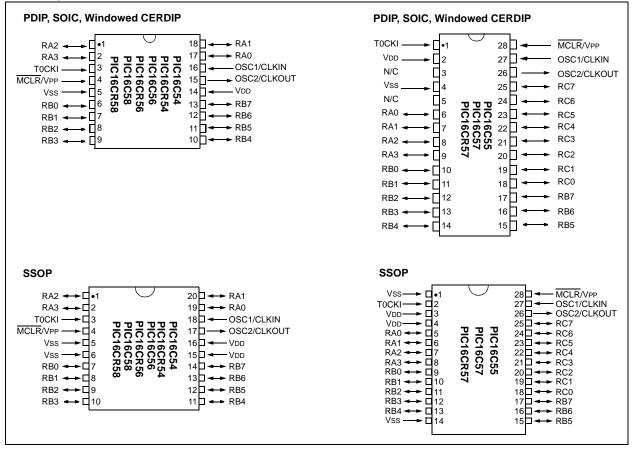


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Core ProcessorPICCore Size8-BitSpeed20MHzConnectivity-PeripheralsPOR, WDTNumber of I/O12Program Memory Size1.5KB (1K x 12)Program Memory TypeOTPEEPROM Size-Nutage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeEternalOperating Temperature-Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)	Details	
Core Size8-BitCore Size8-BitSpeed20MHzConnectivity-PeripheralsPOR, WDTNumber of I/O12Program Memory Size1.5KB (1K x 12)Program Memory TypeOTPEEPROM Size-RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20.5SOP (0.209", 5.30mm Width)	Product Status	Active
Speed20MHzConnectivity-PeripheralsPOR, WDTNumber of I/O12Program Memory Size1.5KB (1K x 12)Program Memory TypeOTPEEPROM Size-RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20.SSOP (0.209", 5.30mm Width)	Core Processor	PIC
Connectivity-PeripheralsPOR, WDTNumber of I/O12Program Memory Size1.5KB (1K x 12)Program Memory TypeOTPEEPROM Size-RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Operating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)	Core Size	8-Bit
PeripheralsPOR, WDTNumber of I/O12Program Memory Size1.5KB (1K x 12)Program Memory TypeOTPEEPROM Size-RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)	Speed	20MHz
Number of I/O12Program Memory Size1.5KB (1K × 12)Program Memory TypeOTPEEPROM Size-RAM Size25 × 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)	Connectivity	-
Program Memory Size1.5KB (1K x 12)Program Memory TypeOTPEEPROM Size-RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)	Peripherals	POR, WDT
Program Memory TypeOTPEEPROM Size-RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)	Number of I/O	12
EEPROM Size-RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)Supplier Device Package20-SSOP	Program Memory Size	1.5KB (1K x 12)
RAM Size25 x 8Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)Supplier Device Package20-SSOP	Program Memory Type	OTP
Voltage - Supply (Vcc/Vdd)3V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)Supplier Device Package20-SSOP	EEPROM Size	-
Data Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)Supplier Device Package20-SSOP	RAM Size	25 x 8
Oscillator TypeExternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case20-SSOP (0.209", 5.30mm Width)Supplier Device Package20-SSOP	Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Operating Temperature -40°C ~ 125°C (TA) Mounting Type Surface Mount Package / Case 20-SSOP (0.209", 5.30mm Width) Supplier Device Package 20-SSOP	Data Converters	-
Mounting Type Surface Mount Package / Case 20-SSOP (0.209", 5.30mm Width) Supplier Device Package 20-SSOP	Oscillator Type	External
Package / Case 20-SSOP (0.209", 5.30mm Width) Supplier Device Package 20-SSOP	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package 20-SSOP	Mounting Type	Surface Mount
	Package / Case	20-SSOP (0.209", 5.30mm Width)
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16c56a-20e-ss	Supplier Device Package	20-SSOP
	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56a-20e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Device Differences

Device	Voltage Range	Oscillator Selection (Program)	Oscillator	Process Technology (Microns)	ROM Equivalent	MCLR Filter
PIC16C54	2.5-6.25	Factory	See Note 1	1.2	PIC16CR54A	No
PIC16C54A	2.0-6.25	User	See Note 1	0.9	—	No
PIC16C54C	2.5-5.5	User	See Note 1	0.7	PIC16CR54C	Yes
PIC16C55	2.5-6.25	Factory	See Note 1	1.7	—	No
PIC16C55A	2.5-5.5	User	See Note 1	0.7	—	Yes
PIC16C56	2.5-6.25	Factory	See Note 1	1.7	—	No
PIC16C56A	2.5-5.5	User	See Note 1	0.7	PIC16CR56A	Yes
PIC16C57	2.5-6.25	Factory	See Note 1	1.2	—	No
PIC16C57C	2.5-5.5	User	See Note 1	0.7	PIC16CR57C	Yes
PIC16C58B	2.5-5.5	User	See Note 1	0.7	PIC16CR58B	Yes
PIC16CR54A	2.5-6.25	Factory	See Note 1	1.2	N/A	Yes
PIC16CR54C	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes
PIC16CR56A	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes
PIC16CR57C	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes
PIC16CR58B	2.5-5.5	Factory	See Note 1	0.7	N/A	Yes

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

Note: The table shown above shows the generic names of the PIC16C5X devices. For device varieties, please refer to Section 2.0.

NOTES:

2.0 PIC16C5X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16C5X Product Identification System at the back of this data sheet to specify the correct part number.

For the PIC16C5X family of devices, there are four device types, as indicated in the device number:

- 1. **C**, as in PIC16**C**54C. These devices have EPROM program memory and operate over the standard voltage range.
- LC, as in PIC16LC54A. These devices have EPROM program memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**54A. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR54A. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices (EPROM)

The UV erasable versions offered in CERDIP packages, are optimal for prototype development and pilot programs.

UV erasable devices can be programmed for any of the four oscillator configurations. Microchip's

PICSTART[®] Plus⁽¹⁾ and PRO MATE[®] programmers both support programming of the PIC16C5X. Third party programmers also are available. Refer to the Third Party Guide (DS00104) for a list of sources.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates, or small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

Note 1: PIC16LC54C and PIC16C54A devices require OSC2 not to be connected while programming with PICSTART[®] Plus programmer.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers the unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, giving the customer a low cost option for high volume, mature products.

Pin Name	Pin Number			Pin Buff	Buffer	Description
Pin Name	DIP	SOIC	SSOP	Туре	Туре	Description
RA0	6	6	5	I/O	TTL	Bi-directional I/O port
RA1	7	7	6	I/O	TTL	
RA2	8	8	7	I/O	TTL	
RA3	9	9	8	I/O	TTL	
RB0	10	10	9	I/O	TTL	Bi-directional I/O port
RB1	11	11	10	I/O	TTL	
RB2	12	12	11	I/O	TTL	
RB3	13	13	12	I/O	TTL	
RB4	14	14	13	I/O	TTL	
RB5	15	15	15	I/O	TTL	
RB6	16	16	16	I/O	TTL	
RB7	17	17	17	I/O	TTL	
RC0	18	18	18	I/O	TTL	Bi-directional I/O port
RC1	19	19	19	I/O	TTL	
RC2	20	20	20	I/O	TTL	
RC3	21	21	21	I/O	TTL	
RC4	22	22	22	I/O	TTL	
RC5	23	23	23	I/O	TTL	
RC6	24	24	24	I/O	TTL	
RC7	25	25	25	I/O	TTL	
TOCKI	1	1	2	Ι	ST	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.
MCLR	28	28	28	I	ST	Master clear (RESET) input. This pin is an active low RESET to the device.
OSC1/CLKIN	27	27	27	I	ST	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	26	26	26	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
Vdd	2	2	3,4	Р	_	Positive supply for logic and I/O pins.
Vss	4	4	1,14	Р		Ground reference for logic and I/O pins.
N/C	3,5	3,5		_		Unused, do not connect.

TABLE 3-2: PINOUT DESCRIPTION - PIC16C55, PIC16C57, PIC16CR57

Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input

4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

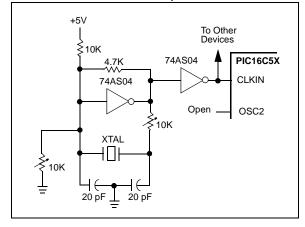
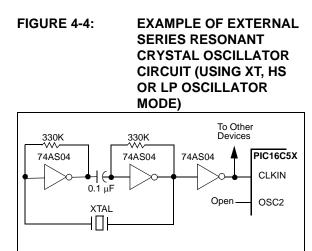



Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

6.4 **OPTION Register**

The OPTION Register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W Register will be transferred to the OPTION Register. A RESET sets the OPTION<5:0> bits.

REGISTER 6-2: OPTION REGISTER

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
_	_	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

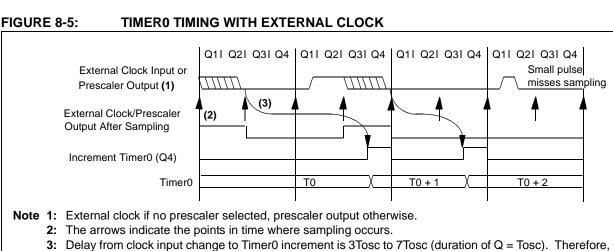
- bit 7-6: Unimplemented: Read as '0'
- bit 5: **TOCS**: Timer0 clock source select bit
 - 1 = Transition on T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4: **TOSE**: Timer0 source edge select bit
 - 1 = Increment on high-to-low transition on T0CKI pin
 - 0 = Increment on low-to-high transition on T0CKI pin
- bit 3: **PSA**: Prescaler assignment bit
 - 1 = Prescaler assigned to the WDT
 - 0 = Prescaler assigned to Timer0

bit 2-0: **PS<2:0>:** Prescaler rate select bits

Bit Value	Timer0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1:256	1:128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

8.1 Using Timer0 with an External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

8.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 8-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

8.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 8-5 shows the delay from the external clock edge to the timer incrementing.

Belay from clock input change to Timer0 increment is 3 lose to 7 lose (duration of Q = lose). There the error in measuring the interval between two edges on Timer0 input = ± 4 Tose max.

PIC16C5X

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 01df ffff
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	COMF REG1,0
Before Instru REG1 After Instruct REG1 W	= 0x13

DECF	Decrement f							
Syntax:	[label] DECF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$							
Operation:	$(f) - 1 \rightarrow$	(dest)						
Status Affected:	Z							
Encoding:	0000	11df	ffff					
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	DECF	CNT,	1					
Before Instru CNT Z After Instruct CNT Z	= 0 = 0 ion	<01						

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(f) $-1 \rightarrow d$; skip if result = 0
Status Affected:	None
Encoding:	0010 11df ffff
Description:	The contents of register 'f' are dec- remented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
Before Instru PC	= address (HERE)
After Instruct CNT if CNT PC if CNT PC	tion = CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)

12.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

Absolute Maximum Ratings^(†)

Ambient Temperature under bias	–55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0V to +7.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +14V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O port (PORTA, B or C)	40 mA
Max. output current sunk by a single I/O port (PORTA, B or C)	50 mA

- **Note 1:** Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.
 - 2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
PIC16CR	54A-04, 10 54A-04I, 10 ercial, Indus), 20I		ard Oper ting Temp		0°	s (unless otherwise specified) C \leq TA \leq +70°C for commercial C \leq TA \leq +85°C for industrial	
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions	
	Vdd	Supply Voltage						
D001		PIC16LCR54A	2.0		6.25	V		
D001 D001A		PIC16CR54A	2.5 4.5	_	6.25 5.5	V V	RC and XT modes HS mode	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	_	1.5*	_	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset	
	Idd	Supply Current ⁽²⁾						
D005		PICLCR54A	_	10	20 70	μΑ μΑ	Fosc = 32 kHz, VDD = 2.0V Fosc = 32 kHz, VDD = 6.0V	
D005A		PIC16CR54A		2.0 0.8 90	3.6 1.8 350	mA mA μA	RC⁽³⁾ and XT modes: Fosc = 4.0 MHz, VDD = 6.0V Fosc = 4.0 MHz, VDD = 3.0V Fosc = 200 kHz, VDD = 2.5V HS mode:	
				4.8 9.0	10 20	mA mA	Fosc = 10 MHz, VDD = 5.5V Fosc = 20 MHz, VDD = 5.5V	

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

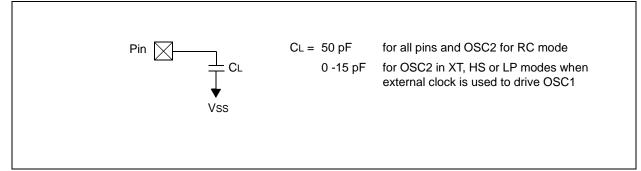
15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial) PIC16C54A-04I, 10I, 20I (Industrial) PIC16LC54A-04 (Commercial) PIC16LC54A-04I (Industrial)

PIC16L0	Standard Operating Conditions (unless otherwise specifie PIC16LC54A-04I Operating Temperature 0°C ≤ TA ≤ +70°C for commercial (Commercial, Industrial) -40°C ≤ TA ≤ +85°C for industrial						
PIC16C	54A-04, 10 54A-04, 10 54A-04I, 1 hercial, Ind), 20 01, 201	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)}\\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial}\\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$				
Param No.	Symbol	Characteristic/Device	Min Typ† Max Units Conditions				
	Vdd	Supply Voltage			•		
D001		PIC16LC54A	3.0 2.5	_	6.25 6.25	V V	XT and RC modes LP mode
D001A		PIC16C54A	3.0 4.5	_	6.25 5.5	V V	RC, XT and LP modes HS mode
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset
	IDD	Supply Current ⁽²⁾					
D005		PIC16LC5X	—	0.5	2.5	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes
			—	11	27	μΑ	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode, Commercial
			—	11	35	μA	Fosc = 32 kHz, VDD = 2.5V, WDT disabled, LP mode, Industrial
D005A		PIC16C5X	—	1.8	2.4	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes
			—	2.4	8.0	mA	Fosc = 10 MHz, VDD = 5.5V, HS mode
			_	4.5 14	16 29	mA μA	Fosc = 20 MHz, VDD = 5.5V, HS mode Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP mode, Commercial
			—	17	37	μA	Fosc = 32 kHz , VDD = 3.0V , WDT disabled, LP mode, Industrial

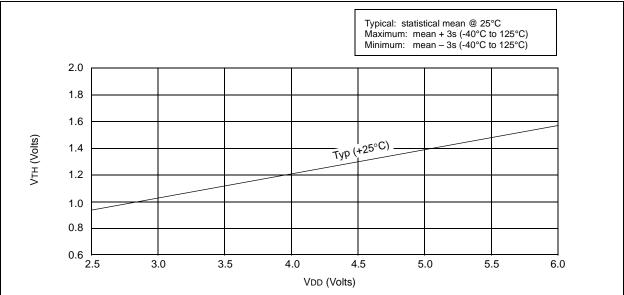
Legend: Rows with standard voltage device data only are shaded for improved readability.

These parameters are characterized but not tested.

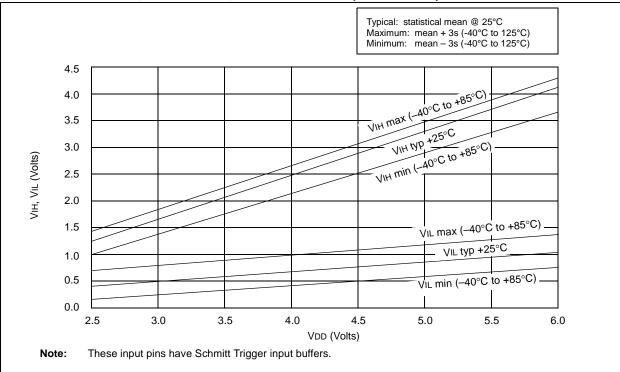
- † Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

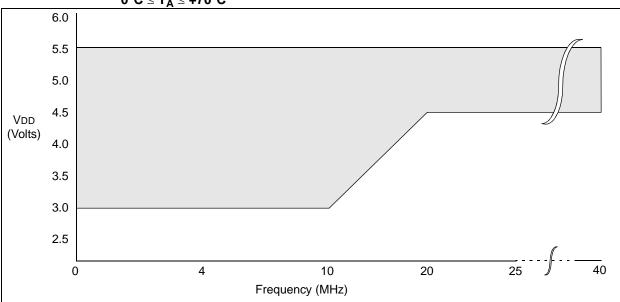

17.4 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:


1. TppS2ppS

2. Tp	pS								
Т									
F	Frequency	T Time							
Lowe	Lowercase letters (pp) and their meanings:								
рр									
2	to	mc MCLR							
ck	CLKOUT	osc oscillator							
су	cycle time	os OSC1							
drt	device reset timer	t0 T0CKI							
io	I/O port	wdt watchdog timer							
Uppe	ercase letters and their meanings:								
S									
F	Fall	P Period							
н	High	R Rise							
T	Invalid (Hi-impedance)	V Valid							
L	Low	Z Hi-impedance							


FIGURE 17-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B-04, 20



© 1997-2013 Microchip Technology Inc.

PIC16C5X

FIGURE 19-1: PIC16C54C/C55A/C56A/C57C/C58B-40 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le T_A \le +70^{\circ}C$

- **2:** The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.
- **3:** Operation between 20 to 40 MHz requires the following:
 - VDD between 4.5V. and 5.5V
 - OSC1 externally driven
 - OSC2 not connected
 - HS mode
 - Commercial temperatures

Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C54C-40/P).

4: For operation between DC and 20 MHz, see Section 17.1.

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

			Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Param No. Symbol Characteristic		Min	Тур†	Max	Units	Conditions		
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 VDD 0.15 VDD 0.2 VDD	> > > > > >	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>	
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.8 Vdd		Vdd Vdd Vdd Vdd	V V V V	$4.5V < VDD \le 5.5V$ HS, 20 MHz \le Fosc \le 40 MHz	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	_	_	V		
D060	lı∟	Input Leakage Current ^(2,3) I/O ports MCLR MCLR T0CKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 — 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, HS	
D080	Vol	Output Low Voltage I/O ports		_	0.6	V	Iol = 8.7 mA, Vdd = 4.5V	
D090	Vон	Output High Voltage⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Іон = -5.4 mA, Vdd = 4.5V	

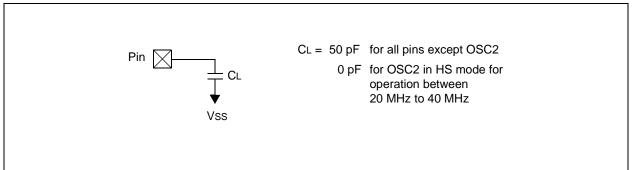
These parameters are characterized but not tested.

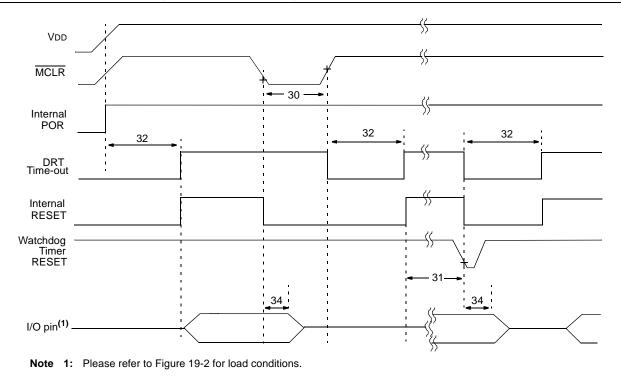
† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.


19.3 Timing Parameter Symbology and Load Conditions


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. Tp	2. TppS								
Т									
F	Frequency	T Time							
Lowe	Lowercase letters (pp) and their meanings:								
рр									
2	to	mc MCLR							
ck	CLKOUT	osc oscillator							
су	cycle time	os OSC1							
drt	device reset timer	t0 T0CKI							
io	I/O port	wdt watchdog timer							
Uppe	ercase letters and their meanings:								
S									
F	Fall	P Period							
н	High	R Rise							
Ι	Invalid (Hi-impedance)	V Valid							
L	Low	Z Hi-impedance							

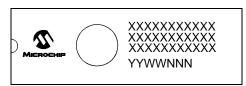
FIGURE 19-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -PIC16C54C/C55A/C56A/C57C/C58B-40

FIGURE 19-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X-40

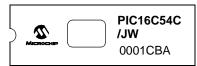
TABLE 19-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X-40

AC Characteristics		Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)Operating Voltage VDD range is described in Section 19.1.							
Param No. Symbol		Characteristic	Min	Тур†	Max	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	1000*	_	_	ns	VDD = 5.0V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
34 Tioz		I/O Hi-impedance from MCLR Low	100*	300*	1000*	ns			

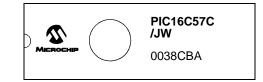
* These parameters are characterized but not tested.


† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

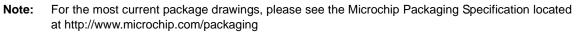
Package Marking Information (Cont'd)

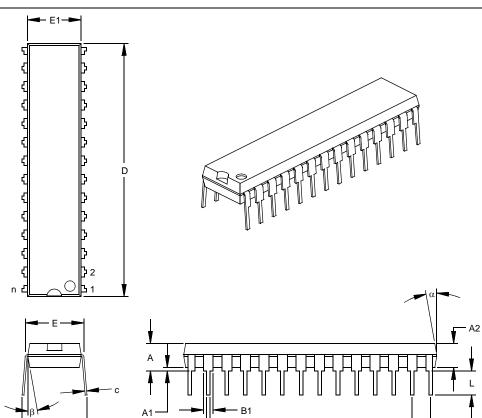

18-Lead CERDIP Windowed

	XXXXXXXX XXXXXXXX YYWWNNN
--	---------------------------------


28-Lead CERDIP Windowed

Example




Example

Lege	end: XX? Y YY WW NNN @3 *	 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note	be carr	vent the full Microchip part number cannot be marked on one line, it will ied over to the next line, thus limiting the number of available ers for customer-specific information.

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

в

	Units		INCHES*		MILLIMETERS			
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

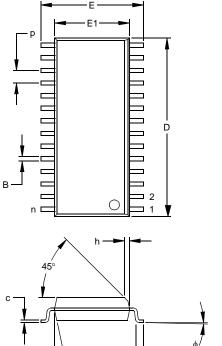
* Controlling Parameter § Significant Characteristic

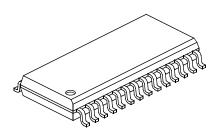
eВ

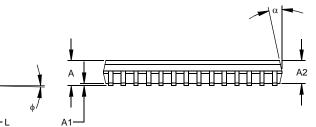
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.

JEDEC Equivalent: MO-095


Drawing No. C04-070


- p -


Notes:

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units	Units INCHES*			MILLIMETERS			
Dimensi	MIN NOM MAX		MAX	MIN	NOM	MAX		
Number of Pins	n		28			28		
Pitch	р		.050			1.27		
Overall Height	А	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	E	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59	
Overall Length	D	.695	.704	.712	17.65	17.87	18.08	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle Top	φ	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052