

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56a-20i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

8.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
 - Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Edge select for external clock

Figure 8-1 is a simplified block diagram of the Timer0 module, while Figure 8-2 shows the electrical structure of the Timer0 input.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 8-3 and Figure 8-4). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 8.1.

Note: The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both.

The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 8.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 8-1.

FIGURE 8-2: ELECTRICAL STRUCTURE OF TOCKI PIN

CONFIGURATION WORD FOR PIC16C54/C55/C56/C57 **REGISTER 9-2:**

—	—	—	—	—	—	—	—	CP	WDTE	FOSC1	FOSC0
bit 11											bit 0
bit 11-4:	Unimple	emented:	Read as '	0'							
bit 3:	CP: Cod 1 = Cod 0 = Code	le protecti de protecti e protectio	on bit. on off on on								
bit 2:	WDTE:	Watchdog	timer ena	ble bit							
	1 = WD7	T enabled									
	0 = VVD	I disabled			. (2)						
bit 1-0:	FOSC1:	FOSC0: (Oscillator s	election b	oits ⁽²⁾						
	00 = L	P oscillato	or								
	01 = X	I oscillato	or								
	$10 = \Pi$	C oscillat) or								
	TT = K		JI								
Note 1:	Refer to	the PIC16	C5X Prog	ramming	Specificat	ions (Liter	ature Nun	nber DS30	0190) to d	etermine h	now to
	access th	he configu	ration wor	d.							
2:	PIC16LV	/54A supp	orts XT, R	C and LP	oscillator	only.					
L a sua a du											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

NOTES:

CALL	Subroutine Call						
Syntax:	[<i>label</i>] CALL k						
Operands:	$0 \leq k \leq 255$						
Operation:	(PC) + 1 \rightarrow TOS; k \rightarrow PC<7:0>; (STATUS<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>						
Status Affected:	None						
Encoding:	1001 kkkk kkkk						
Description.	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two- cycle instruction						
Words:	1						
Cycles:	2						
Example:	HERE CALL THERE						
Before Instru PC = After Instruct PC = TOS =	ction address (HERE) ion address (THERE) address (HERE + 1)						

CLRE	Clear f
	Cical I

Syntax:	[label] CLRF f						
Operands:	$0 \leq f \leq 31$						
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$						
Status Affected:	Z						
Encoding:	0000	011f	ffff				
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Example:	CLRF	FLAG_RE	G				
Before Instru FLAG_RI After Instructi	ction EG = Ion	0x5A					
FLAG_R	EG =	0x00					
Z	=	1					

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
VV = After Instruct W = Z =	= 0x5A tion = 0x00 = 1
CLRWDT	Clear Watchdog Timer
CLRWDT Syntax:	Clear Watchdog Timer
CLRWDT Syntax: Operands:	Clear Watchdog Timer [<i>label</i>] CLRWDT None
CLRWDT Syntax: Operands: Operation:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
CLRWDT Syntax: Operands: Operation: Status Affected:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding:	Clear Watchdog Timer[label]CLRWDTNone $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ \overline{TO}, PD 0000 0000
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0100 The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bitsTO and PD are set.
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set. 1
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Clear Watchdog Timer [label] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set. 1 1
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set. 1 1 CLRWDT

After Instruction		
WDT counter	=	0x00
WDT prescaler	=	0
TO	=	1
PD	=	1

AC Chara	cteristics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions		
1	Tosc	External CLKIN Period ⁽¹⁾	250			ns	XT OSC mode		
			100		—	ns	10 MHz mode		
			50		—	ns	HS OSC mode (Comm/Ind)		
			62.5		—	ns	HS OSC mode (Ext)		
			25		—	μS	LP OSC mode		
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC OSC mode		
			250		10,000	ns	XT OSC mode		
			100		250	ns	10 MHz mode		
			50		250	ns	HS OSC mode (Comm/Ind)		
			62.5		250	ns	HS OSC mode (Ext)		
			25		—	μS	LP OSC mode		
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—			
3	TosL,	Clock in (OSC1) Low or High	85*	—	—	ns	XT oscillator		
	TosH	Time	20*	—	—	ns	HS oscillator		
			2.0*		—	μS	LP oscillator		
4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT oscillator		
	TosF	Time	—	—	25*	ns	HS oscillator		
			—	—	50*	ns	LP oscillator		

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

13.5 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. Tp	pS	
Т		
F	Frequency	T Time
Lowe	ercase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	ercase letters and their meanings:	
S		
F	Fall	P Period
Н	High	R Rise
Ι	Invalid (Hi-impedance)	V Valid
L	Low	Z Hi-impedance

FIGURE 13-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16CR54A

13.6 Timing Diagrams and Specifications

FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A

TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A

AC Chara	cteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode	
			DC	—	4.0	MHz	HS osc mode (04)	
			DC	—	10	MHz	HS osc mode (10)	
			DC	—	20	MHz	HS osc mode (20)	
			DC	—	200	kHz	LP osc mode	
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC osc mode	
			0.1	—	4.0	MHz	XT OSC mode	
			4.0	—	4.0	MHz	HS osc mode (04)	
			4.0	—	10	MHz	HS osc mode (10)	
			4.0	—	20	MHz	HS osc mode (20)	
			5.0		200	kHz	LP osc mode	

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

FIGURE 14-22: PORTA, B AND C IOL vs. VoL, VDD = 5 V

15.2 DC Characteristics: PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16I	C54A-04F	•	Stand	, ard One	ratino	, Condi	tions (unless otherwise specified)		
(Exten	ded)	-	Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
PIC16C54A-04E, 10E, 20E (Extended)				Standard Operating Conditions (unless otherwise specified Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions		
	Vdd	Supply Voltage							
D001		PIC16LC54A	3.0 2.5		6.25 6.25	V V	XT and RC modes LP mode		
D001A		PIC16C54A	3.5 4.5		5.5 5.5	V V	RC and XT modes HS mode		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	-	Vss	_	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset		
	IDD	Supply Current ⁽²⁾							
D010		PIC16LC54A	-	0.5	25	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes		
			-	11	27	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Commercial		
				11	35	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Industrial		
			—	11	37	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Extended		
D010A		PIC16C54A	—	1.8	3.3	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes		
			-	4.8	10	mA	Fosc = 10 MHz, VDD = 5.5V, HS mode		
			-	9.0	20	mA	Fosc = 20 MHz, VDD = 5.5V, HS mode		

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54A

AC Characteristics							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾		15	30**	ns	
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾		15	30**	ns	
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns	
13	TckF	CLKOUT fall time ⁽¹⁾		5.0	15**	ns	
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾		—	40**	ns	
15	TioV2ckH	Port in valid before CLKOUT↑ ⁽¹⁾	0.25 TCY+30*	_	_	ns	
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	—	_	ns	
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	_	100*	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD		_	ns	
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	_	ns	
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns	
21	TioF	Port output fall time ⁽²⁾		10	25**	ns	

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 15-1 for load conditions.

PIC16C5X

FIGURE 16-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)

FIGURE 16-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS - VDD

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C

19.0 ELECTRICAL CHARACTERISTICS - PIC16LC54C 40MHz

Absolute Maximum Ratings^(†)

Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	
Max. current out of Vss pin	
Max. current into Vod pin	
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo > Voo)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O (Port A, B or C)	
Max. output current sunk by a single I/O (Port A, B or C)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VI	-Voн) x Ioн} + ∑(Vol x Iol)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

19.3 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. Tp	2. TppS					
Т						
F	Frequency	T Time				
Lowe	Lowercase letters (pp) and their meanings:					
рр						
2	to	mc MCLR				
ck	CLKOUT	osc oscillator				
су	cycle time	os OSC1				
drt	device reset timer	t0 T0CKI				
io	I/O port	wdt watchdog timer				
Uppe	Uppercase letters and their meanings:					
S						
F	Fall	P Period				
Н	High	R Rise				
Ι	Invalid (Hi-impedance)	V Valid				
L	Low	Z Hi-impedance				

FIGURE 19-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -PIC16C54C/C55A/C56A/C57C/C58B-40

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Sontolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1997-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769355

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.