

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c56at-20-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

NOTES:

7.0 I/O PORTS

As with any other register, the I/O Registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers (TRISA, TRISB, TRISC) are all set.

7.1 PORTA

PORTA is a 4-bit I/O Register. Only the low order 4 bits are used (RA<3:0>). Bits 7-4 are unimplemented and read as '0's.

7.2 PORTB

PORTB is an 8-bit I/O Register (PORTB<7:0>).

7.3 PORTC

PORTC is an 8-bit I/O Register for PIC16C55, PIC16C57 and PIC16CR57.

PORTC is a General Purpose Register for PIC16C54, PIC16CR54, PIC16CR56, PIC16CR56, PIC16CS8 and PIC16CR58.

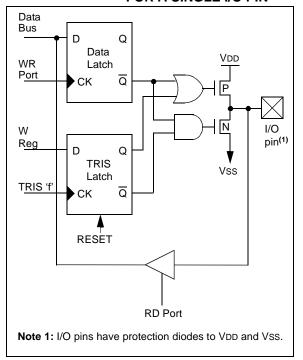
7.4 TRIS Registers

The Output Driver Control Registers are loaded with the contents of the W Register by executing the TRIS f instruction. A '1' from a TRIS Register bit puts the corresponding output driver in a hi-impedance (input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

The TRIS Registers are "write-only" and are set (output drivers disabled) upon RESET.

TABLE 7-1:	SUMMARY OF PORT REGISTERS


Value on Value on Bit 4 Bit 3 Bit 1 Bit 0 MCLR and Address Name Bit 7 Bit 6 Bit 5 Bit 2 Power-On Reset WDT Reset TRIS N/A I/O Control Registers (TRISA, TRISB, TRISC) 1111 1111 1111 1111 05h PORTA RA3 RA2 RA1 RA0 _ _ _ _ xxxx _ _ _ _ uuuu PORTB 06h RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 XXXX XXXX uuuu uuuu 07h PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 XXXX XXXX uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', Shaded cells = unimplemented, read as '0'

7.5 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 7-1. All ports may be used for both input and output operation. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 7-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

9.2 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT Reset or Wake-up Reset generates a device RESET.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset (Section 6.3).

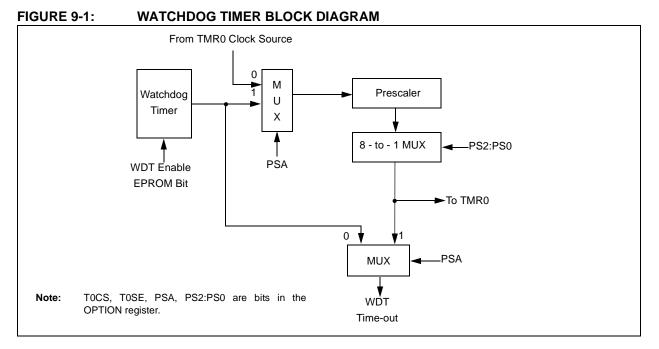
The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 9.1). Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to access the configuration word.

9.2.1 WDT PERIOD

An 8-bit counter is available as a prescaler for the Timer0 module (Section 8.2), or as a postscaler for the Watchdog Timer (WDT), respectively. For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not

both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio (Section 6.4).


The WDT has a nominal time-out period of 18 ms (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, time-out a period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see Device Characterization).

Under worst case conditions (VDD = Min., Temperature = Max., WDT prescaler = 1:128), it may take several seconds before a WDT time-out occurs.

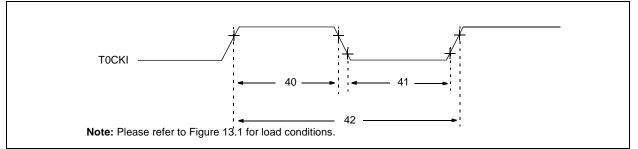
9.2.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction RESETS the WDT and the prescaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	<u>Value</u> on MCLR and WDT Reset
N/A	OPTION	—		Tosc	Tose	PSA	PS2	PS1	PS0	11 1111	11 1111


Legend: u = unchanged, - = unimplemented, read as '0'. Shaded cells not used by Watchdog Timer.

GOTO	Unconditional Branch							
Syntax:	[label]	GOTO	k					
Operands:	$0 \le k \le 5^{-1}$	11						
Operation:	$k \rightarrow PC < STATUS$,	PC<10:9>					
Status Affected:	None							
Encoding:	101k	kkkk	kkkk					
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from STATUS<6:5>. GOTO is a two- cycle instruction.							
Words:	1							
Cycles:	2							
Example:	GOTO TH	IERE						
After Instruct PC =	After Instruction							

INCF	Increment f				
Syntax:	[label] INCF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	0010 10df ffff				
Description: The contents of register 'f' are incremented. If 'd' is 0 the result placed in the W register. If 'd' is the result is placed back in register 'f'.					
Words:	1				
Cycles:	1				
Example:	INCF CNT, 1				
Before Instru CNT Z After Instruct CNT Z	= 0xFF = 0				

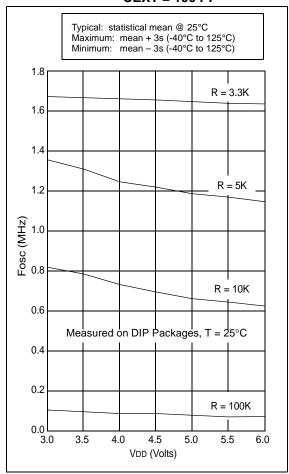
INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None					
Encoding:	0011 11df ffff					
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two- cycle instruction.					
Words:	1					
Cycles:	1(2)					
Example:	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • • •					
Before Instru PC After Instruc	= address (HERE)					
CNT if CNT PC if CNT PC	<pre>= CNT + 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE +1)</pre>					

FIGURE 13-5: TIMER0 CLOCK TIMINGS - PIC16CR54A

TABLE 13-4: TIMER0 CLOCK REQUIREMENTS - PIC16CR54A

	AC Chara	acteristics	$\begin{array}{ll} \mbox{Conditions (unless otherwise specified)} \\ \mbox{iture} & 0^\circ C \leq T A \leq +70^\circ C \mbox{ for commercial} \\ -40^\circ C \leq T A \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq T A \leq +125^\circ C \mbox{ for extended} \end{array}$					
Param No.	Symbol Characteristic			Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High	Pulse Width - No Prescaler - With Prescaler	0.5 Tcy + 20* 10*		_	ns ns	
41	TtOL	T0CKI Low	Pulse Width - No Prescaler - With Prescaler	0.5 Tcy + 20* 10*			ns ns	-
42	Tt0P	T0CKI Perio	od	20 or <u>Tcy + 40</u> * N		—	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

These parameters are characterized but not tested.


† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

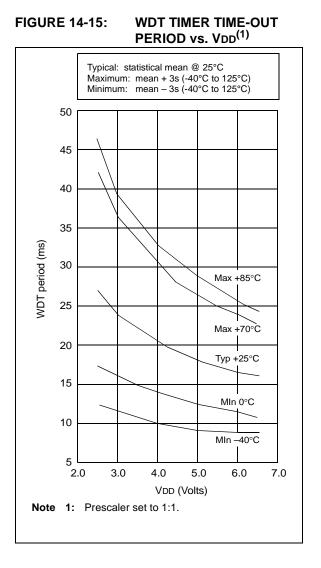
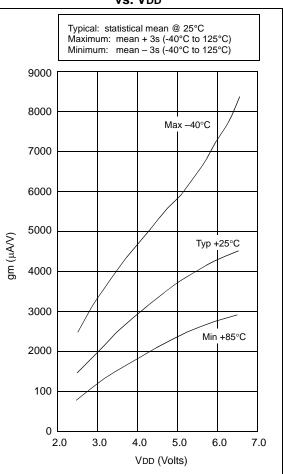

PIC16C5X

FIGURE 14-2: TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 20 PF Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean – 3s (-40°C to 125°C) 5.5 R = 3.3K5.0 4.5 R = 5K 4.0 3.5 Fosc (MHz) 3.0 R = 10K 2.5 2.0 Measured on DIP Packages, $T = 25^{\circ}C$ 1.5 1.0 R = 100K 0.5 0.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)


FIGURE 14-3:

TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 100 PF

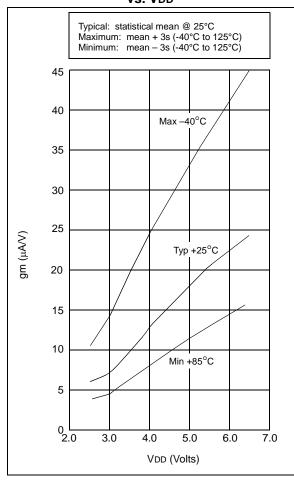


FIGURE 14-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

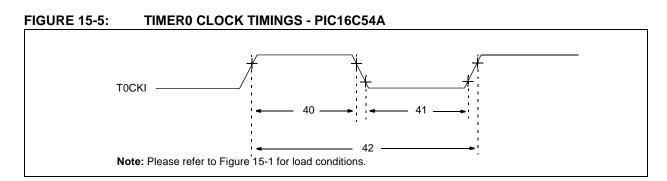


FIGURE 14-18:

TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

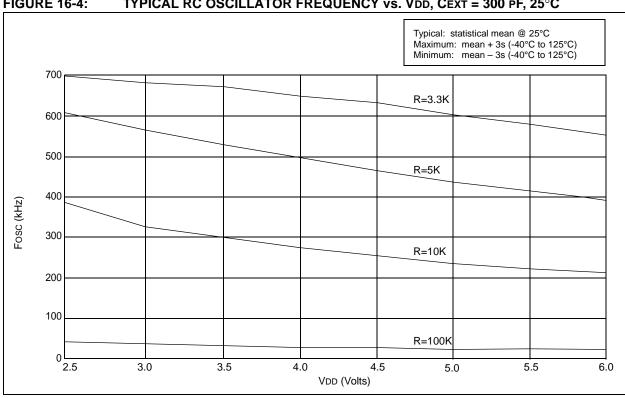
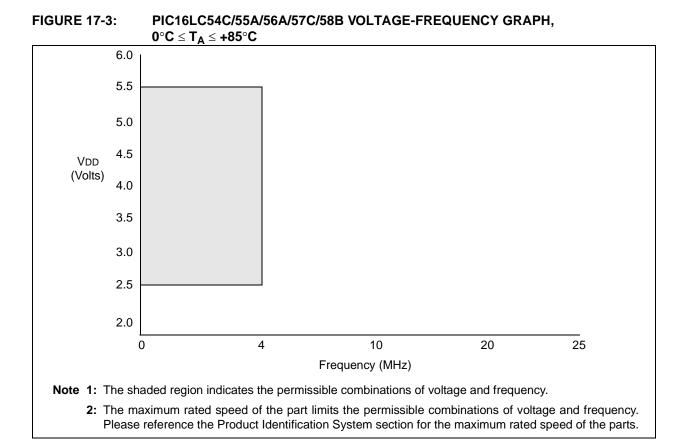


TABLE 15-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54A


	Standard Operating Conditions (unless otherwise specified)										
		Operating Temperat	ature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial								
1	AC Chara	octeristics	$-40^{\circ}C \le$	$TA \le +8$	85°C fo	or indus	trial				
			$-20^{\circ}C \le$	TA ≤ +8	85°C fc	or indus	trial - PIC16LV54A-02I				
			$-40^{\circ}C \le$	Ta ≤ +1	25°C	for exte	ended				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions				
40	Tt0H	T0CKI High Pulse Width									
		- No Prescaler	0.5 TCY + 20*	—	—	ns					
		- With Prescaler	10*	—	_	ns					
41	Tt0L	T0CKI Low Pulse Width									
		- No Prescaler	0.5 TCY + 20*	—	—	ns					
		- With Prescaler	10*	—	_	ns					
42	Tt0P	T0CKI Period	20 or <u>TCY + 40</u> *	—	_	ns	Whichever is greater.				
			N				N = Prescale Value				
							(1, 2, 4,, 256)				

* These parameters are characterized but not tested.

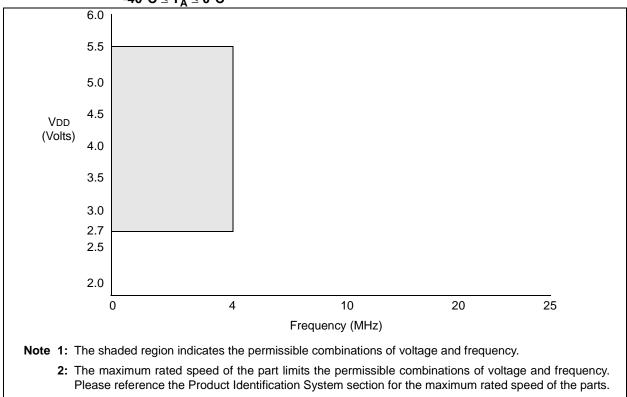

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C

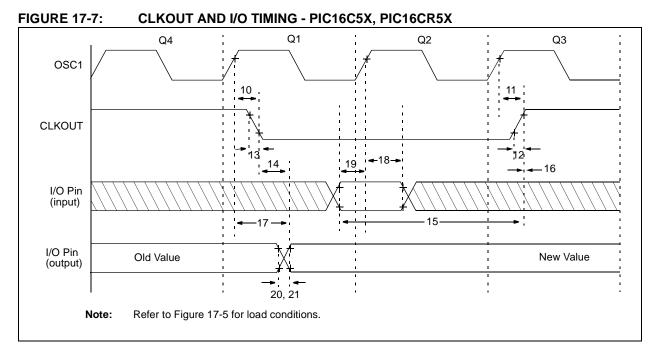
17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC PIC16LC (Comm	-	ustrial)	$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq T\mbox{A} \leq +70^{\circ}\mbox{C for commercial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \\ \end{array} $						
PIC16C5X PIC16CR5X (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)}\\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial}\\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$					
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions		
	IPD	Power-down Current ⁽²⁾							
D020		PIC16LC5X		0.25 0.25 1	2 3 5	μΑ μΑ μΑ	VDD = 2.5V, WDT disabled, Commercial $VDD = 2.5V$, WDT disabled, Industrial $VDD = 2.5V$, WDT enabled, Commercial		
			_	1.25	8	μA	$V_{DD} = 2.5V, WDT$ enabled, Industrial		
D020A		PIC16C5X	 	0.25 0.25 1.8 2.0 4	4.0 5.0 7.0* 8.0* 12*	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled, Commercial VDD = 3.0V, WDT disabled, Industrial VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT disabled, Industrial VDD = 3.0V, WDT enabled, Commercial		
			—	4	14*	μA	VDD = 3.0V, WDT enabled, Industrial		
			_	9.8 12	27* 30*	μΑ μΑ	VDD = 5.5V, WDT enabled, Commercial VDD = 5.5V, WDT enabled, Industrial		

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.


Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

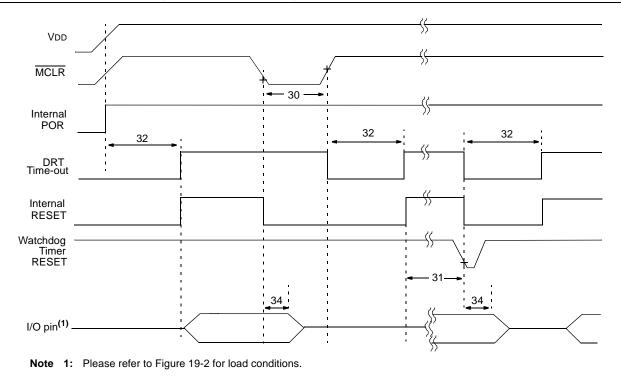
a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

	ALVAUT AND VA TIMINA DEALUDENENTA DIALAASY DIALAADSY
IABLE 17-2:	CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Chara	acteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units			
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	_	15	30**	ns			
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	_	15	30**	ns			
12	TckR	CLKOUT rise time ⁽¹⁾	—	5.0	15**	ns			
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns			
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	40**	ns			
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	—	_	ns			
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	—	_	ns			
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	—	100*	ns			
18	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	_	ns			
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns			
20	TioR	Port output rise time ⁽²⁾	_	10	25**	ns			
21	TioF	Port output fall time ⁽²⁾	—	10	25**	ns			


* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

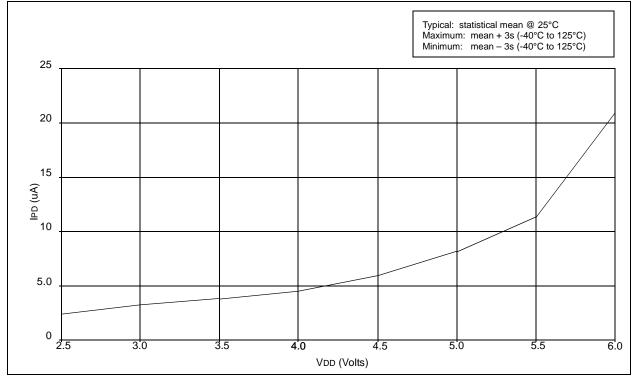
2: Refer to Figure 17-5 for load conditions.

FIGURE 19-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X-40

TABLE 19-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X-40

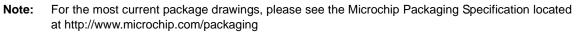
AC Characteristics		Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)Operating Voltage VDD range is described in Section 19.1.							
Param No. Symbol		Characteristic	Min	lin Typ† Max		Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	1000*	_	_	ns	VDD = 5.0V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
34	Tioz	I/O Hi-impedance from MCLR Low	100*	300*	1000*	ns			

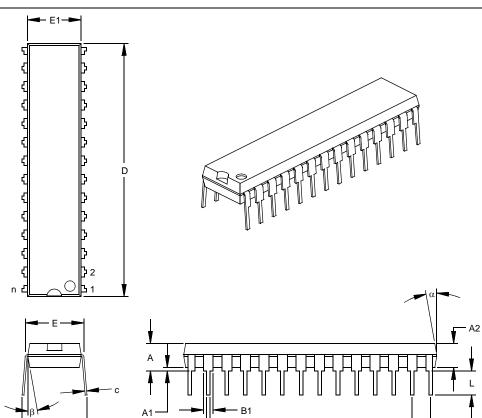
* These parameters are characterized but not tested.


† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

20.0 DEVICE CHARACTERIZATION - PIC16LC54C 40MHz

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.


"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



© 1997-2013 Microchip Technology Inc.

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

в

	Units		INCHES*		Μ	IILLIMETERS	
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	èB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

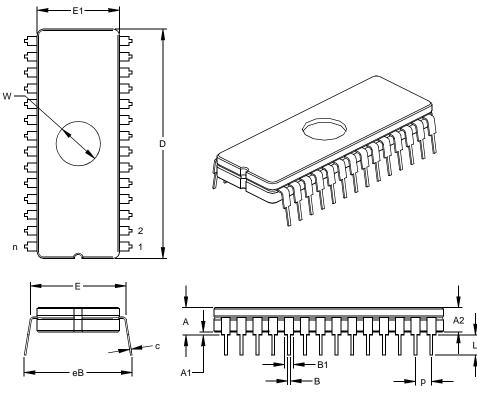
* Controlling Parameter § Significant Characteristic

eВ

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.

JEDEC Equivalent: MO-095


Drawing No. C04-070

- p -

Notes:

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES*			MILLIMETERS			
Dimensior	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Sontolling Parameter
Significant Characteristic
JEDEC Equivalent: MO-103
Drawing No. C04-013

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent					
RE:	Reader Response						
Fror	m: Name						
	Company						
A	Telephone: ()	FAX: ()					
	blication (optional):						
VVOL	uld you like a reply?YN						
Dev	vice: PIC16C5X Literatur	re Number: DS30453E					
Que	estions:						
1.	What are the best features of this docume	ent?					
2.	How does this document meet your hardv	vare and software development needs?					
3.	B. Do you find the organization of this data sheet easy to follow? If not, why?						
4.	4. What additions to the data sheet do you think would enhance the structure and subject?						
_							
5.	What deletions from the data sheet could	be made without affecting the overall usefulness?					
6	Is there any incorrect or misleading inform	nation (what and where)?					
0.	is there any mooneet of misleading mon						
	-						
7.	How would you improve this document?						
•							
8.	How would you improve our software, sys	stems, and silicon products?					