E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c57-hse-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

3.1 **Clocking Scheme/Instruction** Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction Cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: **CLOCK/INSTRUCTION CYCLE**

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

6.2 Data Memory Organization

Data memory is composed of registers, or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers and General Purpose Registers.

The Special Function Registers include the TMR0 register, the Program Counter (PC), the Status Register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Purpose Registers are used to control the I/O port configuration and prescaler options.

The General Purpose Registers are used for data and control information under command of the instructions.

For the PIC16C54, PIC16CR54, PIC16C56 and PIC16CR56, the register file is composed of 7 Special Function Registers and 25 General Purpose Registers (Figure 6-4).

For the PIC16C55, the register file is composed of 8 Special Function Registers and 24 General Purpose Registers.

For the PIC16C57 and PIC16CR57, the register file is composed of 8 Special Function Registers, 24 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-5).

For the PIC16C58 and PIC16CR58, the register file is composed of 7 Special Function Registers, 25 General Purpose Registers and up to 48 additional General Purpose Registers that may be addressed using a banking scheme (Figure 6-6).

6.2.1 GENERAL PURPOSE REGISTER FILE

The register file is accessed either directly or indirectly through the File Select Register (FSR). The FSR Register is described in Section 6.7.

FIGURE 6-4:

PIC16C54, PIC16CR54, PIC16C55, PIC16C56, PIC16CR56 REGISTER FILE MAP

ADDWF	Add	W	and f			
Syntax:	[lab	[label]ADDWF f,d				
Operands:	$0 \le 1$ $d \in 1$	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$				
Operation:	(W)	+ (f)	\rightarrow (dest)			
Status Affected:	C, D	C, Z	-			
Encoding:	00	01	11df	ff	ff	
	and is st '1' th regi	regi ored ne re ister	ster 'f'. If 'o I in the W sult is sto 'f'.	d' is regi red	0 the ster. I back	result If 'd' is in
Words:	1					
Cycles:	1					
Example:	ADD	WF	TEMP_RE	G,	0	
Before Instr	uctio	n				
W		=	0x17			
TEMP_I After Instruc	REG ction	=	0xC2			
W		=	0xD9			
TEMP_F	REG	=	0xC2			

ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (dest)			
Status Affected:	Ζ			
Encoding:	0001 01df ffff			
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is '1' the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	ANDWF TEMP_REG, 1			
Before Instru W TEMP_I After Instruct W TEMP_I	action = $0x17$ REG = $0xC2$ ion = $0x17$ REG = $0x02$			

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W).AND. (k) \rightarrow (W)			
Status Affected:	Z			
Encoding:	1110 kkkk kkkk			
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W regis- ter.			
Words:	1			
Cycles:	1			
Example:	ANDLW H'5F'			
Before Instru W = After Instruct W =	ction 0xA3 ion 0x03			

BCF	Bit Clea	rf		
Syntax:	[label]	BCF f,t)	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f < b$)		
Status Affected:	None			
Encoding:	0100	bbbf	ffff	
Description:	Bit 'b' in	register 'f'	is cleare	d.
Words:	1			
Cycles:	1			
Example:	BCF	FLAG_RE	G, 7	
Before Instru FLAG_R After Instruct	ction EG = ion	0xC7		
FLAG_R	EG =	0x47		

PIC16C5X

COMF	Complement f			
Syntax:	[<i>label</i>] COMF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (dest)$			
Status Affected:	Z			
Encoding:	0010 01df ffff			
Description:	The contents of register 'f' are complemented. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	COMF REG1,0			
Before Instru	ction			
REG1	= 0x13			
After Instruct	ion			
REG1	= 0x13			
W	= 0xEC			

DECF	Decrei	ment f		
Syntax:	[label] DECF f,	d	
Operands:	$\begin{array}{l} 0\leq f\leq \\ d\in \llbracket 0,\end{array}$	$0 \le f \le 31$ $d \in [0,1]$		
Operation:	(f) – 1	\rightarrow (dest)		
Status Affected:	Z			
Encoding:	0000	11df	ffff	
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	DECF	CNT,	1	
Before Instruc CNT Z After Instructi CNT Z	ction = = on = =	0x01 0 0x00 1		

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f,d			
Operands:	$0 \le f \le 31$ $d \in [0,1]$			
Operation:	$(f) - 1 \rightarrow d;$ skip if result = 0			
Status Affected:	None			
Encoding:	0010 11df ffff			
Description:	The contents of register 'f' are dec- remented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruc- tion, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example:	HERE DECFSZ CNT, 1 GOTO LOOP			
	CONTINUE • • •			
Before Instru	uction			
PC	= address (HERE)			
After Instruc	tion			
CNT	= CNT - 1;			
IT CN I	= 0,			
	= address (CONTINUE);			
	\neq U, - address (UFDF:1)			
FU	= addless (HERE+1)			

PIC16C5X

RLF	Rotate	e Left f	thro	ugh Carı	у
Syntax:	[label] RLF	f,c		
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Encoding:	0011	. 01	df	ffff	
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	RLF	REG	£1,0		
Before Instru REG1 C After Instruct	ction = = ion	1110 0	0110	0	
REG1	=	1110	0110	C	
W	=	1100	1100	C	
С	=	1			

RRF	Rotate Right f through Carry			
Syntax:	[<i>label</i>] RRF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	See description below			
Status Affected:	С			
Encoding:	0011 00df ffff			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag (STATUS<0>). If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	RRF REG1,0			
Before Instru REG1 C	uction = 1110 0110 = 0			
REG1	= 1110 0110			
W C	= 0111 0011 = 0			

SLEEP	Enter SLEEP Mode			
Syntax:	[label]	SLEEP		
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler; \ if \ assigned \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$			
Status Affected:	TO, PD			
Encoding:	0000	0000	0011	
Description:	Time-out power-do cleared. caler are The proc mode wit See sect details.	status bit own statu The WDT cleared. essor is p h the osc ion on SL	t (TO) is s s bit (PD) and its p out into S sillator sto EEP for	et. The is pres- LEEP opped. more
Words:	1			
Cycles:	1			
Example:	SLEEP			

12.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

Absolute Maximum Ratings^(†)

Ambient Temperature under bias	–55°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0V to +7.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +14V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into VDD pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O port (PORTA, B or C)	40 mA
Max. output current sunk by a single I/O port (PORTA, B or C)	50 mA

- **Note 1:** Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.
 - **2:** Power Dissipation is calculated as follows: Pdis = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

AC Characteristics		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic Min Typ† Max Units Condition							
1	Tosc	External CLKIN Period ⁽¹⁾	250			ns	XT OSC mode		
			100		—	ns	10 MHz mode		
			50		—	ns	HS OSC mode (Comm/Ind)		
			62.5		—	ns	HS OSC mode (Ext)		
			25		—	μS	LP OSC mode		
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC OSC mode		
			250		10,000	ns	XT OSC mode		
			100		250	ns	10 MHz mode		
			50		250	ns	HS OSC mode (Comm/Ind)		
			62.5		250	ns	HS OSC mode (Ext)		
			25		—	μS	LP OSC mode		
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—			
3	TosL,	Clock in (OSC1) Low or High	85*	—	—	ns	XT oscillator		
	TosH	Time	20*	—	—	ns	HS oscillator		
			2.0*		—	μS	LP oscillator		
4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT oscillator		
	TosF	Time	—	—	25*	ns	HS oscillator		
			—	—	50*	ns	LP oscillator		

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

FIGURE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -PIC16C54/55/56/57

TABLE 12-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57

AC Chara	cteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	100*	—	_	ns	VDD = 5.0V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
34	Tioz	I/O Hi-impedance from MCLR Low		_	100*	ns			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-6: MAXIMUM IPD vs. VDD, WATCHDOG DISABLED

FIGURE 14-7: TYPICA

TYPICAL IPD vs. VDD, WATCHDOG ENABLED

FIGURE 14-8: MAXIMUM IPD vs. VDD, WATCHDOG ENABLED

IPD, with WDT enabled, has two components: The leakage current, which increases with higher temperature, and the operating current of the WDT logic, which increases with lower temperature. At -40° C, the latter dominates explaining the apparently anomalous behavior.

15.2 DC Characteristics: PIC16

PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16LC54A-04E (Extended)				ard Ope ting Terr	rating	j Condi ure	tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended
PIC16C54A-04E, 10E, 20E (Extended)			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Conditions	
	IPD	Power-down Current ⁽²⁾					
D020		PIC16LC54A	—	2.5	15	μΑ	VDD = 2.5V, WDT enabled,
			_	0.25	7.0	μA	Extended VDD = 2.5V, WDT disabled, Extended
D020A		PIC16C54A	—	5.0	22	μA	VDD = 3.5V, WDT enabled
			—	0.8	18*	μΑ	VDD = 3.5V, VVDT disabled

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

© 1997-2013 Microchip Technology Inc.

FIGURE 16-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS - VDD

FIGURE 16-18: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR vs. VDD

FIGURE 16-19:

TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

FIGURE 16-21: PORTA, B AND C IOH vs. VOH, VDD = 5V

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC5X PIC16LCR5X (Commercial, Industrial)				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
PIC16C5X PIC16CR5X (Commercial, Industrial)			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$						
Param No. Symbol Characteristic/Device			Тур†	Max	Units	Conditions			
IDD	Supply Current ^(2,3)								
	PIC16LC5X		0.5	2.4	mA	Fosc = 4.0 MHz, VDD = 5.5V, XT and			
			11	27	μA	RC modes			
						FOSC = 32 kHz , VDD = 2.5V, LP mode,			
			14	35	μA	Commercial Ease $= 22 \text{ kHz}$ Vpp $= 2.5 \text{ // LP mode}$			
						Industrial			
	PIC16C5X	_	1.8	2.4	mA	Fosc = 4 MHz, VDD = 5.5V, XT and RC			
			2.6	3.6*	mA	modes			
		—	4.5	16	mA	FOSC = 10 MHz, VDD = 3.0V, HS mode			
			14	32	μA	FOSC = 20 MHz, VDD = 5.5 V, HS mode			
			47	40		POSC = 32 kHz, VDD = 3.0 V, LP mode,			
		_	17	40	μA	Commercial			
						Industrial			
	5X R5X ercial, Indu Symbol	5X R5X ercial, Industrial) X 5X ercial, Industrial) Symbol Characteristic/Device IDD Supply Current ^(2,3) PIC16LC5X PIC16C5X	SX Stand: Opera R5X Opera ercial, Industrial) Stand: Opera Symbol Characteristic/Device Min IDD Supply Current ^(2,3) — PIC16LC5X — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	SX R5X ercial, Industrial) Standard Ope Operating Tem Operating Tem Operating Tem Symbol Characteristic/Device Min Typ† IDD Supply Current ^(2,3) Min Typ† IDD Supply Current ^(2,3) 0.5 IDD PIC16LC5X — 0.5 IDD PIC16LC5X — 14 IDD 14 14 IDD 14 14	SX R5X ercial, Industrial) Standard Operating Operating Temperatu Operating Temperatu Symbol Characteristic/Device Min Typ† Max IDD Supply Current ^(2,3) 91C16LC5X 0.5 2.4 11 27 14 35 PIC16C5X 1.8 2.4 14 35 14 32 14 32 14 32 14 32 17 40	5X Standard Operating Condit Operating Temperature 6x Standard Operating Condit Operating Temperature 6x Standard Operating Condit Operating Temperature 5x Standard Operating Condit Operating Temperature 5x Standard Operating Condit Operating Temperature Symbol Characteristic/Device Min Typ† Max Units IDD Supply Current ^(2,3) PIC16LC5X — 0.5 2.4 mA IDD PIC16LC5X — 11 27 µA IDD PIC16C5X — 1.8 2.4 mA IDD PIC16C5X — 1.8 2.4 mA IDD IDD PIC16C5X — 1.8 2.4 mA IDD IDD <t< td=""></t<>			

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 18-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C

© 1997-2013 Microchip Technology Inc.

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

DC CH	ARACTER	RISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions		
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 VDD 0.15 VDD 0.2 VDD	V V V V	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>		
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd		Vdd Vdd Vdd Vdd	V V V V	4.5V < VDD ≤ 5.5V HS, 20 MHz ≤ Fosc ≤ 40 MHz		
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V			
D060	ΙιL	Input Leakage Current ^(2,3) I/O ports MCLR MCLR	-1.0 -5.0 —	0.5 — 0.5	+1.0 +5.0 +3.0	μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD		
		T0CKI OSC1	-3.0 -3.0	0.5 0.5	+3.0	μA μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD \\ VSS \leq VPIN \leq VDD, \textbf{HS} \end{array}$		
D080	Vol	Output Low Voltage I/O ports	_	_	0.6	V	IOL = 8.7 mA, VDD = 4.5V		
D090	Vон	Output High Voltage ⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Іон = -5.4 mA, Vdd = 4.5V		

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.

19.4 **Timing Diagrams and Specifications**

FIGURE 19-3: EXTERNAL CLOCK TIMING - PIC16C5X-40

EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X-40 TABLE 19-1:

AC Characteristics		Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial							
Param No.	Symbol	bol Characteristic		Тур†	Max	Units	Conditions		
-	Fosc	External CLKIN Frequency ⁽¹⁾		_	40	MHz	HS OSC mode		
1	Tosc	External CLKIN Period ⁽¹⁾				ns	HS osc mode		
2	Тсу	Instruction Cycle Time ⁽²⁾		4/Fosc		_			
3	TosL, TosH	sH Clock in (OSC1) Low or High Time				ns	HS oscillator		
4	TosR, TosF	Clock in (OSC1) Rise or Fall Time			6.5*	ns	HS oscillator		

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

 - 2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	· <u>xx x</u>	<u>/xx</u>	<u>xxx</u>	Examples:
Device	Frequency Temperatu Range/OSC Range Type	e Package	Pattern	 a) PIC16C55A - 04/P 301 = Commercial Temp., PDIP package, 4 MHz, standard VDD limits, QTP pattern #301 b) PIC16I C5C _ 04/ISO ladustrial Temp. SOIC
Device Frequency Range/ Oscillator Type	PIC16C54 PIC16C55 PIC16C54A PIC16C5 PIC16CR54A PIC16C5 PIC16C55 PIC16C5 PIC16C55 PIC16C5 PIC16C56 PIC16C5 PIC16C56A PIC16C5 PIC16C55 PIC16C5 PIC16C56 PIC16C56 PIC16C57 PIC16C57 PIC16C57C PIC16C57 PIC16C57C PIC16C57 PIC16C57C PIC16C57 PIC16C57B PIC16C57 PIC16C57C PIC16C57 PIC16C58B PIC16C57 PIC16C58B	$\begin{array}{c} 4T^{(2)} \\ 4AT^{(2)} \\ 54AT^{(2)} \\ 54CT^{(2)} \\ 54CT^{(2)} \\ 55T^{(2)} \\ 55T^{(2)} \\ 56AT^{(2)} \\ 56AT^{(2)} \\ 56AT^{(2)} \\ 77C1^{(2)} \\ 57CT^{(2)} \\ 57CT^{(2)} \\ 58BT^{(2)} \end{array}$		 b) Fischer of the Set for the Set and the Set of the Set and the Set of the Set and the Set of the Set and the Set and the Set of the Set and the Set and
	 XT Standard Crystal/Resonatc High Speed Crystal 200 KHz (LP) or 2 MHz (X' 200 KHz (LP) or 4 MHz (X' 200 KHz (LP) or 4 MHz (X' 10 MHz (HS only) 20 20 MHz (HS only) 40 MHz (HS only) 40 MHz (HS only) 40 MHz (HS only) 50 xo scillator type for JW pi *RC/LP/XT/HS are for 16C54/55 -02 is available for 16LV54A onl -40 is available for 16C54C/55A 	and RC) and RC) ckages ⁽³⁾ /56/57 devices onl / or all other device: 56A/57C/58B devi	ly s ices only	 programmed to any device configura- tion. JW Devices meet the electrical requirements of each oscillator type, including LC devices. 4: b = Blank
Temperature Range	$b^{(4)} = 0^{\circ}C \text{ to } +70^{\circ}C \\ I = -40^{\circ}C \text{ to } +85^{\circ}C \\ E = -40^{\circ}C \text{ to } +125^{\circ}C \\ \end{array}$			
Package	S = Die in Waffle Pack JW = 28-pin 600 mil/18-pin DIP ⁽³⁾ P = 28-pin 600 mil/18-pin SO = 300 mil SOIC SS SS = 209 mil SSOP SP SP = 28-pin 300 mil Skinny *See Section 21 for additional p	300 mil windowed 300 mil PDIP PDIP ackage information	I CER-	
Pattern	QTP, SQTP, ROM code (factory Requirements. Blank for OTP and	specified) or Spec d Windowed devic	ial ces.	

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)