E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	·
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c57-hsi-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pi	n Numb	er	Pin	Buffer	Description
DIP	SOIC	SSOP	Туре	Туре	Description
17	17	19	I/O	TTL	Bi-directional I/O port
18	18	20	I/O	TTL	
1	1	1	I/O	TTL	
2	2	2	I/O	TTL	
6	6	7	I/O	TTL	Bi-directional I/O port
7	7	8	I/O	TTL	
8	8	9	I/O	TTL	
9	9	10	I/O	TTL	
10	10	11	I/O	TTL	
11	11	12	I/O	TTL	
12	12	13	I/O	TTL	
13	13	14	I/O	TTL	
3	3	3	Ι	ST	Clock input to Timer0. Must be tied to Vss or VDD, if not in
					use, to reduce current consumption.
4	4	4	Ι	ST	Master clear (RESET) input/programming voltage input.
					This pin is an active low RESET to the device. Voltage on
					the MCLR/VPP pin must not exceed VDD to avoid unin-
					tended entering of Programming mode.
16	16	18	I	ST	Oscillator crystal input/external clock source input.
15	15	17	0	_	Oscillator crystal output. Connects to crystal or resonator
					in crystal Oscillator mode. In RC mode, OSC2 pin outputs
					CLKOUT, which has 1/4 the frequency of OSC1 and
					denotes the instruction cycle rate.
14	14	15,16	Р	_	Positive supply for logic and I/O pins.
5	5	5,6	Р	—	Ground reference for logic and I/O pins.
	Pi DIP 17 18 1 2 6 7 8 9 10 11 12 13 3 4 16 15 14	Pin Numb DIP SOIC 17 17 18 18 1 1 2 2 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 3 3 4 4 16 16 15 15 14 14	Pin Number DIP SOIC SSOP 17 17 19 18 18 20 1 1 1 2 2 2 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 3 3 3 4 4 4 15 15 17 14 14 15,16	Pin Pin DIP SOIC SSOP Type 17 17 19 I/O 18 18 20 I/O 1 1 1 I/O 2 2 2 I/O 6 6 7 I/O 7 7 8 I/O 8 9 I/O I/O 9 9 10 I/O 10 10 11 I/O 11 11 12 I/O 12 12 13 I/O 13 13 14 I/O 3 3 3 I 16 16 18 I 15 15 17 O 14 14 15,16 P	Pin Buffer DIP SOIC SSOP Type Type 17 17 19 I/O TTL 18 18 20 I/O TTL 1 1 1/O TTL 2 2 2 I/O TTL 6 6 7 I/O TTL 7 7 8 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 11 11 12 I/O TTL 9 9 10 I/O TTL 10 10 11 I/O TTL 12 12 13 I/O TTL 13 13 14 I/O TTL 3 3 3 I ST 16 16 18 I ST 15 15 17 <td< td=""></td<>

TABLE 3-1:PINOUT DESCRIPTION - PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58,
PIC16CR58

Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

PIC16C5Xs can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- 1. LP: Low Power Crystal
- 2. XT: Crystal/Resonator
- 3. HS: High Speed Crystal/Resonator
- 4. RC: Resistor/Capacitor

Note: Not all oscillator selections available for all parts. See Section 9.1.

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16C5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

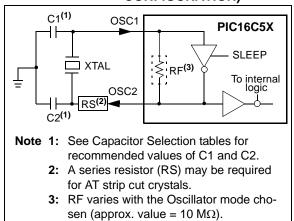
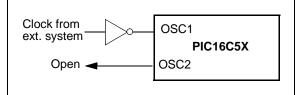



FIGURE 4-2:

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS -PIC16C5X, PIC16CR5X

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range C2
XT	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC16C5X. PIC16CR5X

	,						
Osc Type	Crystal Freq	Cap.Range C1	Cap. Range C2				
LP	32 kHz ⁽¹⁾	15 pF	15 pF				
XT	100 kHz	15-30 pF	200-300 pF				
	200 kHz	15-30 pF	100-200 pF				
	455 kHz	15-30 pF	15-100 pF				
	1 MHz	15-30 pF	15-30 pF				
	2 MHz	15 pF	15 pF				
	4 MHz	15 pF	15 pF				
HS	4 MHz	15 pF	15 pF				
	8 MHz	15 pF	15 pF				
	20 MHz	15 pF	15 pF				

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

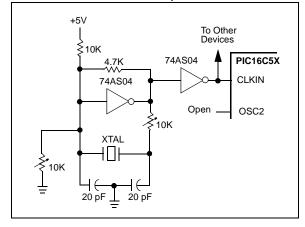
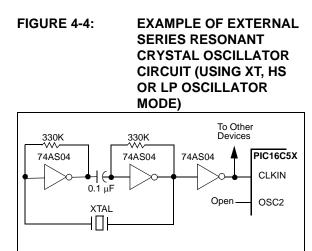



Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

7.0 I/O PORTS

As with any other register, the I/O Registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers (TRISA, TRISB, TRISC) are all set.

7.1 PORTA

PORTA is a 4-bit I/O Register. Only the low order 4 bits are used (RA<3:0>). Bits 7-4 are unimplemented and read as '0's.

7.2 PORTB

PORTB is an 8-bit I/O Register (PORTB<7:0>).

7.3 PORTC

PORTC is an 8-bit I/O Register for PIC16C55, PIC16C57 and PIC16CR57.

PORTC is a General Purpose Register for PIC16C54, PIC16CR54, PIC16CR56, PIC16CR56, PIC16CS8 and PIC16CR58.

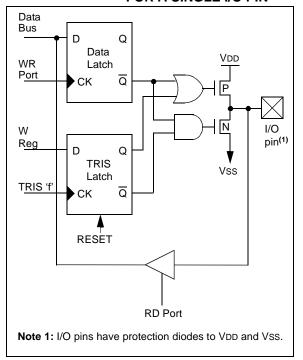
7.4 TRIS Registers

The Output Driver Control Registers are loaded with the contents of the W Register by executing the TRIS f instruction. A '1' from a TRIS Register bit puts the corresponding output driver in a hi-impedance (input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

The TRIS Registers are "write-only" and are set (output drivers disabled) upon RESET.

TABLE 7-1:	SUMMARY OF PORT REGISTERS


Value on Value on Bit 4 Bit 3 Bit 1 Bit 0 MCLR and Address Name Bit 7 Bit 6 Bit 5 Bit 2 Power-On Reset WDT Reset TRIS N/A I/O Control Registers (TRISA, TRISB, TRISC) 1111 1111 1111 1111 05h PORTA RA3 RA2 RA1 RA0 _ _ _ _ xxxx _ _ _ _ uuuu PORTB 06h RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 XXXX XXXX uuuu uuuu 07h PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 XXXX XXXX uuuu uuuu

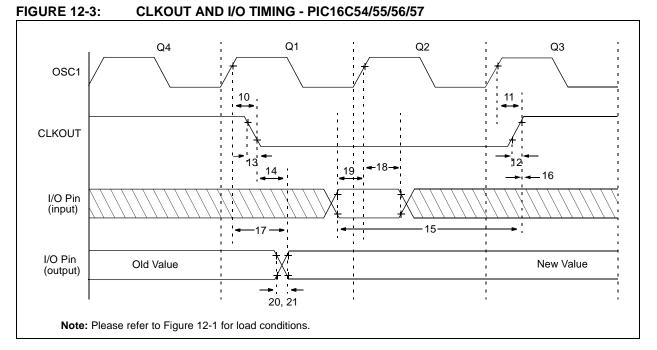
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', Shaded cells = unimplemented, read as '0'

7.5 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 7-1. All ports may be used for both input and output operation. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 7-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

NOTES:


CALL	Subroutine Call				
Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \leq k \leq 255$				
Operation:	(PC) + 1 \rightarrow TOS; k \rightarrow PC<7:0>; (STATUS<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>				
Status Affected:	None				
Encoding:	1001 kkkk kkkk				
Description:	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two- cycle instruction.				
Words:	1				
Cycles:	2				
Example:	HERE CALL THERE				
Before Instruction PC = address (HERE) After Instruction PC = address (THERE) TOS = address (HERE + 1)					

CLRF	Clear f
	Oloui I

Syntax:	[label]	CLRF f			
Operands:	$0 \le f \le 3^{-1}$	1			
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	0000	011f	ffff		
Description:		ents of re and the Z	gister 'f' are bit is set.		
Words:	1				
Cycles:	1				
Example:	CLRF	FLAG_RE	IG		
FLAG_R Z	EG = =	0x00 1			

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
W = After Instruct	ion
W = Z =	1
Z =	Clear Watchdog Timer
Z = CLRWDT Syntax:	Clear Watchdog Timer
Z = CLRWDT Syntax: Operands:	Clear Watchdog Timer [label] CLRWDT None
Z = CLRWDT Syntax:	Clear Watchdog Timer
Z = CLRWDT Syntax: Operands:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$
Z = CLRWDT Syntax: Operands: Operation:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
Z = CLRWDT Syntax: Operands: Operation: Status Affected:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
Z = CLRWDT Syntax: Operands: Operation: Status Affected: Encoding:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ $0000 0000 0100$ The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bits
Z = CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT$; $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO}$; $1 \rightarrow \overline{PD}$ \overline{TO} , \overline{PD} 0000 0000 0100 The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bitsTO and \overline{PD} are set.

After Instruction		
WDT counter	=	0x00
WDT prescaler	=	0
TO	=	1
PD	=	1

TABLE 12-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57

AC Char	acteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units
10	TosH2ckL	OSC1↑ to CLKOUT↓ ⁽¹⁾	_	15	30**	ns
11	TosH2ckH	OSC1↑ to CLKOUT↑ ⁽¹⁾	_	15	30**	ns
12	TckR	CLKOUT rise time ⁽¹⁾		5.0	15**	ns
13	TckF	CLKOUT fall time ⁽¹⁾	—	5.0	15**	ns
14	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾			40**	ns
15	TioV2ckH	Port in valid before CLKOUT ⁽¹⁾	0.25 TCY+30*	_	_	ns
16	TckH2iol	Port in hold after CLKOUT ⁽¹⁾	0*	_	_	ns
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid ⁽²⁾	_		100*	ns
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—		ns
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	—	ns
20	TioR	Port output rise time ⁽²⁾	—	10	25**	ns
21	TioF	Port output fall time ⁽²⁾	—	10	25**	ns

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 12-1 for load conditions.

13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A

Absolute Maximum Ratings(†)

Ambient Temperature under bias	–55°C to +125°C
Storage Temperature	–65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0 to +14V
Voltage on all other pins with respect to VssC).6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	50 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, liк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (V0 < 0 or V0 > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O port (PORTA or B)	40 mA
Max. output current sunk by a single I/O port (PORTA or B)	50 mA

- **Note 1:** Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA may cause latch-up. Thus, a series resistor of 50 to 100 Ω should be used when applying a low level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.
 - **2:** Power Dissipation is calculated as follows: PDIS = VDD x {IDD \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.1 DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial) PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)

	R54A-04 R54A-04I ercial, Indus	trial)	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$							
PIC16CR54A-04, 10, 20 PIC16CR54A-04I, 10I, 20I (Commercial, Industrial)			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq T\mbox{A} \leq +70^{\circ}\mbox{C for commercial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \end{array}$							
Param No. Symbol Characteristic/Device				Тур†	Max	Units	Conditions			
	IPD	Power-down Current ⁽²⁾								
D006		PIC16LCR54A-Commercial		1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			
D006A		PIC16CR54A-Commercial		1.0 2.0 3.0 5.0	6.0 8.0* 15 25	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			
D007		PIC16LCR54A-Industrial		1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			
D007A		PIC16CR54A-Industrial		1.0 2.0 3.0 3.0 5.0	8.0 10* 20* 18 45	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT disabled VDD = 4.0V, WDT disabled VDD = 4.0V, WDT enabled VDD = 6.0V, WDT disabled VDD = 6.0V, WDT enabled			

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

13.2 DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)

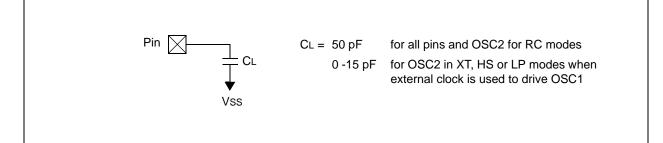
			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic			Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage RC, XT and LP modes HS mode	3.25 4.5		6.0 5.5	V V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode	
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset	
D004	Svdd	VDD Rise Rate to ensure Power- on Reset	0.05*	_		V/ms	See Section 5.1 for details on Power-on Reset	
D010	IDD	Supply Current ⁽²⁾ RC ⁽³⁾ and XT modes HS mode HS mode		1.8 4.8 9.0	3.3 10 20	mA mA mA	Fosc = 4.0 MHz, Vdd = 5.5V Fosc = 10 MHz, Vdd = 5.5V Fosc = 16 MHz, Vdd = 5.5V	
D020	IPD	Power-down Current ⁽²⁾		5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.


13.5 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

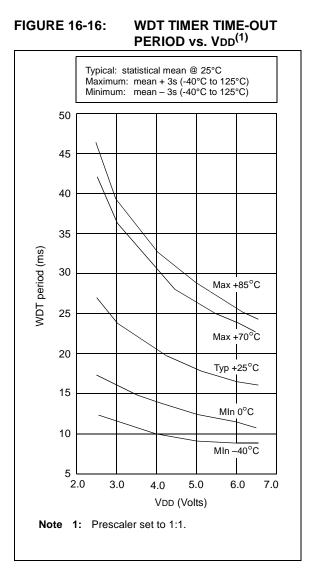
2. Tp	ρS	
Т		
F	Frequency	T Time
Lowe	ercase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	ercase letters and their meanings:	
S		
F	Fall	P Period
н	High	R Rise
T	Invalid (Hi-impedance)	V Valid
L	Low	Z Hi-impedance

FIGURE 13-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS - PIC16CR54A

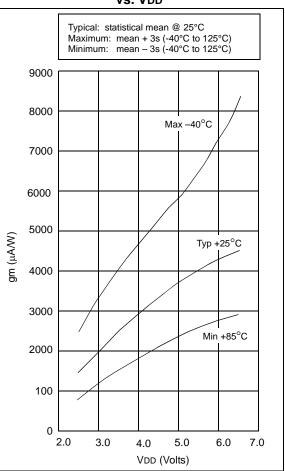
15.2 DC Characteristics: PIC16

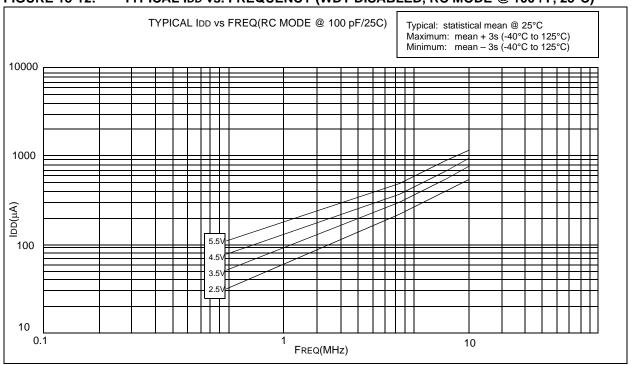
PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16LC54A-04E (Extended)							tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended	
PIC16C54A-04E, 10E, 20E (Extended)				Standard Operating Conditions (unless otherwise specifieOperating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol Characteristic			Тур†	Max	Units	Conditions	
	IPD	Power-down Current ⁽²⁾						
D020		PIC16LC54A	_	2.5 0.25	15 7.0	μΑ μΑ	VDD = 2.5V, WDT enabled, Extended VDD = 2.5V, WDT disabled, Extended	
D020A		PIC16C54A		5.0 0.8	22 18*	μΑ μΑ	VDD = 3.5V, WDT enabled VDD = 3.5V, WDT disabled	


Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.


- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .


© 1997-2013 Microchip Technology Inc.

NOTES:

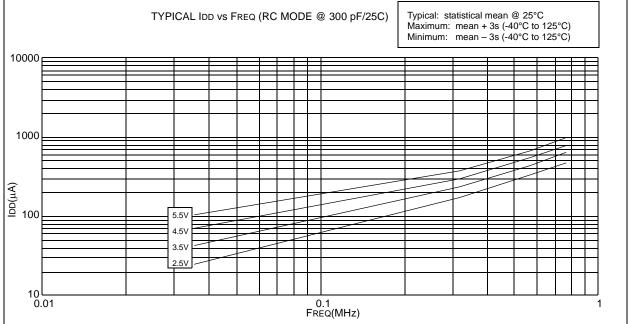
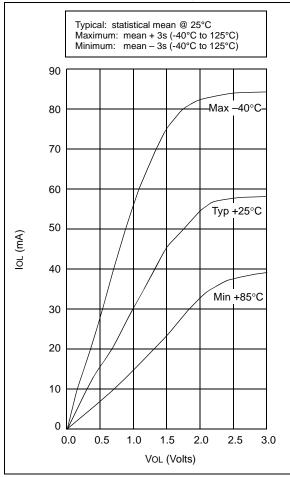

FIGURE 16-17: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

			Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 VDD 0.15 VDD 0.2 VDD	> > > > > >	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>		
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd 0.8 Vdd		Vdd Vdd Vdd Vdd	V V V V	$4.5V < VDD \le 5.5V$ HS, 20 MHz \le Fosc \le 40 MHz		
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	_	_	V			
D060	lı∟	Input Leakage Current ^(2,3) I/O ports MCLR MCLR T0CKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 — 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, HS		
D080	Vol	Output Low Voltage I/O ports		_	0.6	V	Iol = 8.7 mA, Vdd = 4.5V		
D090	Vон	Output High Voltage⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Іон = -5.4 mA, Vdd = 4.5V		

These parameters are characterized but not tested.


† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

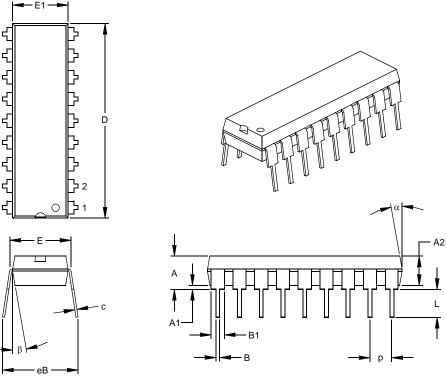

3: Negative current is defined as coming out of the pin.

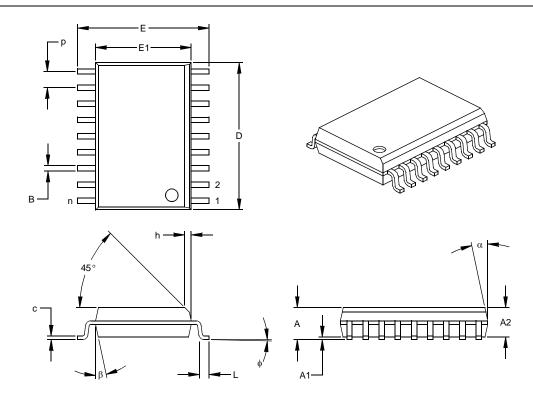
FIGURE 20-9: IOL vs. VOL, VDD = 5 V

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*	MILLIMETERS			
Dimensio	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic


Notes:

n

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS		
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

APPENDIX A: COMPATIBILITY

To convert code written for PIC16CXX to PIC16C5X, the user should take the following steps:

- 1. Check any CALL, GOTO or instructions that modify the PC to determine if any program memory page select operations (PA2, PA1, PA0 bits) need to be made.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any special function register page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change RESET vector to proper value for processor used.
- 6. Remove any use of the ADDLW, RETURN and SUBLW instructions.
- 7. Rewrite any code segments that use interrupts.

APPENDIX B: REVISION HISTORY

Revision KE (January 2013)

Added a note to each package outline drawing.