

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6.25V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c57-lp-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number			Pin	Buffer	
Pin Name	DIP	SOIC	SSOP	Туре	Туре	Description
RA0	17	17	19	I/O	TTL	Bi-directional I/O port
RA1	18	18	20	I/O	TTL	
RA2	1	1	1	I/O	TTL	
RA3	2	2	2	I/O	TTL	
RB0	6	6	7	I/O	TTL	Bi-directional I/O port
RB1	7	7	8	I/O	TTL	
RB2	8	8	9	I/O	TTL	
RB3	9	9	10	I/O	TTL	
RB4	10	10	11	I/O	TTL	
RB5	11	11	12	I/O	TTL	
RB6	12	12	13	I/O	TTL	
RB7	13	13	14	I/O	TTL	
TOCKI	3	3	3	I	ST	Clock input to Timer0. Must be tied to Vss or VDD, if not in
						use, to reduce current consumption.
MCLR/VPP	4	4	4	I	ST	Master clear (RESET) input/programming voltage input.
						This pin is an active low RESET to the device. Voltage on
						the MCLR/VPP pin must not exceed VDD to avoid unin-
						tended entering of Programming mode.
OSC1/CLKIN	16	16	18	I	ST	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	17	0	—	Oscillator crystal output. Connects to crystal or resonator
						in crystal Oscillator mode. In RC mode, OSC2 pin outputs
						CLKOUT, which has 1/4 the frequency of OSC1 and
						denotes the instruction cycle rate.
Vdd	14	14	15,16	Р	—	Positive supply for logic and I/O pins.
Vss	5	5	5,6	Р		Ground reference for logic and I/O pins.

TABLE 3-1:PINOUT DESCRIPTION - PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16CR58,
PIC16CR58

Legend: I = input, O = output, I/O = input/output, P = power, — = Not Used, TTL = TTL input, ST = Schmitt Trigger input

TABLE 5-3: RESET CONDITIONS FOR ALL REGISTERS

Register	Address	Power-On Reset	MCLR or WDT Reset
W	N/A	xxxx xxxx	uuuu uuuu
TRIS	N/A	1111 1111	1111 1111
OPTION	N/A	11 1111	11 1111
INDF	00h	xxxx xxxx	սսսս սսսս
TMR0	01h	XXXX XXXX	uuuu uuuu
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	000q quuu
FSR ⁽¹⁾	04h	1xxx xxxx	luuu uuuu
PORTA	05h	xxxx	uuuu
PORTB	06h	XXXX XXXX	uuuu uuuu
PORTC ⁽²⁾	07h	XXXX XXXX	uuuu uuuu
General Purpose Register Files	07-7Fh	xxxx xxxx	սսսս սսսս

Legend: x = unknown u = unchanged - = unimplemented, read as '0'<math>q = see tables in Table 5-1 for possible values.

- Note 1: These values are valid for PIC16C57/CR57/CR58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu.
 - **2:** General purpose register file on PIC16C54/CR54/C56/CR56/C58/CR58.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

7.0 I/O PORTS

As with any other register, the I/O Registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance) since the I/O control registers (TRISA, TRISB, TRISC) are all set.

7.1 PORTA

PORTA is a 4-bit I/O Register. Only the low order 4 bits are used (RA<3:0>). Bits 7-4 are unimplemented and read as '0's.

7.2 PORTB

PORTB is an 8-bit I/O Register (PORTB<7:0>).

7.3 PORTC

PORTC is an 8-bit I/O Register for PIC16C55, PIC16C57 and PIC16CR57.

PORTC is a General Purpose Register for PIC16C54, PIC16CR54, PIC16CR56, PIC16CR56, PIC16CS8 and PIC16CR58.

7.4 TRIS Registers

The Output Driver Control Registers are loaded with the contents of the W Register by executing the TRIS f instruction. A '1' from a TRIS Register bit puts the corresponding output driver in a hi-impedance (input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

The TRIS Registers are "write-only" and are set (output drivers disabled) upon RESET.

TABLE 7-1:	SUMMARY OF PORT	REGISTERS

Value on Value on Bit 4 Bit 3 Bit 1 Bit 0 MCLR and Address Name Bit 7 Bit 6 Bit 5 Bit 2 Power-On Reset WDT Reset TRIS N/A I/O Control Registers (TRISA, TRISB, TRISC) 1111 1111 1111 1111 05h PORTA RA3 RA2 RA1 RA0 _ _ _ _ xxxx _ _ _ _ uuuu PORTB 06h RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 XXXX XXXX uuuu uuuu 07h PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 XXXX XXXX uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', Shaded cells = unimplemented, read as '0'

7.5 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 7-1. All ports may be used for both input and output operation. For input operations these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 7-1: EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

7.6 I/O Programming Considerations

7.6.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Example 7-1 shows the effect of two sequential read-modify-write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 7-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT Settings
; PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;				PORT	latch	PORT	pins
;							
	BCF	PORTB,	7	;01pp	pppp	11pp	pppp
	BCF	PORTB,	6	;10pp	pppp	11pp	pppp
	MOVLW	H'3F'		;			
	TRIS	PORTB		;10pp	pppp	10pp	pppp
;							

;Note that the user may have expected the pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).

7.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 7-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 7-2: SUCCESSIVE I/O OPERATION

12.3 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)		Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage PIC16C5X-RCE PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-LPE	3.25 3.25 4.5 4.5 2.5		6.0 6.0 5.5 5.5 6.0	V V V V V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	_	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ PIC16C5X-RCE ⁽³⁾ PIC16C5X-XTE PIC16C5X-10E PIC16C5X-HSE PIC16C5X-HSE PIC16C5X-LPE		1.8 1.8 4.8 9.0 19	3.3 3.3 10 10 20 55	mA mA mA mA μA	Fosc = 4 MHz, VDD = $5.5V$ Fosc = 4 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 10 MHz, VDD = $5.5V$ Fosc = 16 MHz, VDD = $5.5V$ Fosc = 32 kHz, VDD = $3.25V$, WDT disabled
D020	IPD	Power-down Current ⁽²⁾	_	5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled

* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

12.5 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions	
D030	Vil	Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	Vss Vss Vss Vss Vss Vss		0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V	Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP	
D040	Vih	Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	0.45 VDD 2.0 0.36 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD VDD VDD	V V V V V V V	For all $V_{DD}^{(4)}$ 4.0V < $V_{DD} \le 5.5V^{(4)}$ $V_{DD} > 5.5 V$ PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V		
D060	Ιι∟	Input Leakage Current ^(1,2) I/O ports MCLR MCLR T0CKI OSC1	-1 -5 -3 -3	0.5 — 0.5 0.5 0.5	+1 +5 +3 +3	μΑ μΑ μΑ μΑ μΑ	$\label{eq:statestar} \begin{array}{l} \mbox{For Vdd} \leq \mbox{5.5 V:} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd}, \\ \mbox{pin at hi-impedance} \\ \mbox{VplN} = \mbox{Vss} + \mbox{0.25V} \\ \mbox{VplN} = \mbox{Vdd} \\ \mbox{VplN} = \mbox{Vdd} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd} \\ \mbox{Vss} \leq \mbox{VplN} \leq \mbox{Vdd} \\ \mbox{PlC16C5X-XT, 10, HS, LP} \end{array}$	
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		_	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, PIC16C5X-RC	
D090	Voн	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	VDD - 0.7 VDD - 0.7			V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, PIC16C5X-RC	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

4: The user may use the better of the two specifications.

TABLE 14-2: INPUT CAPACITANCE FOR PIC16C54/56

Pin	Typical Capacitance (pF)				
FIII	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
TOCKI	3.2	2.8			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

TABLE 14-3:	INPUT CAPACITANCE FOR
	PIC16C55/57

	Typical Capacitance (pF)				
Pin	28L PDIP (600 mil)	28L SOIC			
RA port	5.2	4.8			
RB port	5.6	4.7			
RC port	5.0	4.1			
MCLR	17.0	17.0			
OSC1	6.6	3.5			
OSC2/CLKOUT	4.6	3.5			
TOCKI	4.5	3.5			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

15.3 DC Characteristics: PIC16LV54A-02 (Commercial) PIC16LV54A-02I (Industrial)

PIC16LV54A-02 PIC16LV54A-02I (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -20^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
D001	Vdd	Supply Voltage RC and XT modes	2.0	_	3.8	v			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset		
D010	IDD	Supply Current⁽²⁾ RC ⁽³⁾ and XT modes LP mode, Commercial LP mode, Industrial		0.5 11 14	 27 35	mA μA μA	Fosc = 2.0 MHz, VDD = 3.0V Fosc = 32 kHz, VDD = 2.5V WDT disabled Fosc = 32 kHz, VDD = 2.5V WDT disabled		
D020	IPD	Power-down Current ^(2,4) Commercial Commercial Industrial Industrial		2.5 0.25 3.5 0.3	12 4.0 14 5.0	μΑ μΑ μΑ	VDD = 2.5V, WDT enabled VDD = 2.5V, WDT disabled VDD = 2.5V, WDT enabled VDD = 2.5V, WDT enabled		

These parameters are characterized but not tested.

- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.
 - 4: The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection on wake-up from SLEEP mode or during initial power-up.

15.4 DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04E, 10E, 20E, PIC16LC54A-04E (Extended)

DC CHARACTERISTICS			$ \begin{array}{l} \textbf{Standard Operating Conditions (unless otherwise specified)} \\ \text{Operating Temperature} & 0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial} \\ -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial} \\ -20^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial-PIC16LV54A-02} \\ -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for extended} \\ \end{array} $						
Param No.	Symbol	Characteristic	Min	Conditions					
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss	 	0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V	Pin at hi-impedance RC mode only ⁽³⁾ XT, HS and LP modes		
D040	VIH	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	0.2 VDD + 1 2.0 0.85 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD	V V V V V	For all V _{DD} ⁽⁴⁾ 4.0V < V _{DD} ≤ 5.5V ⁽⁴⁾ RC mode only ⁽³⁾ XT, HS and LP modes		
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	_	—	V			
D060	IIL	Input Leakage Current ^(1,2) I/O ports MCLR MCLR T0CKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 — 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, XT, HS and LP modes		
D080	VOL	Output Low Voltage I/O ports OSC2/CLKOUT			0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, RC mode only		
	VOH	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.7 Vdd - 0.7		_	V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only		

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

*

NOTES:

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC5X PIC16LCR5X (Commercial, Industrial) PIC16C5X PIC16CR5X			Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $40^{\circ}C \le TA \le +70^{\circ}C$ for commercial $40^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
(Commercial, Industrial) Param Symbol Characteristic/Device				$-40^{\circ}C \le TA \le +85^{\circ}C \text{ for indus}$ Min Typ† Max Units Conditions					
110.	Vdd	Supply Voltage							
D001		PIC16LC5X	2.5 2.7 2.5		5.5 5.5 5.5	V V V	$\begin{array}{l} -40^{\circ}C \leq TA \leq +\ 85^{\circ}C,\ 16LCR5X \\ -40^{\circ}C \leq TA \leq 0^{\circ}C,\ 16LC5X \\ 0^{\circ}C \leq TA \leq +\ 85^{\circ}C\ 16LC5X \end{array}$		
D001A		PIC16C5X	3.0 4.5	_	5.5 5.5	V V	RC, XT, LP and HS mode from 0 - 10 MHz from 10 - 20 MHz		
D002	Vdr	RAM Data Retention Volt- age ⁽¹⁾	—	1.5*	-	V	Device in SLEEP mode		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	-	V	See Section 5.1 for details on Power-on Reset		
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 for details on Power-on Reset		

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

17.4 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. Tp	2. TppS							
Т								
F	Frequency	T Time						
Lowe	ercase letters (pp) and their meanings:							
рр								
2	to	mc MCLR						
ck	CLKOUT	osc oscillator						
су	cycle time	os OSC1						
drt	device reset timer	t0 T0CKI						
io	I/O port	wdt watchdog timer						
Uppe	ercase letters and their meanings:							
S								
F	Fall	P Period						
н	High	R Rise						
Ι	Invalid (Hi-impedance)	V Valid						
L	Low	Z Hi-impedance						

FIGURE 17-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B-04, 20

FIGURE 17-8: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X, PIC16CR5X

TABLE 17-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X, PIC16CR5X

AC Charac	teristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
30	TmcL	MCLR Pulse Width (low)	1000*		—	ns	VDD = 5.0V	
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)	
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)	
34	Tioz	I/O Hi-impedance from MCLR Low	100*	300*	1000*	ns		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

DC CH	ARACTER	RISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Param No.	Symbol	Characteristic Min Typ† Max Uni		Units	Conditions			
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 Vdd 0.15 Vdd 0.2 Vdd	V V V V	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>	
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd		Vdd Vdd Vdd Vdd	V V V V	4.5V < VDD ≤ 5.5V HS, 20 MHz ≤ Fosc ≤ 40 MHz	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V		
D060	ΙιL	Input Leakage Current ^(2,3) I/O ports MCLR MCLR	-1.0 -5.0 —	0.5 — 0.5	+1.0 +5.0 +3.0	μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD	
		T0CKI OSC1	-3.0 -3.0	0.5 0.5	+3.0	μA μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD \\ VSS \leq VPIN \leq VDD, \textbf{HS} \end{array}$	
D080	Vol	Output Low Voltage I/O ports	_	_	0.6	V	IOL = 8.7 mA, VDD = 4.5V	
D090	Vон	Output High Voltage ⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Іон = -5.4 mA, Vdd = 4.5V	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.

TABLE 19-2:	CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X-40

octeristics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial							
Symbol	Characteristic	Min	Тур†	Мах	Units			
TosH2ckL	OSC1↑ to CLKOUT↓ ^(1,2)	—	15	30**	ns			
TosH2ckH	OSC1↑ to CLKOUT↑ ^(1,2)	—	15	30**	ns			
TckR	CLKOUT rise time ^(1,2)	—	5.0	15**	ns			
TckF	CLKOUT fall time ^(1,2)	—	5.0	15**	ns			
TckL2ioV	CLKOUT↓ to Port out valid ^(1,2)	—	—	40**	ns			
TioV2ckH	Port in valid before CLKOUT ^(1,2)	0.25 TCY+30*	—	_	ns			
TckH2iol	Port in hold after CLKOUT ^(1,2)	0*	—	_	ns			
TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾	—	—	100	ns			
TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	_	ns			
TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	_	ns			
TioR	Port output rise time ⁽²⁾	—	10	25**	ns			
TioF	Port output fall time ⁽²⁾	—	10	25**	ns			
	Cteristics Symbol TosH2ckL TosH2ckH TckR TckR TckL2ioV TioV2ckH TckH2iol TosH2ioV TosH2iol TosH2iol TioV2osH TioR TioR	ActeristicsStandard Operating Conditions (these Operating Temperature $0^{\circ}C \leq TA \leq +70$ SymbolCharacteristicTosH2ckLOSC1^ to CLKOUT $\downarrow^{(1,2)}$ TosH2ckHOSC1^ to CLKOUT $\uparrow^{(1,2)}$ TckRCLKOUT rise time ^(1,2) TckFCLKOUT fall time ^(1,2) TckL2ioVCLKOUT \downarrow to Port out valid ^(1,2) TosH2ckHPort in valid before CLKOUT $\uparrow^{(1,2)}$ TckL2ioVCLKOUT \downarrow to Port out valid ^(1,2) TosH2ioIPort in hold after CLKOUT $\uparrow^{(1,2)}$ TosH2ioIOSC1^ (Q1 cycle) to Port out valid ⁽²⁾ TosH2ioIOSC1^ (Q2 cycle) to Port input invalid (I/O in hold time)TioV2osHPort input valid to OSC1^ (I/O in setup time)TioFPort output rise time ⁽²⁾	InterferenceStandard Operating Conditions (unless otherwise spect Operating Temperature0°C \leq TA \leq +70°C for commercSymbolCharacteristicMinTosH2ckLOSC1 \uparrow to CLKOUT \downarrow (1,2)—TosH2ckHOSC1 \uparrow to CLKOUT \uparrow (1,2)—TckRCLKOUT rise time(1,2)—TckFCLKOUT fall time(1,2)—TckL2ioVCLKOUT \downarrow to Port out valid(1,2)—TioV2ckHPort in valid before CLKOUT \uparrow (1,2)0.25 TCY+30*TckH2ioIPort in hold after CLKOUT \uparrow (1,2)0*TosH2ioVOSC1 \uparrow (Q1 cycle) to Port out valid(2)—TioV2csHPort input valid to OSC1 \uparrow TBDTioV2osHPort input valid to OSC1 \uparrow TBDTioRPort output rise time(2)—TioFPort output fall time(2)—	IncteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercialSymbolCharacteristicMinTyp†TosH2ckLOSC1↑ to CLKOUT↓(1,2)—15TosH2ckHOSC1↑ to CLKOUT↑(1,2)—15TckRCLKOUT rise time(1,2)—5.0TckFCLKOUT fall time(1,2)—5.0TckL2ioVCLKOUT↓ to Port out valid(1,2)——TioV2ckHPort in valid before CLKOUT↑(1,2)0.25 TCY+30*—TosH2ioIPort in hold after CLKOUT↑(1,2)0*—TosH2ioIOSC1↑ (Q1 cycle) to Port out valid(2)——TioV2osHPort input valid to OSC1↑TBD—TioV2osHPort input valid to OSC1↑TBD—TioRPort output rise time(2)—10TioFPort output fall time(2)—10	InteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature0°C \leq TA \leq +70°C for commercialSymbolCharacteristicMinTyp†MaxTosH2ckLOSC1 \uparrow to CLKOUT \downarrow ^(1,2) —1530**TosH2ckHOSC1 \uparrow to CLKOUT \uparrow ^(1,2) —1530**TosH2ckHOSC1 \uparrow to CLKOUT \uparrow ^(1,2) —1530**TckRCLKOUT rise time ^(1,2) —5.015**TckFCLKOUT fall time ^(1,2) —5.015**TckL2ioVCLKOUT \downarrow to Port out valid ^(1,2) ——40**TioV2ckHPort in valid before CLKOUT \uparrow ^(1,2) 0.25 TCY+30*——TosH2ioVOSC1 \uparrow (Q1 cycle) to Port out valid ⁽²⁾ ——100TosH2ioIOSC1 \uparrow (Q2 cycle) to Port input invalidTBD——TioV2osHPort input valid to OSC1 \uparrow TBD——TioRPort output rise time ⁽²⁾ —1025**TioFPort output fall time ⁽²⁾ —1025**			

These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.

Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design † guidance only and are not tested.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

2: Refer to Figure 19-2 for load conditions.

© 1997-2013 Microchip Technology Inc.

TABLE 20-1: INPUT CAPACITANCE

Pin	Typical Capacitance (pF)				
FIII	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
TOCKI	3.2	2.8			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

Package Marking Information (Cont'd)

18-Lead CERDIP Windowed

	XXXXXXX XXXXXXX YWWNNN
--	------------------------------

28-Lead CERDIP Windowed

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051