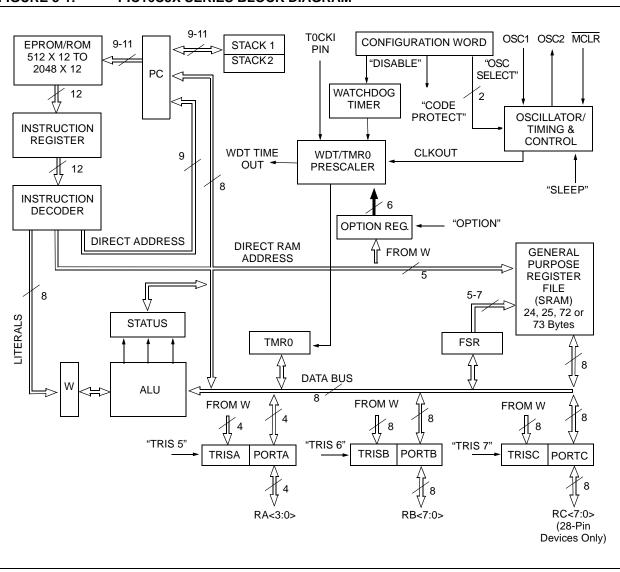


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6.25V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c57-lpi-sp

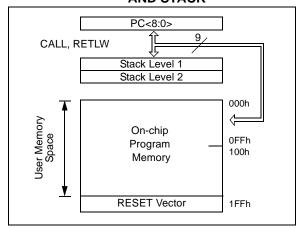
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

NOTES:

6.0 MEMORY ORGANIZATION


PIC16C5X memory is organized into program memory and data memory. For devices with more than 512 bytes of program memory, a paging scheme is used. Program memory pages are accessed using one or two STATUS Register bits. For devices with a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Selection Register (FSR).

6.1 Program Memory Organization

The PIC16C54, PIC16CR54 and PIC16C55 have a 9bit Program Counter (PC) capable of addressing a 512 x 12 program memory space (Figure 6-1). The PIC16C56 and PIC16CR56 have a 10-bit Program Counter (PC) capable of addressing a 1K x 12 program memory space (Figure 6-2). The PIC16CR57, PIC16C58 and PIC16CR58 have an 11-bit Program Counter capable of addressing a 2K x 12 program memory space (Figure 6-3). Accessing a location above the physically implemented address will cause a wraparound.

A NOP at the RESET vector location will cause a restart at location 000h. The RESET vector for the PIC16C54, PIC16CR54 and PIC16C55 is at 1FFh. The RESET vector for the PIC16C56 and PIC16CR56 is at 3FFh. The RESET vector for the PIC16C57, PIC16CR57, PIC16C58, and PIC16CR58 is at 7FFh. See Section 6.5 for additional information using CALL and GOTO instructions.

FIGURE 6-1: PIC16C54/CR54/C55 PROGRAM MEMORY MAP AND STACK

FIGURE 6-2:

PIC16C56/CR56 PROGRAM MEMORY MAP AND STACK

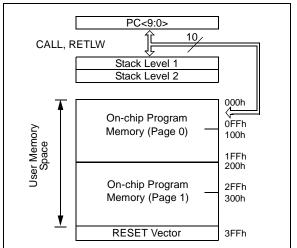
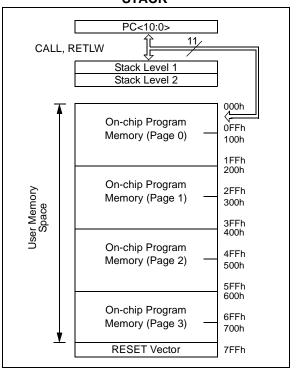



FIGURE 6-3:

PIC16C57/CR57/C58/ CR58 PROGRAM MEMORY MAP AND STACK

6.4 **OPTION Register**

The OPTION Register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the OPTION instruction, the contents of the W Register will be transferred to the OPTION Register. A RESET sets the OPTION<5:0> bits.

REGISTER 6-2: OPTION REGISTER

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
_	_	TOCS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

- bit 7-6: Unimplemented: Read as '0'
- bit 5: **TOCS**: Timer0 clock source select bit
 - 1 = Transition on T0CKI pin
 - 0 = Internal instruction cycle clock (CLKOUT)
- bit 4: **TOSE**: Timer0 source edge select bit
 - 1 = Increment on high-to-low transition on T0CKI pin
 - 0 = Increment on low-to-high transition on T0CKI pin
- bit 3: **PSA**: Prescaler assignment bit
 - 1 = Prescaler assigned to the WDT
 - 0 = Prescaler assigned to Timer0

bit 2-0: **PS<2:0>:** Prescaler rate select bits

Bit Value	Timer0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

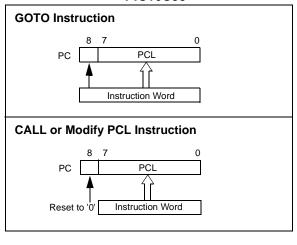
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

6.5 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one, every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0> (Figure 6-7, Figure 6-8 and Figure 6-9).

For the PIC16C56, PIC16CR56, PIC16C57, PIC16CR57, PIC16C757, PIC16C58 and PIC16CR58, a page number must be supplied as well. Bit5 and bit6 of the STA-TUS Register provide page information to bit9 and bit10 of the PC (Figure 6-8 and Figure 6-9).


For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 6-7 and Figure 6-8).

Instructions where the PCL is the destination, or modify PCL instructions, include MOVWF PCL, ADDWF PCL, and BSF PCL, 5.

For the PIC16C56, PIC16CR56, PIC16C57, PIC16CR57, PIC16C58 and PIC16CR58, a page number again must be supplied. Bit5 and bit6 of the STA-TUS Register provide page information to bit9 and bit10 of the PC (Figure 6-8 and Figure 6-9).

Note:	Because PC<8> is cleared in the CALL
	instruction, or any modify PCL instruction,
	all subroutine calls or computed jumps are
	limited to the first 256 locations of any pro-
	gram memory page (512 words long).

FIGURE 6-7: LOADING OF PC BRANCH INSTRUCTIONS - PIC16C54, PIC16CR54, PIC16C55

FIGURE 6-8:

LOADING OF PC BRANCH INSTRUCTIONS - PIC16C56/PIC16CR56

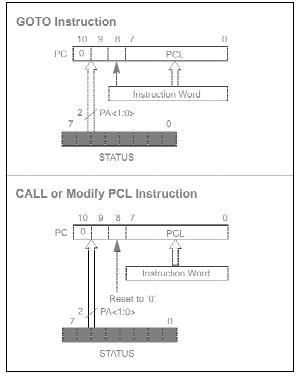
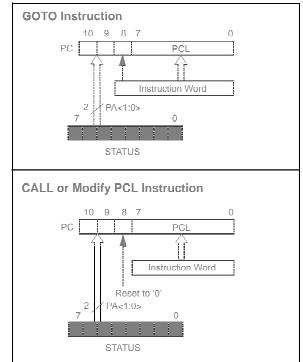



FIGURE 6-9:

LOADING OF PC BRANCH INSTRUCTIONS - PIC16C57/PIC16CR57, AND PIC16C58/ PIC16CR58

CONFIGURATION WORD FOR PIC16C54/C55/C56/C57 **REGISTER 9-2:**

							İ	СР	WDTE	FOSC1	FOSC0
		_	_	_				CP	WDIE	FUSCI	
bit 11											bit 0
bit 11-4:	Unimple	mented	Read as '	0'							
bit 3:	CP: Cod	e protecti	on bit.								
		e protecti									
	0 = Code	e protectio	on on								
bit 2:	WDTE: \	Vatchdog	timer ena	ble bit							
	1 = WDT	enabled									
	0 = WDT	disabled									
bit 1-0:	FOSC1:I	FOSC0: (Oscillator s	election b	oits ⁽²⁾						
	00 = LF	oscillato	or								
	01 = X	T oscillato	or								
		S oscillato									
	11 = R	C oscillate	or								
Note 1.	Refer to t	ha PIC16	C5X Prog	rammina	Specificat	ions (Liter	atura Num	her DS3	190) to d	otormino l	now to
			iration wor	0	opeemear				, 100) to u		1011 10
2:		•	orts XT, R		oscillator	onlv.					
						- 1					
Legend:											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

Mnemo	Mnemonic, Description		Cualaa	12-1	Bit Opc	ode	Status	Notes
Opera	nds	Description	Cycles	MSb	b LSb		Affected	Notes
ADDWF	f,d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f,d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	-	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS	•					
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	0111	bbbf	ffff	None	
LITERAL A	ND CON	ITROL OPERATIONS	•					
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	k	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	

TABLE 10-2: INSTRUCTION SET SUMMARY

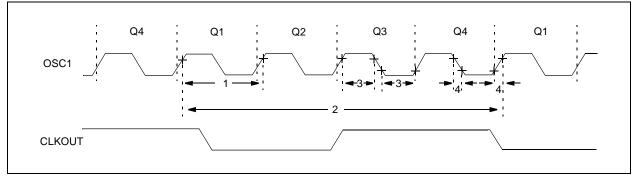
Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO (see Section 6.5 for more on program counter).

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 5, 6 or 7 causes the contents of the W register to be written to the tristate latches of PORTA, B or C respectively. A '1' forces the pin to a hi-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

12.4 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial) PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)


рс сн	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	Characteristic/Device	Min	Min Typ† Max Units		Conditions		
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	Vss Vss Vss Vss Vss		0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP	
D040	Vih	Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger)	0.45 VDD 2.0 0.36 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD VDD	> > > > > > > > > > > > > > > > > > > >	For all VDD ⁽⁴⁾ 4.0V < VDD ≤ 5.5V ⁽⁴⁾ VDD > 5.5V PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 VDD*	—	—	V		
D060	Ιι∟	Input Leakage Current ^(1,2) I/O ports MCLR MCLR T0CKI OSC1	-1 -5 -3 -3	0.5 — 0.5 0.5 0.5	+1 +5 +3 +3	μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS + 0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, PIC16C5X-XT, 10, HS, LP	
D080	Vol	Output Low Voltage I/O ports OSC2/CLKOUT		—	0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, PIC16C5X-RC	
D090	Vон	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd – 0.7 Vdd – 0.7	_		V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, PIC16C5X-RC	

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- **Note 1:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
 - 2: Negative current is defined as coming out of the pin.
 - **3:** For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.
 - 4: The user may use the better of the two specifications.

12.7 Timing Diagrams and Specifications

FIGURE 12-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57

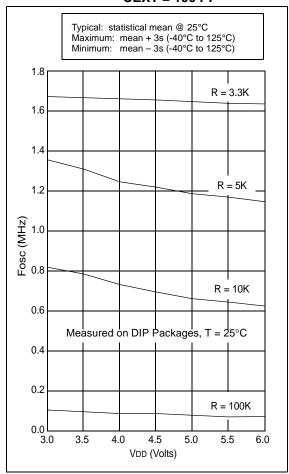
TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

AC Characteristics		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode		
			DC	—	10	MHz	10 MHz mode		
			DC	_	20	MHz	HS osc mode (Comm/Ind)		
			DC	_	16	MHz	HS osc mode (Ext)		
			DC	—	40	kHz	LP osc mode		
		Oscillator Frequency ⁽¹⁾	DC	_	4.0	MHz	RC osc mode		
			0.1	_	4.0	MHz	XT OSC mode		
			4.0	_	10	MHz	10 MHz mode		
			4.0	—	20	MHz	HS OSC mode (Comm/Ind)		
			4.0	_	16	MHz	HS osc mode (Ext)		
			DC	—	40	kHz	LP osc mode		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.


2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

PIC16C5X

FIGURE 14-2: TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 20 PF Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean – 3s (-40°C to 125°C) 5.5 R = 3.3K5.0 4.5 R = 5K 4.0 3.5 Fosc (MHz) 3.0 R = 10K 2.5 2.0 Measured on DIP Packages, $T = 25^{\circ}C$ 1.5 1.0 R = 100K 0.5 0.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)

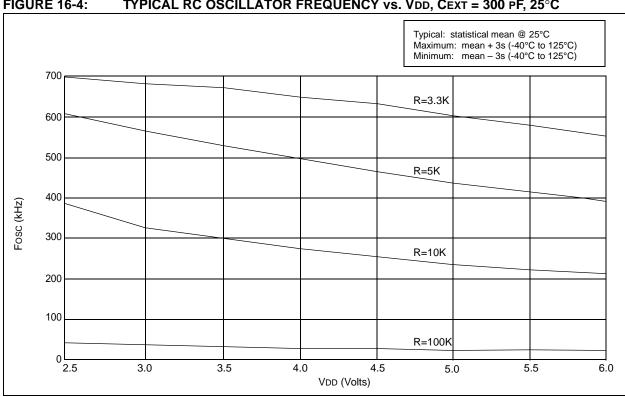
FIGURE 14-3:

TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 100 PF

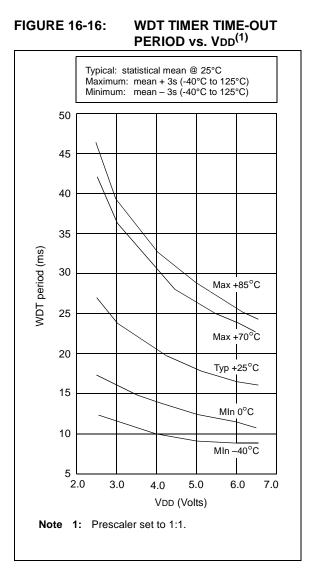
15.2 DC Characteristics: PIC16

PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16L (Extend	C54A-04E ded)	1					tions (unless otherwise specified) $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended
PIC16C (Extend	,	10E, 20E	Standard Operating Conditions (unless otherwise speOperating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for external				
Param No.	Symbol	Characteristic	Min Typ† Max Units Conditions				
	IPD	Power-down Current ⁽²⁾					
D020		PIC16LC54A	_	2.5 0.25	15 7.0	μΑ μΑ	VDD = 2.5V, WDT enabled, Extended VDD = 2.5V, WDT disabled, Extended
D020A		PIC16C54A		5.0 0.8	22 18*	μΑ μΑ	VDD = 3.5V, WDT enabled VDD = 3.5V, WDT disabled


Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.


- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

© 1997-2013 Microchip Technology Inc.

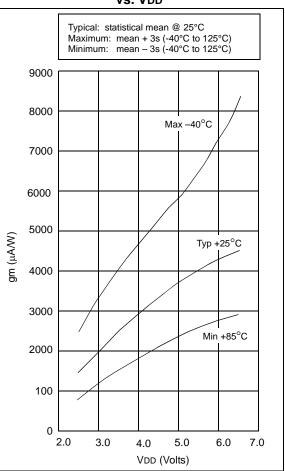

NOTES:

FIGURE 16-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C

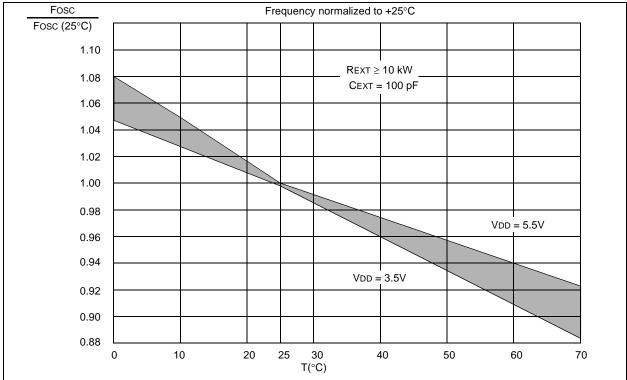
FIGURE 16-17: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

NOTES:

18.0 DEVICE CHARACTERIZATION - PIC16LC54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



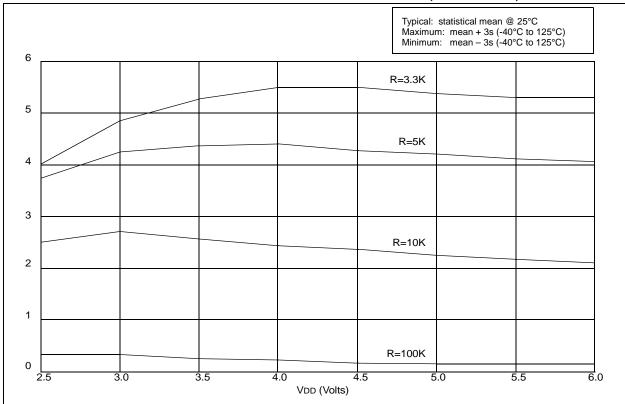
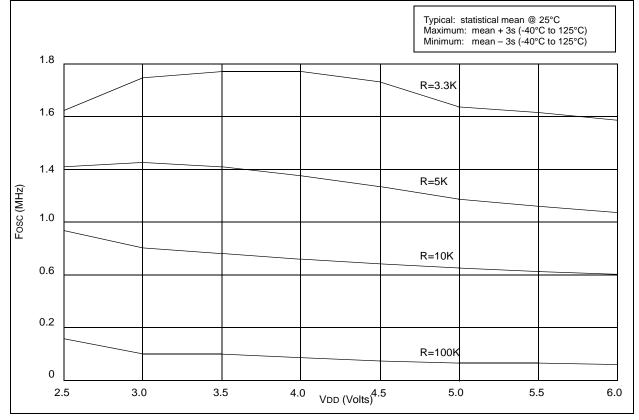

FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

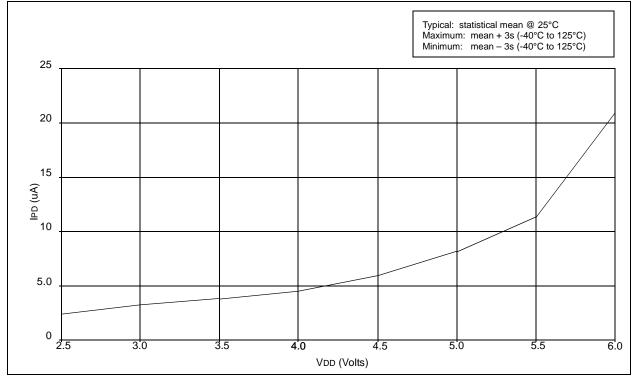
TABLE 18-1: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Average Fosc @ 5V, 25°C			
20 pF	3.3K	5 MHz	± 27%		
	5K	3.8 MHz	± 21%		
	10K	2.2 MHz	± 21%		
	100K	262 kHz	± 31%		
100 pF	3.3K	1.63 MHz	± 13%		
	5K	1.2 MHz	± 13%		
	10K	684 kHz	± 18%		
	100K	71 kHz	± 25%		
300 pF	3.3K	660 kHz	± 10%		
	5.0K	484 kHz	± 14%		
	10K	267 kHz	± 15%		
	100K	29 kHz	± 19%		


The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

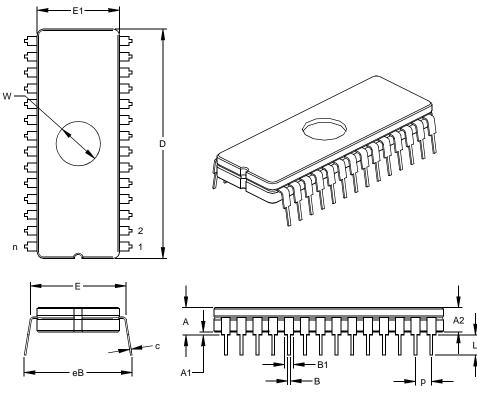
FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C


NOTES:

20.0 DEVICE CHARACTERIZATION - PIC16LC54C 40MHz

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



© 1997-2013 Microchip Technology Inc.

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.195	.210	.225	4.95	5.33	5.72	
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19	
Standoff	A1	.015	.038	.060	0.38	0.95	1.52	
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88	
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36	
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85	
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81	
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30	
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65	
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58	
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03	
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37	

Sontolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013