

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	3.25V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c57-xte-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C5X

8-Bit EPROM/ROM-Based CMOS Microcontrollers

1.0 GENERAL DESCRIPTION

The PIC16C5X from Microchip Technology is a family of low cost, high performance, 8-bit fully static, EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/ single cycle instructions. All instructions are single cycle except for program branches which take two cycles. The PIC16C5X delivers performance in an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC16C5X products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external RESET circuitry. There are four oscillator configurations to choose from, including the power saving LP (Low Power) oscillator and cost saving RC oscillator. Power saving SLEEP mode, Watchdog Timer and Code Protection features improve system cost, power and reliability.

The UV erasable CERDIP packaged versions are ideal for code development, while the cost effective One Time Programmable (OTP) versions are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

The PIC16C5X products are supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC16C5X series fits perfectly in applications ranging from high speed automotive and appliance motor control to low power remote transmitters/receivers, pointing devices and telecom processors. The EPROM technology makes customizing application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low cost, low power, high performance ease of use and I/O flexibility make the PIC16C5X series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, co-processor applications).

2.0 PIC16C5X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16C5X Product Identification System at the back of this data sheet to specify the correct part number.

For the PIC16C5X family of devices, there are four device types, as indicated in the device number:

- 1. **C**, as in PIC16**C**54C. These devices have EPROM program memory and operate over the standard voltage range.
- LC, as in PIC16LC54A. These devices have EPROM program memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**54A. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR54A. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices (EPROM)

The UV erasable versions offered in CERDIP packages, are optimal for prototype development and pilot programs.

UV erasable devices can be programmed for any of the four oscillator configurations. Microchip's

PICSTART[®] Plus⁽¹⁾ and PRO MATE[®] programmers both support programming of the PIC16C5X. Third party programmers also are available. Refer to the Third Party Guide (DS00104) for a list of sources.

2.2 One-Time-Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates, or small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

Note 1: PIC16LC54C and PIC16C54A devices require OSC2 not to be connected while programming with PICSTART[®] Plus programmer.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers the unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, giving the customer a low cost option for high volume, mature products. NOTES:

NOTES:

MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \leq f \leq 31$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Encoding:	0000 001f ffff					
Description:	Move data from the W register to					
	register 'f'.					
Words:	1					
Cycles:	1					
Example:	MOVWF TEMP_REG					
W After Instruct	REG = 0xFF $= 0x4F$					

NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No operation						
Status Affected:	None						
Encoding:	0000	0000	0000				
Description:	No opera	ation.					
Words:	1						
Cycles:	1						
Example:	NOP						

OPTION	Load Ol		egister				
Syntax:	[label]	OPTIO	N				
Operands:	None						
Operation:	$(W) \rightarrow OPTION$						
Status Affected:	None						
Encoding:	0000	0000	0010				
Description:		The content of the W register is loaded into the OPTION register.					
Words:	1						
Cycles:	1						
Example	OPTION						
Before Instru	ction						
W	•	07					
After Instructi	-						
OPTION	= 0x	07					

RETLW	Return with Literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC						
Status Affected:	None						
Encoding:	1000 kkkk kkkk						
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example:	CALL TABLE ;W contains ;table offset ;value. • ;W now has table • ;value.						
TABLE	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>						
Before Instru							
W After Instruct	= 0x07						
After Instruct W	ion = value of k8						

SUBWF	Subt	ract W	from f
Syntax:	[label	JSL	JBWF f,d
Operands:	$0 \le f$	≤ 31	
•	d ∈ [0	D,1]	
Operation:	(f) – (W) \rightarrow	(dest)
Status Affected:	C, DO	C, Z	
Encoding:	000	- 1	Odf ffff
Description:			s complement method) ter from register 'f'. If 'd'
	is 0 tł regist	ne resu er. If 'o	It is stored in the W I' is 1 the result is in register 'f'.
Words:	1		
Cycles:	1		
Example 1:	SUBW	FF	REG1, 1
Before Instru	ction		
REG1	=	3	
W	=	2	
С	=	?	
After Instruct	ion		
REG1	=	1	
W C	=	2 1	, recult is positive
Example 2:	=	I	; result is positive
Before Instru	ction		
REG1	=	2	
W	=	2	
C	=	?	
After Instruct	ion		
REG1	=	0	
W	=	2	
С	=	1	; result is zero
Example 3:			
Before Ins	tructio		
REG1	=	1	
W	=	2	
C	=	?	
After Instruct		0.VEE	
REG1 W	=	0xFF 2	
C	_	2	; result is negative
Ũ	-	U	, isourio nogativo

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$
Status Affected:	None
Encoding:	0011 10df ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.
Words:	1
Cycles:	1
Example	SWAPF REG1, 0
REG1 After Instruct REG1 W	= 0xA5 ion = 0xA5 = 0x5A
TRIS	Load TRIS Register
Syntax:	[<i>label</i>] TRIS f
Operands:	f = 5, 6 or 7
Operation:	(W) \rightarrow TRIS register f
Status Affected:	None
Encoding:	0000 0000 0fff
Description:	TRIS register 'f' ($f = 5, 6, or 7$) is loaded with the contents of the W register.
Words:	1
Cycles:	1
Example	TRIS PORTB
Before Instru W After Instructi TRISB	= 0xA5 on

11.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

11.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

11.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

	- - - -	6 33 520 540 540 540 540 540 540 540 540 540 54	мсь мсв мсв
MPLAB [®] C17 C complex I	> > > >	>	
MPLAB [®] C18 C compiler I		· · ·	
MPASN™ Assembler/ MPLNW™ Object Linker ×		× ×	
MPLAB® (CE In-Circuit Emulator	> > > >	> > > >	~
ICEPIC ^M In-Circuit Emulator ✓ <t< th=""><th></th><th></th><th></th></t<>			
MPLAB® ICD In-Circuit ·· </th <th>></th> <th></th> <th></th>	>		
PICSTART® Plus Entry Level <th< th=""><th></th><th>></th><th></th></th<>		>	
PRO MATE® II · · · · · · · · · · · · · · · · · · ·	> > >	>	
PICDEMTW 1 Demonstration <	> > >	> > > >	· ·
PICDEMTW 2 Demonstration	>		
PICDEMTW 3 Demonstration PICDEMTW 3 Demonstration PICDEMTW 14A Demonstration PIC	×+	>	
PICDEM TM 14A Demonstration Board PICDEM TM 17 Demonstration Board KEELoa [®] Evaluation Kit KEELoa [®] Transponder Kit microlD TM Programmer's Kit 125 KHz microlD TM	*		
		>	
			
			>
			>
Developer's Kit			>
125 kHz Anticollision microlD TM Developer's Kit			>
13.56 MHz Anticollision microlD TM Developer's Kit			>
MCP2510 CAN Developer's Kit			×

© 1997-2013 Microchip Technology Inc.

Standard Operating Conditions (unless otherwise specified)								
AC Chara	cteristics	Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
		$-40^{\circ}\text{C} \le T\text{A} \le +05^{\circ}\text{C}$ for extended						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
1	Tosc	External CLKIN Period ⁽¹⁾	250	—	_	ns	XT OSC mode	
			100	—	—	ns	10 MHz mode	
			50	—	—	ns	HS osc mode (Comm/Ind)	
			62.5	—	—	ns	HS osc mode (Ext)	
			25		_	μS	LP OSC mode	
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC OSC mode	
			250	—	10,000	ns	XT OSC mode	
			100	—	250	ns	10 MHz mode	
			50	—	250	ns	HS OSC mode (Comm/Ind)	
			62.5	—	250	ns	HS osc mode (Ext)	
			25	—	_	μS	LP OSC mode	
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc		—		
3	TosL,	Clock in (OSC1) Low or High	85*	—	—	ns	XT oscillator	
	TosH	Time	20*	—	—	ns	HS oscillator	
			2.0*	—		μS	LP oscillator	
4	TosR,	Clock in (OSC1) Rise or Fall	—	—	25*	ns	XT oscillator	
	TosF	Time	—	—	25*	ns	HS oscillator	
			—	—	50*	ns	LP oscillator	

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

13.2 DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)

			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage RC, XT and LP modes HS mode	3.25 4.5		6.0 5.5	V V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset
D004	Svdd	VDD Rise Rate to ensure Power- on Reset	0.05*	_		V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽²⁾ RC ⁽³⁾ and XT modes HS mode HS mode		1.8 4.8 9.0	3.3 10 20	mA mA mA	Fosc = 4.0 MHz, Vdd = 5.5V Fosc = 10 MHz, Vdd = 5.5V Fosc = 16 MHz, Vdd = 5.5V
D020	IPD	Power-down Current ⁽²⁾		5.0 0.8	22 18	μΑ μΑ	VDD = 3.25V, WDT enabled VDD = 3.25V, WDT disabled

These parameters are characterized but not tested.

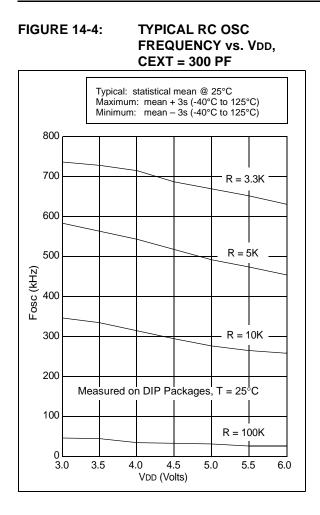
† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

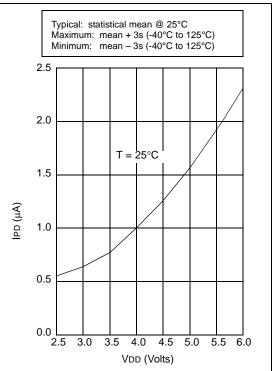
- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

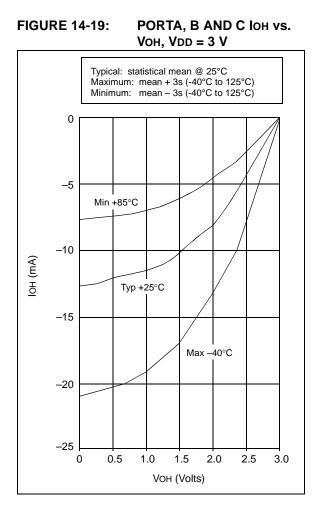
13.4 DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
D030	VIL	Input Low Voltage					
		I/O ports	Vss		0.15 Vdd	V	Pin at hi-impedance
		MCLR (Schmitt Trigger)	Vss		0.15 VDD	V	
		T0CKI (Schmitt Trigger)	Vss		0.15 VDD	V	
		OSC1 (Schmitt Trigger)	Vss		0.15 VDD	V	RC mode only ⁽³⁾
		OSC1	Vss	—	0.3 Vdd	V	XT, HS and LP modes
D040	Vін	Input High Voltage					
		I/O ports	0.45 Vdd		Vdd	V	For all VDD ⁽⁴⁾
		I/O ports	2.0		Vdd	V	$4.0V < VDD \le 5.5V^{(4)}$
		I/O ports	0.36 Vdd		Vdd	V	VDD > 5.5V
		MCLR (Schmitt Trigger)	0.85 VDD		Vdd	V	
		T0CKI (Schmitt Trigger)	0.85 VDD		Vdd	V	
		OSC1 (Schmitt Trigger)	0.85 VDD		Vdd	V	RC mode only ⁽³⁾
		OSC1	0.7 Vdd	—	Vdd	V	XT, HS and LP modes
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	_	V	
D060	lı∟	Input Leakage Current ^(1,2)					For VDD ≤ 5.5 V:
		I/O ports	-1.0	0.5	+1.0	μA	$VSS \leq VPIN \leq VDD$,
							pin at hi-impedance
		MCLR	-5.0		_	μA	VPIN = VSS + 0.25V
		MCLR	_	0.5	+5.0	μΑ	VPIN = VDD
		TOCKI	-3.0	0.5	+3.0	μΑ	$VSS \leq VPIN \leq VDD$
		OSC1	-3.0	0.5	+3.0	μA	$VSS \leq VPIN \leq VDD$,
							XT, HS and LP modes
D080	Vol	Output Low Voltage					
		I/O ports	I —	—	0.6	V	IOL = 8.7 mA, VDD = 4.5V
		OSC2/CLKOUT			0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
							RC mode only
D090	Voh	Output High Voltage ⁽²⁾					
		I/O ports	Vdd - 0.7	—	—	V	IOH = −5.4 mA, VDD = 4.5\
		OSC2/CLKOUT	Vdd - 0.7	—	-	V	IOH = -1.0 mA, VDD = 4.5 V RC mode only


† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.


2: Negative current is defined as coming out of the pin.


3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

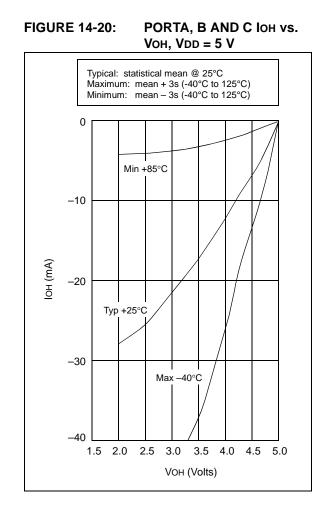

4: The user may use the better of the two specifications.

FIGURE 14-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED

15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

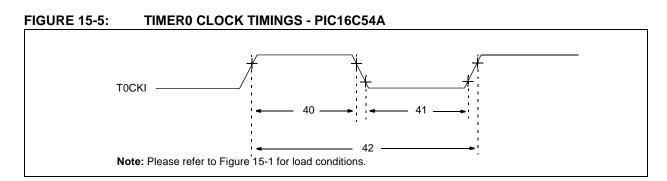
Absolute Maximum Ratings ^(†)	
Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O port (PORTA or B)	50 mA
Max. output current sunk by a single I/O port (PORTA or B)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VD	D-VOH) X IOH} + Σ (VOL X IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial) PIC16C54A-04I, 10I, 20I (Industrial) PIC16LC54A-04 (Commercial) PIC16LC54A-04I (Industrial)

PIC16LC54A-04 PIC16LC54A-04I (Commercial, Industrial)				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
PIC16C54A-04, 10, 20 PIC16C54A-04I, 10I, 20I (Commercial, Industrial)				$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$						
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Conditions				
	IPD Power-down Current ⁽²⁾									
D006		PIC16LC5X		2.5 0.25 2.5 0.25	12 4.0 14 5.0	μΑ μΑ μΑ μΑ	VDD = 2.5V, WDT enabled, Commercial VDD = 2.5V, WDT disabled, Commercial VDD = 2.5V, WDT enabled, Industrial VDD = 2.5V, WDT disabled, Industrial			
D006A		PIC16C5X		4.0 0.25 5.0 0.3	12 4.0 14 5.0	μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT enabled, Commercial VDD = 3.0V, WDT disabled, Commercial VDD = 3.0V, WDT enabled, Industrial VDD = 3.0V, WDT disabled, Industrial			

Legend: Rows with standard voltage device data only are shaded for improved readability.


* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

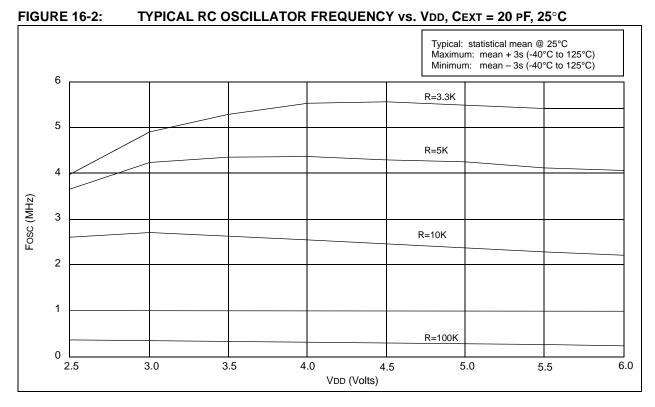
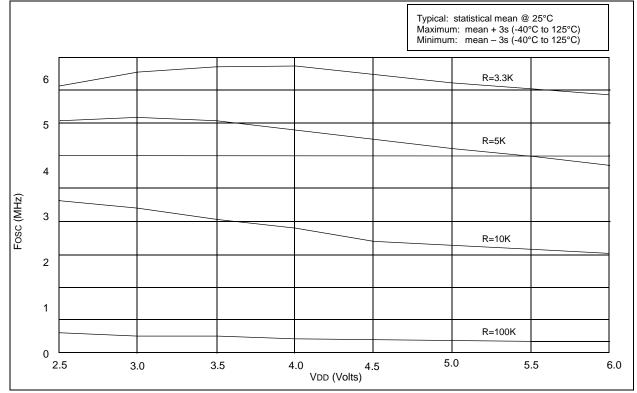
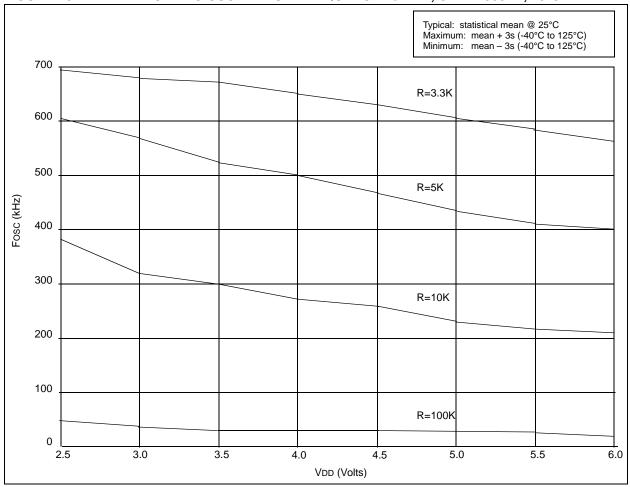


TABLE 15-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54A


Standard Operating Conditions (unless otherwise specified)										
		Operating Temperat	$\begin{array}{ll} \text{ure} & 0^{\circ}C \leq \text{TA} \leq +70^{\circ}\text{C} \text{ for commercial} \\ -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial} \\ -20^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for industrial} - \text{PIC16LV54A-02I} \end{array}$							
1	AC Chara	octeristics								
$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended										
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions			
40	Tt0H	T0CKI High Pulse Width								
		- No Prescaler	0.5 TCY + 20*	—	—	ns				
		- With Prescaler	10*	—	_	ns				
41	Tt0L	T0CKI Low Pulse Width								
		- No Prescaler	0.5 TCY + 20*	—	—	ns				
		- With Prescaler	10*	—	_	ns				
42	Tt0P	T0CKI Period	20 or <u>TCY + 40</u> *	—	_	ns	Whichever is greater.			
			N				N = Prescale Value			
							(1, 2, 4,, 256)			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



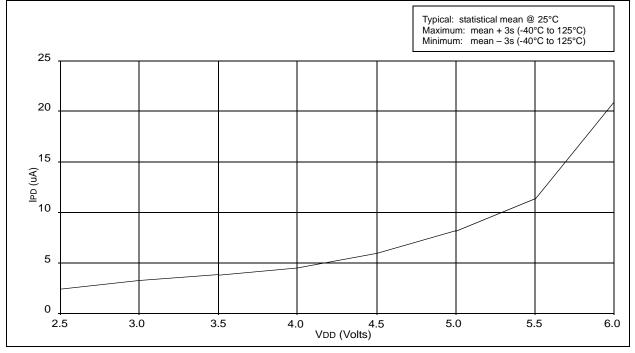
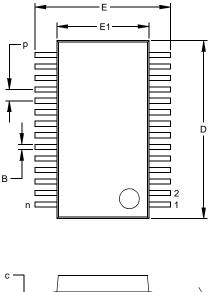
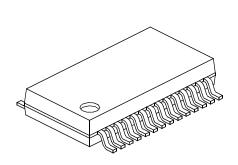
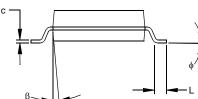
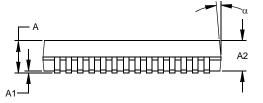


FIGURE 18-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF, 25°C




© 1997-2013 Microchip Technology Inc.


NOTES:


28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				MILLIMETERS*			
Dimensio	MIN	NOM	NOM MAX		MIN NOM			
Number of Pins	n		28			28		
Pitch	р		.026			0.65		
Overall Height	А	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.396	.402	.407	10.06	10.20	10.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	¢	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom		0	5	10	0	5	10	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-150 Drawing No. C04-073