

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	20
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c57c-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.4 RC Oscillator

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 4-5 shows how the R/C combination is connected to the PIC16C5X. For REXT values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g., 1 M Ω) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications sections show RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications sections for variation of oscillator frequency due to VDD for given REXT/ CEXT values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

FIGURE 8-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0 -	Timer0 - 8-bit real-time clock/counter							xxxx xxxx	uuuu uuuu
N/A	OPTION	_	—	TOCS	TOSE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells not used by Timer0.

ADDWF	Add	W	and f				
Syntax:	[lab	e/]/	ADDWF	f,d			
Operands:	$0 \le 1$ $d \in 1$	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$					
Operation:	(W)	+ (f)	\rightarrow (dest)				
Status Affected:	C, D	C, Z	-				
Encoding:	00	01	11df	ff	ff		
	and register 'f'. If 'd' is 0 the res is stored in the W register. If 'd' '1' the result is stored back in register 'f'.					result If 'd' is in	
Words:	1						
Cycles:	1						
Example:	ADD	WF	TEMP_RE	G,	0		
Before Instr	uctio	n					
W		=	0x17				
TEMP_I After Instruc	REG ction	=	0xC2				
W		=	0xD9				
TEMP_F	REG	=	0xC2				

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Ζ
Encoding:	0001 01df ffff
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is '1' the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	ANDWF TEMP_REG, 1
Before Instru W TEMP_I After Instruct W TEMP_I	action = $0x17$ REG = $0xC2$ ion = $0x17$ REG = $0x02$

ANDLW	AND literal with W								
Syntax:	[<i>label</i>] ANDLW k								
Operands:	$0 \leq k \leq 255$								
Operation:	(W).AND. (k) \rightarrow (W)								
Status Affected:	Z								
Encoding:	1110 kkkk kkkk								
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W regis- ter.								
Words:	1								
Cycles:	1								
Example:	ANDLW H'5F'								
Before Instru W = After Instruct W =	ction 0xA3 ion 0x03								

BCF	Bit Clear f								
Syntax:	[label]	[<i>label</i>] BCF f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$								
Operation:	$0 \rightarrow (f < b >)$								
Status Affected:	None								
Encoding:	0100	bbbf	ffff						
Description:	Bit 'b' in	register 'f'	is cleare	d.					
Words:	1								
Cycles:	1								
Example:	BCF	FLAG_RE	G, 7						
Before Instru FLAG_R After Instruct	ction EG = ion	0xC7							
FLAG_R	EG =	0x47							

12.7 Timing Diagrams and Specifications

FIGURE 12-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

Standard Operating Conditions (unless otherwise specified)							ed)		
AC Characteristics		Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial							
		-40)°C ≤]	TA ≤ + 85°	C for ind	ustrial			
		-40)°C ≤ 1	「A ≤ +125	°C for ex	tended			
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode		
			DC	—	10	MHz	10 MHz mode		
			DC	—	20	MHz	HS OSC mode (Comm/Ind)		
			DC	—	16	MHz	HS OSC mode (Ext)		
			DC	—	40	kHz	LP OSC mode		
		Oscillator Frequency ⁽¹⁾	DC	—	4.0	MHz	RC OSC mode		
			0.1	—	4.0	MHz	XT OSC mode		
			4.0	—	10	MHz	10 MHz mode		
			4.0	—	20	MHz	HS OSC mode (Comm/Ind)		
			4.0	—	16	MHz	HS OSC mode (Ext)		
			DC	_	40	kHz	LP osc mode		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

AC Chara	octeristics							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
1	Tosc	External CLKIN Period ⁽¹⁾	250		—	ns	XT OSC mode	
			250	—		ns	HS OSC mode (04)	
			100	—		ns	HS osc mode (10)	
			50	—	—	ns	HS osc mode (20)	
			5.0	_	—	μs	LP OSC mode	
		Oscillator Period ⁽¹⁾	250	—		ns	RC OSC mode	
			250	—	10,000	ns	XT OSC mode	
			250	—	250	ns	HS OSC mode (04)	
			100	—	250	ns	HS osc mode (10)	
			50	—	250	ns	HS OSC mode (20)	
			5.0		200	μS	LP OSC mode	
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—		
3	TosL, TosH	Clock in (OSC1) Low or High	50*	—	—	ns	XT oscillator	
		lime	20*	—	—	ns	HS oscillator	
			2.0*		—	μS	LP oscillator	
4	TosR, TosF	Clock in (OSC1) Rise or Fall	—	—	25*	ns	XT oscillator	
		lime	—	—	25*	ns	HS oscillator	
			—	—	50*	ns	LP oscillator	

TABLE 13-1:	EXTERNAL CLOCK TIMING REQUIREMENT	S - PIC16CR54A

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

when an external clock input is used, the "max" cycle time limit is "Du" (no clock) for all device

2: Instruction cycle period (TcY) equals four times the input oscillator time base period.

FIGURE 13-5: TIMER0 CLOCK TIMINGS - PIC16CR54A

TABLE 13-4: TIMER0 CLOCK REQUIREMENTS - PIC16CR54A

			Standard Operating	Conditions (unles	ss othe	rwise	specifie	d)	
	AC Characteristics		Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
				-40°C ≤	$TA \le +8$	B5°C f	or indus	strial	
				$-40^{\circ}C \le$	TA ≤ +′	125°C	for exte	ended	
Param No.	Symbol		Characteristic	Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High	Pulse Width						
			- No Prescaler	0.5 TCY + 20*	—	—	ns		
			- With Prescaler	10*		—	ns		
41	Tt0L	T0CKI Low	Pulse Width						
			- No Prescaler	0.5 TCY + 20*	—	—	ns		
			- With Prescaler	10*	_	—	ns		
42	Tt0P	T0CKI Peric	od	20 or <u>Tcy + 40</u> *		—	ns	Whichever is greater.	
				N				N = Prescale Value	
								(1, 2, 4,, 256)	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-22: PORTA, B AND C IOL vs. VoL, VDD = 5 V

TABLE 14-2: INPUT CAPACITANCE FOR PIC16C54/56

Pin	Typical Capacitance (pF)				
FIII	18L PDIP	18L SOIC			
RA port	5.0	4.3			
RB port	5.0	4.3			
MCLR	17.0	17.0			
OSC1	4.0	3.5			
OSC2/CLKOUT	4.3	3.5			
TOCKI	3.2	2.8			

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

TABLE 14-3:	INPUT CAPACITANCE FOR
	PIC16C55/57

	Typical Capa	citance (pF)
Pin	28L PDIP (600 mil)	28L SOIC
RA port	5.2	4.8
RB port	5.6	4.7
RC port	5.0	4.1
MCLR	17.0	17.0
OSC1	6.6	3.5
OSC2/CLKOUT	4.6	3.5
TOCKI	4.5	3.5

All capacitance values are typical at 25° C. A part-to-part variation of ±25% (three standard deviations) should be taken into account.

15.0 ELECTRICAL CHARACTERISTICS - PIC16C54A

Absolute Maximum Ratings ^(†)	
Ambient temperature under bias	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on VDD with respect to VSS	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss	–0.6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	
Max. current out of Vss pin	150 mA
Max. current into VDD pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	
Max. output current sourced by any I/O pin	
Max. output current sourced by a single I/O port (PORTA or B)	
Max. output current sunk by a single I/O port (PORTA or B)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH	$+ \sum \{(VDD-VOH) \times IOH\} + \sum (VOL \times IOL)$

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. NOTES:

16.0 DEVICE CHARACTERIZATION - PIC16C54A

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

TABLE 16-1: RC OSCILLATOR FREQUENCIES

Сехт	Rext	Average Fosc @ 5 V, 25°C				
20 pF	3.3K	5 MHz	± 27%			
	5K	3.8 MHz	± 21%			
	10K	2.2 MHz	± 21%			
	100K	262 kHz	± 31%			
100 pF	3.3K	1.6 MHz	± 13%			
	5K	1.2 MHz	± 13%			
	10K	684 kHz ± 18%				
	100K	71 kHz	± 25%			
300 pF	3.3K	660 kHz	± 10%			
	5.0K	484 kHz	± 14%			
	10K	267 kHz	± 15%			
	100K	29 kHz	± 19%			

The frequencies are measured on DIP packages.

The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

PIC16C5X

FIGURE 16-9: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) vs. VDD

FIGURE 16-18: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR vs. VDD

FIGURE 16-19:

TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

:5X :R5X nercial, Indu	ustrial)	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$				
PIC16C5X PIC16CR5X (Commercial, Industrial)			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq \mbox{TA} \leq +70^{\circ}\mbox{C} \mbox{ for commercial} \\ -40^{\circ}\mbox{C} \leq \mbox{TA} \leq +85^{\circ}\mbox{C for industrial} \end{array}$			
Symbol	Characteristic/Device	Min Typ† Max Units Conditions				
IDD	Supply Current ^(2,3)					
	PIC16LC5X		0.5	2.4	mA	Fosc = 4.0 MHz, VDD = 5.5V, XT and
			11	27	μA	RC modes
						FOSC = 32 kHz , VDD = 2.5V, LP mode,
			14	35	μA	Commercial Ease $= 22 \text{ kHz}$ Vpp $= 2.5 \text{ // LP mode}$
						Industrial
	PIC16C5X		1.8	2.4	mA	Fosc = 4 MHz, VDD = 5.5V, XT and RC
			2.6	3.6*	mA	modes
		_	4.5	16	mA	FOSC = 10 MHz, VDD = 3.0V, HS mode
		—	14	32	μA	FOSC = 20 MHz, VDD = 5.5V, HS mode
			47	10	۸	FOSC = 32 KHZ, VDD = 3.0V, LP mode,
			17	40	μA	Commercial Ease $= 32 \text{ kHz}$ Vpp $= 3.0 \text{ V}$ LP mode
						Industrial
	5X R5X hercial, Indi X SSX hercial, Indi Symbol	SX SX SSX Nercial, Industrial) Symbol Characteristic/Device IDD Supply Current ^(2,3) PIC16LC5X PIC16LC5X PIC16C5X PIC16C5X	Stand Opera R5X Stand iercial, Industrial) Stand Symbol Characteristic/Device Min IDD Supply Current ^(2,3) — PIC16LC5X — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	Standard Operating Tem R5X Operating Tem iercial, Industrial) Standard Operating Tem Symbol Characteristic/Device Min Typ† IDD Supply Current ^(2,3) Min Typ† IDD Supply Current ^(2,3) 0.5 PIC16LC5X — 0.5 11 — 14 PIC16C5X — 1.8 2.6 — 14 14 — 14	Standard Operating Operating Temperature Operating Temperature Symbol Characteristic/Device Min Typ† Max IDD Supply Current ^(2,3) — 0.5 2.4 PIC16LC5X — 11 27 14 35 PIC16C5X — 1.8 2.4 14 35 14 35 14 32 14 32 14 32 14 32 14 32 14 32 14 32	Standard Operating Condit Operating TemperatureStandard Operating Condit Operating TemperatureStandard Operating Condit Operating TemperatureStandard Operating Condit Operating TemperatureSymbolCharacteristic/DeviceMinTyptMaxUnitsIDDSupply Current (2,3)IDDSupply Current PIC16LC5X0.52.4mAIDDPIC16LC5X—0.52.4mAIDDPIC16C5X—1.82.4mAIDDPIC16C5X—1.82.4mAIDDPIC16C5X—1.82.4mAIDDPIC16C5X—1.82.4mAIDDPIC16C5X—1.82.4mAIDDPIC16C5X—1.82.4mAIDDPIC16C5X—1.82.4mAIDDIDD1.82.4mAIDDIDDIDDIDD

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

PIC16LC PIC16LC (Comm	5X CR5X nercial, Ind	ustrial)	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$					
PIC16C5X PIC16CR5X (Commercial, Industrial)			Stand Opera	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq \mbox{TA} \leq +70^{\circ}\mbox{C} \mbox{ for commercial} \\ -40^{\circ}\mbox{C} \leq \mbox{TA} \leq +85^{\circ}\mbox{C for industrial} \end{array}$				
Param No.	Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions	
	IPD	Power-down Current ⁽²⁾						
D020		PIC16LC5X	—	0.25	2	μΑ	VDD = 2.5V, WDT disabled, Commercial	
			—	0.25	3	μA	VDD = 2.5V, WDT disabled, Industrial	
			_	1 1 25	5	μΑ	VDD = $2.5V$, WDT enabled, Commercial VDD = $2.5V$ WDT enabled Industrial	
		PIC16C5X		0.25	4.0	μ.	$V_{DD} = 3.0V$ WDT disabled Commercial	
DOZOR			_	0.25	5.0	μΑ	$V_{DD} = 3.0V$, W_{DT} disabled, our intercent VDD = 3.0V. WDT disabled. Industrial	
			—	1.8	7.0*	μA	VDD = 5.5V, WDT disabled, Commercial	
			—	2.0	8.0*	μA	VDD = 5.5V, WDT disabled, Industrial	
			—	4	12*	μΑ	VDD = 3.0V, WDT enabled, Commercial	
			—	4	14*	μA	VDD = 3.0V, WDT enabled, Industrial	
			—	9.8	27*	μA	VDD = 5.5V, WDT enabled, Commercial	
			—	12	30*	μA	VDD = 5.5V, WDT enabled, Industrial	

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

FIGURE 19-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C5X-40

TABLE 19-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X-40

AC CharacteristicsStandard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)Operating Voltage VDD range is described in Section 19.1.							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	1000*		_	ns	VDD = 5.0V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
34	Tioz	I/O Hi-impedance from MCLR Low	100*	300*	1000*	ns	

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. NOTES:

PIC16C5X

INDEX

Α

Absolute Maximum Ratings	
PIC16C54/55/56/57	67
PIC16C54A	103
PIC16C54C/CR54C/C55A/C56A/CR56A/C570	C/CR57C/
C58B/CR58B	131
PIC16C54C/CR54C/C55A/C56A/CR56A/C570	C/CR57C/
C58B/CR58B-40	155
PIC16CR54A	79
ADDWF	51
ALU	9
ANDLW	51
ANDWF	51
Applications	5
Architectural Overview	9
Assembler	
MPASM Assembler	61

в

Block Diagram	
On-Chip Reset Circuit	
PIC16C5X Series	
Timer0	
TMR0/WDT Prescaler	41
Watchdog Timer	
Brown-Out Protection Circuit	
BSF	
BTFSC	
BTFSS	

С

CALL	
Carry (C) bit	9, 29
Clocking Scheme	
CLRF	53
CLRW	
CLRWDT	53
CMOS Technology	
Code Protection	
COMF	54
Compatibility	
Configuration Bits	

D

Data Memory Organization
PIC16C54/55/56/57
Commercial
Extended70, 72
Industrial 69, 71
PIC16C54A
Commercial104, 109
Extended106, 109
Industrial104, 109
PIC16C54C/C55A/C56A/C57C/C58B-40
Commercial157, 158
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B
Commercial134, 138
Extended137, 138
Industrial 134, 138
PIC16CR54A
Commercial

Extended	82, 84
Industrial	80, 83
PIC16LV54A	
Commercial	108, 109
Industrial	108, 109
DECF	54
DECFSZ	54
Development Support	61
Device Characterization	
PIC16C54/55/56/57/CR54A	91
PIC16C54A	117
PIC16C54C/C55A/C56A/C57C/C58B-40	165
Device Reset Timer (DRT)	23
Device Varieties	7
Digit Carry (DC) bit	9, 29
DRT	23

Ε

Electrical Specifications
PIC16C54/55/56/57 67
PIC16C54A103
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B 131
PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/
C58B/CR58B-40155
PIC16CR54A 79
Errata
External Power-On Reset Circuit 21

F

Family of Devices	
PIC16C5X	
FSR Register	
Value on reset	

G

General Purpose Registers	
Value on reset	20
GOTO	31, 55

Н

High-Performance RISC CPU	1
---------------------------	---

ī

•	
I/O Interfacing	35
I/O Ports	35
I/O Programming Considerations	36
ICEPIC In-Circuit Emulator	62
ID Locations	43, 47
INCF	55
INCFSZ	55
INDF Register	33
Value on reset	20
Indirect Data Addressing	33
Instruction Cycle	13
Instruction Flow/Pipelining	13
Instruction Set Summary	49
IORLW	56
IORWF	56
к	

KeeLoq Evaluation and Programming Tools 64

Loading of PC	3	,	1	
---------------	---	---	---	--

L

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1997-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769355

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.