



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 20MHz                                                                      |
| Connectivity               | -                                                                          |
| Peripherals                | POR, WDT                                                                   |
| Number of I/O              | 20                                                                         |
| Program Memory Size        | 3KB (2K x 12)                                                              |
| Program Memory Type        | OTP                                                                        |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 72 x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                  |
| Data Converters            | -                                                                          |
| Oscillator Type            | External                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                             |
| Supplier Device Package    | 28-SSOP                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c57c-20i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2.0 PIC16C5X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section. When placing orders, please use the PIC16C5X Product Identification System at the back of this data sheet to specify the correct part number.

For the PIC16C5X family of devices, there are four device types, as indicated in the device number:

- 1. **C**, as in PIC16**C**54C. These devices have EPROM program memory and operate over the standard voltage range.
- LC, as in PIC16LC54A. These devices have EPROM program memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**54A. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR54A. These devices have ROM program memory and operate over an extended voltage range.

# 2.1 UV Erasable Devices (EPROM)

The UV erasable versions offered in CERDIP packages, are optimal for prototype development and pilot programs.

UV erasable devices can be programmed for any of the four oscillator configurations. Microchip's

PICSTART<sup>®</sup> Plus<sup>(1)</sup> and PRO MATE<sup>®</sup> programmers both support programming of the PIC16C5X. Third party programmers also are available. Refer to the Third Party Guide (DS00104) for a list of sources.

## 2.2 One-Time-Programmable (OTP) Devices

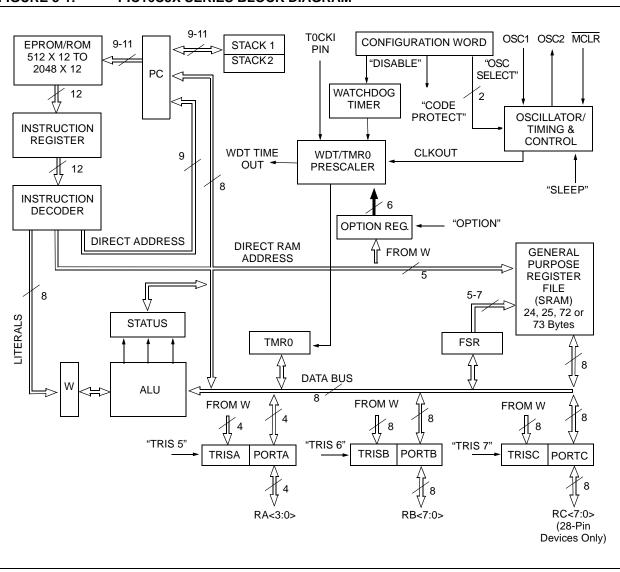
The availability of OTP devices is especially useful for customers expecting frequent code changes and updates, or small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must be programmed.

Note 1: PIC16LC54C and PIC16C54A devices require OSC2 not to be connected while programming with PICSTART<sup>®</sup> Plus programmer.

## 2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.


# 2.4 Serialized Quick-Turnaround-Production (SQTP<sup>SM</sup>) Devices

Microchip offers the unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential. The devices are identical to the OTP devices but with all EPROM locations and configuration bit options already programmed by the factory.

Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

# 2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, giving the customer a low cost option for high volume, mature products.



#### FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM

# 4.3 External Crystal Oscillator Circuit

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A welldesigned crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k $\Omega$  resistor provides the negative feedback for stability. The 10 k $\Omega$  potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3: EXAMPLE OF EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

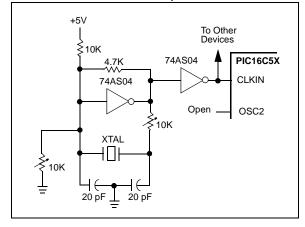
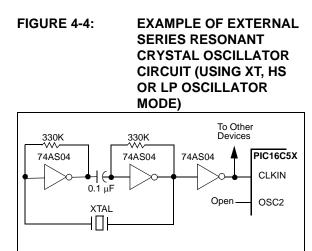
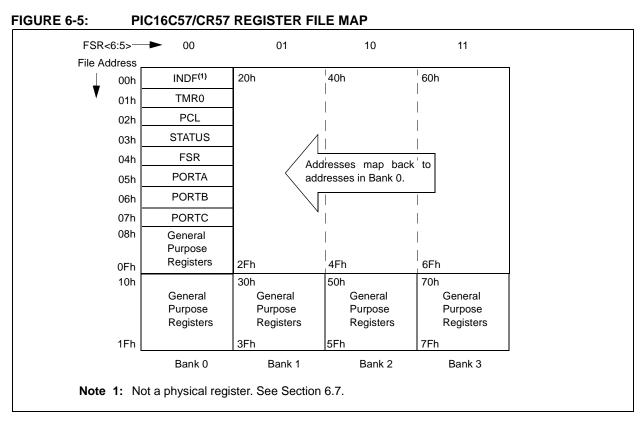
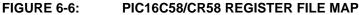
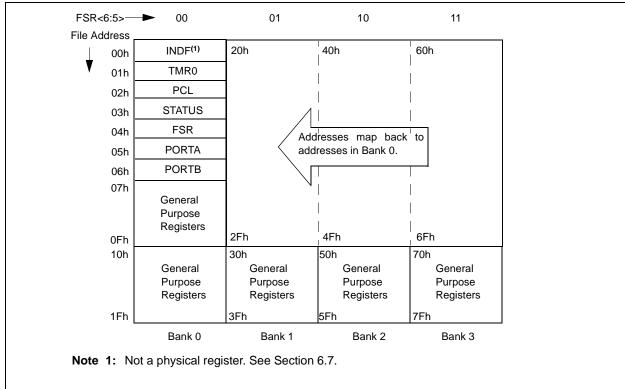







Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k $\Omega$  resistors provide the negative feedback to bias the inverters in their linear region.









# 9.2 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT Reset or Wake-up Reset generates a device RESET.

The  $\overline{\text{TO}}$  bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset (Section 6.3).

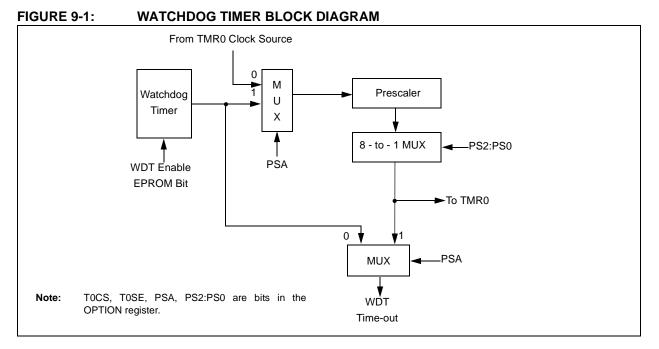
The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 9.1). Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to determine how to access the configuration word.

#### 9.2.1 WDT PERIOD

An 8-bit counter is available as a prescaler for the Timer0 module (Section 8.2), or as a postscaler for the Watchdog Timer (WDT), respectively. For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not

both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio (Section 6.4).


The WDT has a nominal time-out period of 18 ms (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, time-out a period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see Device Characterization).

Under worst case conditions (VDD = Min., Temperature = Max., WDT prescaler = 1:128), it may take several seconds before a WDT time-out occurs.

#### 9.2.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction RESETS the WDT and the prescaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.



#### TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

| Address | Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on<br>Power-On<br>Reset | <u>Value</u> on<br>MCLR and<br>WDT Reset |
|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------|------------------------------------------|
| N/A     | OPTION | —     |       | Tosc  | Tose  | PSA   | PS2   | PS1   | PS0   | 11 1111                       | 11 1111                                  |

Legend: u = unchanged, - = unimplemented, read as '0'. Shaded cells not used by Watchdog Timer.

NOTES:

# 10.0 INSTRUCTION SET SUMMARY

Each PIC16C5X instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C5X instruction set summary in Table 10-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

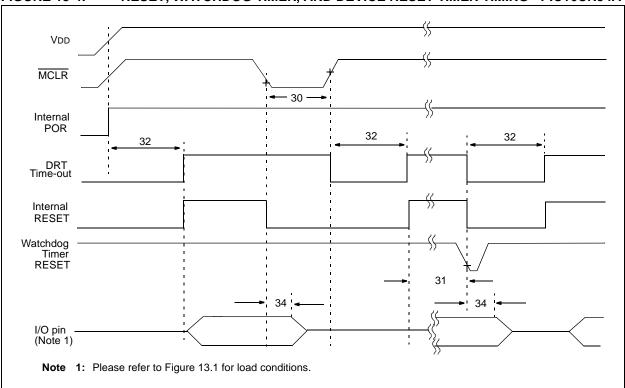
For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

| TABLE 10-1: | OPCODE FIELD |
|-------------|--------------|
|             | DESCRIPTIONS |

| DESCRIPTIONS                                                                                                              |                                                                                                                   |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Field                                                                                                                     | Description                                                                                                       |  |  |  |  |  |  |  |
| f                                                                                                                         | Register file address (0x00 to 0x1F)                                                                              |  |  |  |  |  |  |  |
| W                                                                                                                         | Working register (accumulator)                                                                                    |  |  |  |  |  |  |  |
| b                                                                                                                         | Bit address within an 8-bit file register                                                                         |  |  |  |  |  |  |  |
| k                                                                                                                         | Literal field, constant data or label                                                                             |  |  |  |  |  |  |  |
| x Don't care location (= 0 or 1)<br>The assembler will generate code with x =<br>It is the recommended form of use for co |                                                                                                                   |  |  |  |  |  |  |  |
|                                                                                                                           | patibility with all Microchip software tools.                                                                     |  |  |  |  |  |  |  |
| d                                                                                                                         | Destination select;<br>d = 0 (store result in W)<br>d = 1 (store result in file register 'f')<br>Default is d = 1 |  |  |  |  |  |  |  |
| label                                                                                                                     | Label name                                                                                                        |  |  |  |  |  |  |  |
| TOS                                                                                                                       | Top of Stack                                                                                                      |  |  |  |  |  |  |  |
| PC                                                                                                                        | Program Counter                                                                                                   |  |  |  |  |  |  |  |
| WDT                                                                                                                       | Watchdog Timer Counter                                                                                            |  |  |  |  |  |  |  |
| TO                                                                                                                        | Time-out bit                                                                                                      |  |  |  |  |  |  |  |
| PD                                                                                                                        | Power-down bit                                                                                                    |  |  |  |  |  |  |  |
| dest                                                                                                                      | Destination, either the W register or the<br>specified register file location                                     |  |  |  |  |  |  |  |
| [ ]                                                                                                                       | Options                                                                                                           |  |  |  |  |  |  |  |
| ( )                                                                                                                       | Contents                                                                                                          |  |  |  |  |  |  |  |
| $\rightarrow$                                                                                                             | Assigned to                                                                                                       |  |  |  |  |  |  |  |
| < >                                                                                                                       | Register bit field                                                                                                |  |  |  |  |  |  |  |
| e                                                                                                                         | In the set of                                                                                                     |  |  |  |  |  |  |  |
| italics                                                                                                                   | User defined term (font is courier)                                                                               |  |  |  |  |  |  |  |

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1  $\mu$ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2  $\mu$ s.

Figure 10-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:


0xhhh

where 'h' signifies a hexadecimal digit.

# FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

| Byte-oriented file register operations                                                |        |                   |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|--------|-------------------|--|--|--|--|--|--|--|--|
| <u>11 6</u>                                                                           | 5      | 4 0               |  |  |  |  |  |  |  |  |
| OPCODE                                                                                | d      | f (FILE #)        |  |  |  |  |  |  |  |  |
| d = 0 for destination W<br>d = 1 for destination f<br>f = 5-bit file register address |        |                   |  |  |  |  |  |  |  |  |
| Bit-oriented file register operations                                                 |        |                   |  |  |  |  |  |  |  |  |
| 11 8                                                                                  | 7      | 5 4 0             |  |  |  |  |  |  |  |  |
| OPCODE                                                                                | b (Bl  | IT #) f (FILE #)  |  |  |  |  |  |  |  |  |
| f = 5-bit file regist                                                                 | eratio | ons (except GOTO) |  |  |  |  |  |  |  |  |
| 11                                                                                    | 8      | 7 0               |  |  |  |  |  |  |  |  |
| OPCODE                                                                                |        | k (literal)       |  |  |  |  |  |  |  |  |
| k = 8-bit immediate value                                                             |        |                   |  |  |  |  |  |  |  |  |
| Literal and control operations - GOTO instruction                                     |        |                   |  |  |  |  |  |  |  |  |
| 11                                                                                    | 9      | 8 0               |  |  |  |  |  |  |  |  |
| OPCODE                                                                                |        | k (literal)       |  |  |  |  |  |  |  |  |
| k = 9-bit immediate value                                                             |        |                   |  |  |  |  |  |  |  |  |

<sup>© 1997-2013</sup> Microchip Technology Inc.



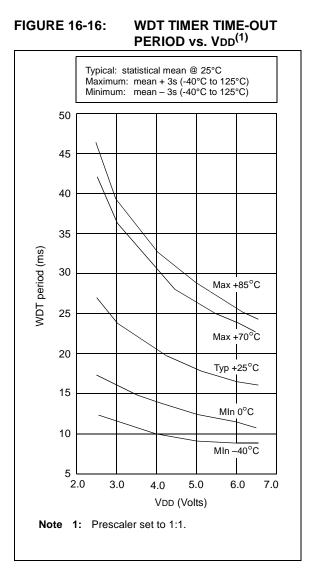
#### FIGURE 13-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR54A

#### TABLE 13-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54A

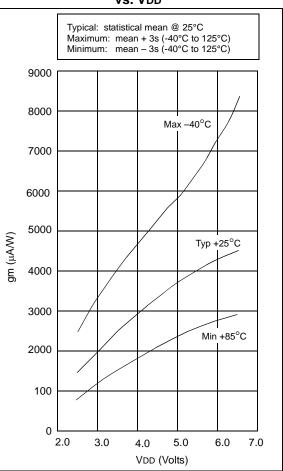
| AC Chara            | cteristics | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$ |      |      |      |       |                   |  |  |
|---------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|-------------------|--|--|
| Param<br>No. Symbol |            | Characteristic                                                                                                                                                                                                                                                                                                             | Min  | Тур† | Max  | Units | Conditions        |  |  |
| 30                  | TmcL       | MCLR Pulse Width (low)                                                                                                                                                                                                                                                                                                     | 1.0* |      |      | μS    | VDD = 5.0V        |  |  |
| 31                  | Twdt       | Watchdog Timer Time-out Period<br>(No Prescaler)                                                                                                                                                                                                                                                                           | 7.0* | 18*  | 40*  | ms    | VDD = 5.0V (Comm) |  |  |
| 32                  | Tdrt       | Device Reset Timer Period                                                                                                                                                                                                                                                                                                  | 7.0* | 18*  | 30*  | ms    | VDD = 5.0V (Comm) |  |  |
| 34                  | Tioz       | I/O Hi-impedance from MCLR Low                                                                                                                                                                                                                                                                                             |      |      | 1.0* | μS    |                   |  |  |

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


## 15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial) PIC16C54A-04I, 10I, 20I (Industrial) PIC16LC54A-04 (Commercial) PIC16LC54A-04I (Industrial)

|              | C54A-04I                                                |                                               | Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial    |           |              |          |                                                                                                       |  |  |  |
|--------------|---------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|----------|-------------------------------------------------------------------------------------------------------|--|--|--|
| PIC16C       | ercial, Ind<br>54A-04, 10<br>54A-04I, 1<br>percial, Ind | ), 20<br>01, 201                              | Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial<br>$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |           |              |          |                                                                                                       |  |  |  |
| Param<br>No. | Symbol                                                  | Characteristic/Device                         | Min Typ† Max Units Conditions                                                                                                                                                                |           |              |          |                                                                                                       |  |  |  |
|              | Vdd                                                     | Supply Voltage                                |                                                                                                                                                                                              |           | •            |          |                                                                                                       |  |  |  |
| D001         |                                                         | PIC16LC54A                                    | 3.0<br>2.5                                                                                                                                                                                   | _         | 6.25<br>6.25 | V<br>V   | XT and RC modes<br>LP mode                                                                            |  |  |  |
| D001A        |                                                         | PIC16C54A                                     | 3.0<br>4.5                                                                                                                                                                                   | _         | 6.25<br>5.5  | V<br>V   | RC, XT and LP modes<br>HS mode                                                                        |  |  |  |
| D002         | Vdr                                                     | RAM Data Retention<br>Voltage <sup>(1)</sup>  | —                                                                                                                                                                                            | 1.5*      | —            | V        | Device in SLEEP mode                                                                                  |  |  |  |
| D003         | VPOR                                                    | VDD Start Voltage to<br>ensure Power-on Reset | —                                                                                                                                                                                            | Vss       | —            | V        | See Section 5.1 for details on<br>Power-on Reset                                                      |  |  |  |
| D004         | SVDD                                                    | VDD Rise Rate to ensure<br>Power-on Reset     | 0.05*                                                                                                                                                                                        | —         | —            | V/ms     | See Section 5.1 for details on<br>Power-on Reset                                                      |  |  |  |
|              | IDD                                                     | Supply Current <sup>(2)</sup>                 |                                                                                                                                                                                              |           |              |          |                                                                                                       |  |  |  |
| D005         |                                                         | PIC16LC5X                                     | —                                                                                                                                                                                            | 0.5       | 2.5          | mA       | Fosc = 4.0 MHz, VDD = 5.5V,<br>RC <sup>(3)</sup> and XT modes                                         |  |  |  |
|              |                                                         |                                               | —                                                                                                                                                                                            | 11        | 27           | μΑ       | Fosc = 32 kHz, VDD = 2.5V,<br>WDT disabled, LP mode, Commercial                                       |  |  |  |
|              |                                                         |                                               | —                                                                                                                                                                                            | 11        | 35           | μA       | Fosc = 32 kHz, VDD = 2.5V,<br>WDT disabled, LP mode, Industrial                                       |  |  |  |
| D005A        |                                                         | PIC16C5X                                      | —                                                                                                                                                                                            | 1.8       | 2.4          | mA       | Fosc = 4.0 MHz, VDD = 5.5V,<br>RC <sup>(3)</sup> and XT modes                                         |  |  |  |
|              |                                                         |                                               | —                                                                                                                                                                                            | 2.4       | 8.0          | mA       | Fosc = 10 MHz, VDD = 5.5V, HS mode                                                                    |  |  |  |
|              |                                                         |                                               | _                                                                                                                                                                                            | 4.5<br>14 | 16<br>29     | mA<br>μA | Fosc = 20 MHz, VDD = 5.5V, HS mode<br>Fosc = 32 kHz, VDD = 3.0V,<br>WDT disabled, LP mode, Commercial |  |  |  |
|              |                                                         |                                               | —                                                                                                                                                                                            | 17        | 37           | μA       | Fosc = $32 \text{ kHz}$ , VDD = $3.0 \text{V}$ ,<br>WDT disabled, LP mode, Industrial                 |  |  |  |


Legend: Rows with standard voltage device data only are shaded for improved readability.

These parameters are characterized but not tested.

- † Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- **Note 1:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
  - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
    - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
    - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
  - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k $\Omega$ .



#### FIGURE 16-17: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD



### 17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

| PIC16LC<br>PIC16LC<br>(Comm                       | -      | $ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \end{array} $ |     |                                                                                                                                                                                                                                                                                            |                                                        |                                              |                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PIC16C5X<br>PIC16CR5X<br>(Commercial, Industrial) |        |                                                                                                                                                                                                                                                                |     | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}\mbox{C} \leq T\mbox{A} \leq +70^{\circ}\mbox{C for commercial} \\ -40^{\circ}\mbox{C} \leq T\mbox{A} \leq +85^{\circ}\mbox{C for industrial} \end{array}$ |                                                        |                                              |                                                                                                                                                                                                                                                                                                                          |  |  |
| Param<br>No.                                      | Symbol | Characteristic/Device                                                                                                                                                                                                                                          | Min | Тур†                                                                                                                                                                                                                                                                                       | Max                                                    | Units                                        | Conditions                                                                                                                                                                                                                                                                                                               |  |  |
|                                                   | IPD    | Power-down Current <sup>(2)</sup>                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                            |                                                        |                                              |                                                                                                                                                                                                                                                                                                                          |  |  |
| D020                                              |        | PIC16LC5X                                                                                                                                                                                                                                                      |     | 0.25<br>0.25<br>1<br>1.25                                                                                                                                                                                                                                                                  | 2<br>3<br>5<br>8                                       | μΑ<br>μΑ<br>μΑ<br>μΑ                         | VDD = 2.5V, WDT disabled, Commercial $VDD = 2.5V$ , WDT disabled, Industrial $VDD = 2.5V$ , WDT enabled, Commercial $VDD = 2.5V$ , WDT enabled, Industrial                                                                                                                                                               |  |  |
| D020A                                             |        | PIC16C5X                                                                                                                                                                                                                                                       |     | 0.25<br>0.25<br>1.8<br>2.0<br>4<br>4<br>9.8<br>12                                                                                                                                                                                                                                          | 4.0<br>5.0<br>7.0*<br>8.0*<br>12*<br>14*<br>27*<br>30* | μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ | VDD = 3.0V, WDT disabled, Commercial<br>VDD = 3.0V, WDT disabled, Industrial<br>VDD = 5.5V, WDT disabled, Industrial<br>VDD = 5.5V, WDT disabled, Industrial<br>VDD = 3.0V, WDT enabled, Commercial<br>VDD = 3.0V, WDT enabled, Industrial<br>VDD = 5.5V, WDT enabled, Commercial<br>VDD = 5.5V, WDT enabled, Industrial |  |  |

Legend: Rows with standard voltage device data only are shaded for improved readability.

\* These parameters are characterized but not tested.

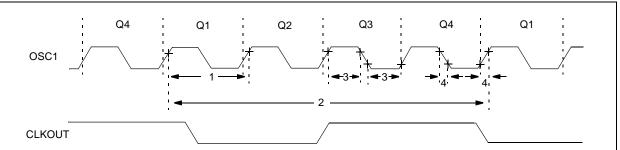
† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k $\Omega$ .


#### 17.3 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial, Extended) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial, Extended) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

|              |        |                                                                                                                                     | Standard Operat<br>Operating Tempe                                             | $\begin{array}{l} \mbox{nditions (unless otherwise specified)} \\ 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$ |                                                                  |                            |                                                                                                                                                                                                   |  |
|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Param<br>No. | Symbol | Characteristic                                                                                                                      | Min                                                                            | Тур†                                                                                                                                                                                                                                                                        | Max                                                              | Units                      | Conditions                                                                                                                                                                                        |  |
| D030         | VIL    | Input Low Voltage<br>I/O Ports<br>I/O Ports<br>MCLR (Schmitt Trigger)<br>T0CKI (Schmitt Trigger)<br>OSC1 (Schmitt Trigger)<br>OSC1  | Vss<br>Vss<br>Vss<br>Vss<br>Vss<br>Vss<br>Vss                                  | <br><br>                                                                                                                                                                                                                                                                    | 0.8 V<br>0.15 VDD<br>0.15 VDD<br>0.15 VDD<br>0.15 VDD<br>0.3 VDD | V<br>V<br>V<br>V<br>V      | 4.5V <v<sub>DD ≤ 5.5V<br/>Otherwise<br/>RC mode only<sup>(3)</sup><br/>XT, HS and LP modes</v<sub>                                                                                                |  |
| D040         | Viн    | Input High Voltage<br>I/O ports<br>I/O ports<br>MCLR (Schmitt Trigger)<br>TOCKI (Schmitt Trigger)<br>OSC1 (Schmitt Trigger)<br>OSC1 | 2.0<br>0.25 Vdd+0.8<br>0.85 Vdd<br>0.85 Vdd<br>0.85 Vdd<br>0.85 Vdd<br>0.7 Vdd | <br>                                                                                                                                                                                                                                                                        | Vdd<br>Vdd<br>Vdd<br>Vdd<br>Vdd<br>Vdd<br>Vdd                    | V<br>V<br>V<br>V<br>V      | 4.5V < VDD ≤ 5.5V<br>Otherwise<br>RC mode only <sup>(3)</sup><br>XT, HS and LP modes                                                                                                              |  |
| D050         | VHYS   | Hysteresis of Schmitt<br>Trigger inputs                                                                                             | 0.15 Vdd*                                                                      | —                                                                                                                                                                                                                                                                           | _                                                                | V                          |                                                                                                                                                                                                   |  |
| D060         | Ιι∟    | Input Leakage Current <sup>(1,2)</sup><br>I/O ports<br>MCLR<br>MCLR<br>T0CKI<br>OSC1                                                | -1.0<br>-5.0<br>-3.0<br>-3.0                                                   | 0.5<br>—<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                               | +1.0<br>+5.0<br>+3.0<br>+3.0<br>—                                | μΑ<br>μΑ<br>μΑ<br>μΑ<br>μΑ | For VDD $\leq$ 5.5V:<br>VSS $\leq$ VPIN $\leq$ VDD,<br>pin at hi-impedance<br>VPIN = VSS +0.25V<br>VPIN = VDD<br>VSS $\leq$ VPIN $\leq$ VDD<br>VSS $\leq$ VPIN $\leq$ VDD,<br>XT, HS and LP modes |  |
| D080         | Vol    | Output Low Voltage<br>I/O ports<br>OSC2/CLKOUT                                                                                      |                                                                                | _                                                                                                                                                                                                                                                                           | 0.6<br>0.6                                                       | V<br>V                     | IOL = 8.7  mA, VDD = 4.5V<br>IOL = 1.6  mA, VDD = 4.5V,<br>RC mode only                                                                                                                           |  |
| D090         | Vон    | Output High Voltage <sup>(2)</sup><br>I/O ports<br>OSC2/CLKOUT                                                                      | Vdd - 0.7<br>Vdd - 0.7                                                         | _                                                                                                                                                                                                                                                                           | _                                                                | V<br>V                     | IOH = -5.4 mA, VDD = 4.5V<br>IOH = -1.0 mA, VDD = 4.5V,<br>RC mode only                                                                                                                           |  |

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.
  - **2:** Negative current is defined as coming out of the pin.
  - 3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

## 17.5 Timing Diagrams and Specifications

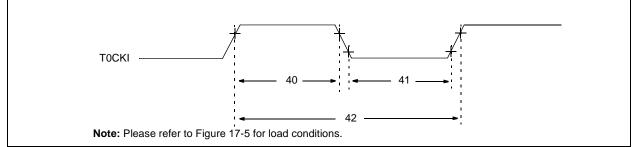


#### FIGURE 17-6: EXTERNAL CLOCK TIMING - PIC16C5X, PIC16CR5X

#### TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

| AC Characteristics |        |                                         |      |      |       |       |                  |  |  |  |
|--------------------|--------|-----------------------------------------|------|------|-------|-------|------------------|--|--|--|
| Param<br>No.       | Symbol | Characteristic                          |      | Тур† | Max   | Units | Conditions       |  |  |  |
|                    | Fosc   | External CLKIN Frequency <sup>(1)</sup> | DC   | _    | 4.0   | MHz   | XT osc mode      |  |  |  |
|                    |        |                                         | DC   | —    | 4.0   | MHz   | HS osc mode (04) |  |  |  |
|                    |        |                                         | DC   | —    | 20    | MHz   | HS osc mode (20) |  |  |  |
|                    |        |                                         | DC   | —    | 200   | kHz   | LP OSC mode      |  |  |  |
|                    |        | Oscillator Frequency <sup>(1)</sup>     | DC   | —    | 4.0   | MHz   | RC osc mode      |  |  |  |
|                    |        |                                         | 0.45 | —    | 4.0   | MHz   | XT osc mode      |  |  |  |
|                    |        |                                         | 4.0  | —    | 4.0   | MHz   | HS osc mode (04) |  |  |  |
|                    |        |                                         | 4.0  | —    | 20    | MHz   | HS osc mode (20) |  |  |  |
|                    |        |                                         | 5.0  |      | 200   | kHz   | LP OSC mode      |  |  |  |
| 1                  | Tosc   | External CLKIN Period <sup>(1)</sup>    | 250  | —    | —     | ns    | XT osc mode      |  |  |  |
|                    |        |                                         | 250  | —    | —     | ns    | HS osc mode (04) |  |  |  |
|                    |        |                                         | 50   | —    | —     | ns    | HS osc mode (20) |  |  |  |
|                    |        |                                         | 5.0  |      | —     | μS    | LP OSC mode      |  |  |  |
|                    |        | Oscillator Period <sup>(1)</sup>        | 250  | —    | —     | ns    | RC osc mode      |  |  |  |
|                    |        |                                         | 250  | —    | 2,200 | ns    | XT osc mode      |  |  |  |
|                    |        |                                         | 250  | —    | 250   | ns    | HS osc mode (04) |  |  |  |
|                    |        |                                         | 50   | —    | 250   | ns    | HS osc mode (20) |  |  |  |
|                    |        |                                         | 5.0  | —    | 200   | μS    | LP osc mode      |  |  |  |

\* These parameters are characterized but not tested.

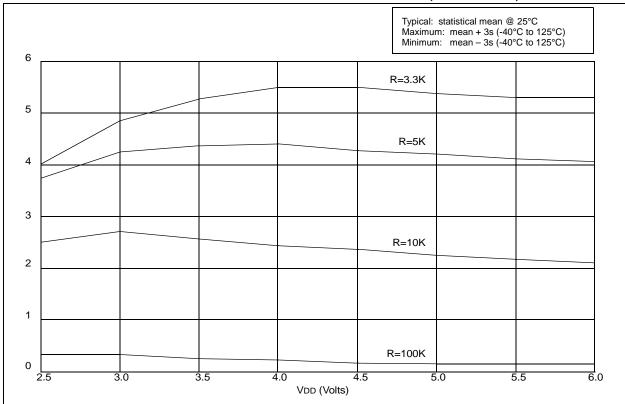

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

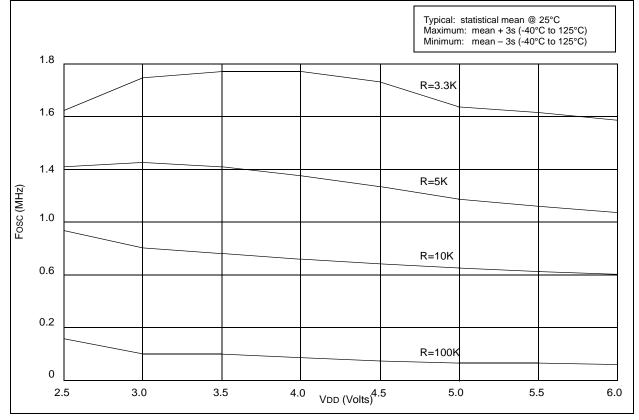
**2:** Instruction cycle period (TCY) equals four times the input oscillator time base period.

#### **FIGURE 17-9:** TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X

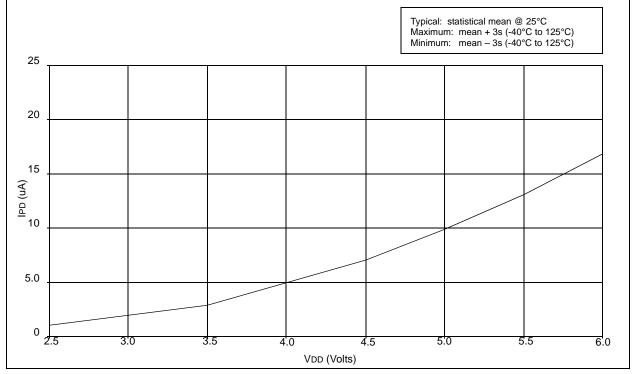



#### **TABLE 17-4:** TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X

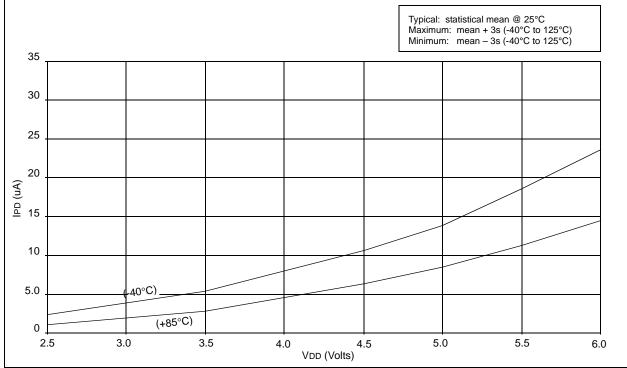
| ļ            | AC Chara | cteristics Standard Operatin<br>Operating Temperat | s (unless otherwise specified)<br>$C \le TA \le +70^{\circ}C$ for commercial<br>$C \le TA \le +85^{\circ}C$ for industrial<br>$C \le TA \le +125^{\circ}C$ for extended |      |     |       |                                                                |  |
|--------------|----------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|----------------------------------------------------------------|--|
| Param<br>No. | Symbol   | Characteristic                                     | Min                                                                                                                                                                     | Тур† | Max | Units | Conditions                                                     |  |
| 40           | Tt0H     | T0CKI High Pulse Width<br>- No Prescaler           | 0.5 Tcy + 20*                                                                                                                                                           |      | _   | ns    |                                                                |  |
|              |          | - With Prescaler                                   | 10*                                                                                                                                                                     | _    | —   | ns    |                                                                |  |
| 41           | TtOL     | T0CKI Low Pulse Width<br>- No Prescaler            | 0.5 Tcy + 20*                                                                                                                                                           | _    | _   | ns    |                                                                |  |
|              |          | - With Prescaler                                   | 10*                                                                                                                                                                     | _    | _   | ns    |                                                                |  |
| 42           | Tt0P     | T0CKI Period                                       | 20 or <u>Tcy + 40</u> *<br>N                                                                                                                                            | _    | _   | ns    | Whichever is greater.<br>N = Prescale Value<br>(1, 2, 4,, 256) |  |

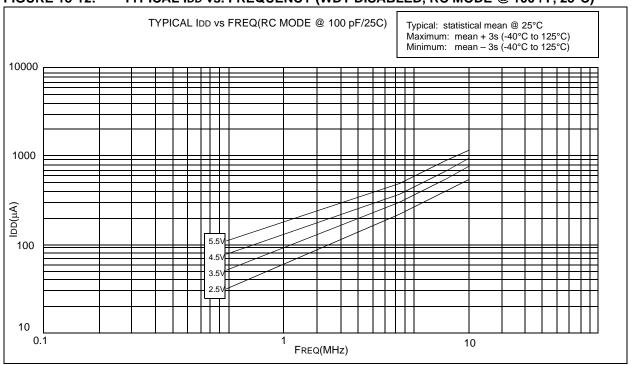

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



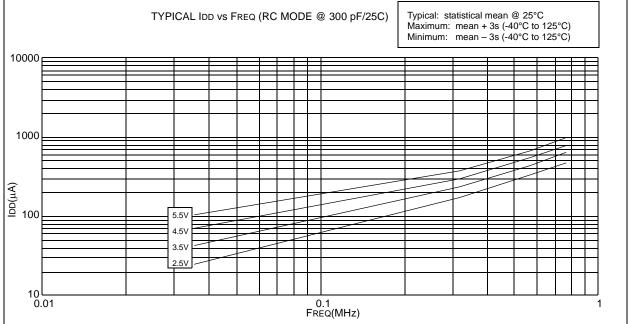

#### FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C

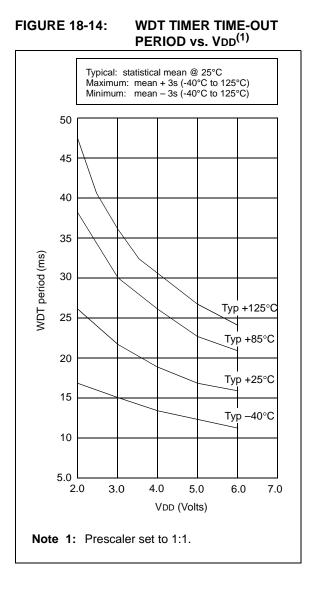


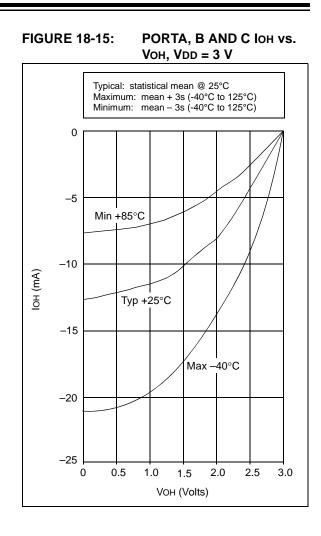








#### FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C)









# **ON-LINE SUPPORT**

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

#### Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

#### www.microchip.com

The file transfer site is available by using an FTP service to connect to:

#### ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
  Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events