Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | | | | Speed | 40MHz | | Connectivity | • | | Peripherals | POR, WDT | | Number of I/O | 20 | | Program Memory Size | 3KB (2K x 12) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 72 x 8 | | Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V | | Data Converters | - | | Oscillator Type | External | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Through Hole | | Package / Case | 28-DIP (0.600", 15.24mm) | | Supplier Device Package | 28-PDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16c57c-40-p | ### 3.0 ARCHITECTURAL OVERVIEW The high performance of the PIC16C5X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C5X uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle except for program branches. The PIC16C54/CR54 and PIC16C55 address 512 x 12 of program memory, the PIC16C56/CR56 address 1K x 12 of program memory, and the PIC16C57/CR57 and PIC16C58/CR58 address 2K x 12 of program memory. All program memory is internal. The PIC16C5X can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C5X has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C5X simple yet efficient. In addition, the learning curve is reduced significantly. The PIC16C5X device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file. The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register. The W register is an 8-bit working register used for ALU operations. It is not an addressable register. Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples. A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1 (for PIC16C54/56/58) and Table 3-2 (for PIC16C55/57). FIGURE 5-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD) FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME #### 6.2.2 SPECIAL FUNCTION REGISTERS The Special Function Registers are registers used by the CPU and peripheral functions to control the operation of the device (Table 6-1). The Special Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature. TABLE 6-1: SPECIAL FUNCTION REGISTER SUMMARY | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on
Power-on
Reset | Details
on Page | |--------------------|--------|--|--------------------------------------|-------------|-----------|----------|-----------|------------|----------|-------------------------------|--------------------| | N/A | TRIS | IS I/O Control Registers (TRISA, TRISB, TRISC) | | | | | | | | 1111 1111 | 35 | | N/A | OPTION | Contains | s control b | oits to con | figure Ti | mer0 and | Timer0/V | VDT pres | caler | 11 1111 | 30 | | 00h | INDF | Uses co | ntents of | FSR to ac | ddress da | ata memo | ry (not a | physical r | egister) | XXXX XXXX | 32 | | 01h | TMR0 | Timer0 N | Timer0 Module Register | | | | | | | XXXX XXXX | 38 | | 02h ⁽¹⁾ | PCL | Low ord | er 8 bits c | of PC | | | | | | 1111 1111 | 31 | | 03h | STATUS | PA2 | PA1 | PA0 | TO | PD | Z | DC | С | 0001 1xxx | 29 | | 04h | FSR | Indirect | Indirect data memory address pointer | | | | | | | 1xxx xxxx ⁽³⁾ | 32 | | 05h | PORTA | _ | _ | _ | _ | RA3 | RA2 | RA1 | RA0 | XXXX | 35 | | 06h | PORTB | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | XXXX XXXX | 35 | | 07h ⁽²⁾ | PORTC | RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 | xxxx xxxx | 35 | Legend: x = unknown, u = unchanged, -= unimplemented, read as '0' (if applicable). Shaded cells = unimplemented or unused **Note** 1: The upper byte of the Program Counter is not directly accessible. See Section 6.5 for an explanation of how to access these bits. ^{2:} File address 07h is a General Purpose Register on the PIC16C54, PIC16CR54, PIC16C56, PIC16CR56, PIC16C58 and PIC16CR58. ^{3:} These values are valid for PIC16C57/CR57/C58/CR58. For the PIC16C54/CR54/C55/C56/CR56, the value on RESET is 111x xxxx and for MCLR and WDT Reset, the value is 111u uuuu. # PIC16C5X NOTES: | ADDWF | | | | | | | | | |------------------|---|---------------|----------------------|-----|----|--|--|--| | Syntax: | [lab | el] | ADDWF | f,d | | | | | | Operands: | $0 \le f \le 31$
$d \in [0,1]$ | | | | | | | | | Operation: | (W) | + (f) | \rightarrow (dest) | | | | | | | Status Affected: | C, D |)C, Z | <u> </u> | | | | | | | Encoding: | 00 | 01 | 11df | ff | ff | | | | | Description: | Add the contents of the W register 'f'. If 'd' is 0 the resis stored in the W register. If 'd' '1' the result is stored back in register 'f'. | | | | | | | | | Words: | 1 | 1 | | | | | | | | Cycles: | 1 | | | | | | | | | Example: | ADD | ADDWF TEMP_RE | | | 0 | | | | | Before Instr | uctio | n | | | | | | | | W | | = | 0x17 | | | | | | | TEMP_I | | = | 0xC2 | | | | | | | After Instruc | ction | | | | | | | | | W | | = | 0xD9 | | | | | | | TEMP_I | REG | = | 0xC2 | | | | | | | ANDWF | AND W with f | | | | | | | | |---|---|--|--|--|--|--|--|--| | Syntax: | [label] ANDWF f,d | | | | | | | | | Operands: | $0 \le f \le 31$
$d \in [0,1]$ | | | | | | | | | Operation: | (W) .AND. (f) \rightarrow (dest) | | | | | | | | | Status Affected: | Z | | | | | | | | | Encoding: | 0001 01df ffff | | | | | | | | | Description: | The contents of the W register are AND'ed with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is '1' the result is stored back in register 'f'. | | | | | | | | | Words: | 1 | | | | | | | | | Cycles: | 1 | | | | | | | | | Example: | ANDWF TEMP_REG, 1 | | | | | | | | | Example: ANDWF TEMP_REG, 1 Before Instruction W = 0x17 TEMP_REG = 0xC2 After Instruction W = 0x17 TEMP_REG = 0x02 | | | | | | | | | | ANDLW | AND literal with W | | | | | | | | |---|---|--|--|--|--|--|--|--| | Syntax: | [label] ANDLW k | | | | | | | | | Operands: | $0 \leq k \leq 255$ | | | | | | | | | Operation: | (W).AND. (k) \rightarrow (W) | | | | | | | | | Status Affected: | Z | | | | | | | | | Encoding: | 1110 kkkk kkkk | | | | | | | | | Description: | The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register. | | | | | | | | | Words: | 1 | | | | | | | | | Cycles: | 1 | | | | | | | | | Example: | ANDLW H'5F' | | | | | | | | | Before Instruction W = 0xA3 After Instruction W = 0x03 | | | | | | | | | | BCF | Bit Clea | r f | | | | | | | |--------------------------|-------------------------------------|---------|------|--|--|--|--|--| | Syntax: | [label] | BCF f,t |) | | | | | | | Operands: | $0 \le f \le 31$ $0 \le b \le 7$ | | | | | | | | | Operation: | $0 \rightarrow (f < b >)$ | | | | | | | | | Status Affected: None | | | | | | | | | | Encoding: | 0100 | bbbf | ffff | | | | | | | Description: | Bit 'b' in register 'f' is cleared. | | | | | | | | | Words: | 1 | | | | | | | | | Cycles: | 1 | | | | | | | | | Example: | BCF FLAG_REG, 7 | | | | | | | | | Before Instruction | | | | | | | | | | FLAG_R
After Instruct | 0xC7 | | | | | | | | | FLAG_R | | 0x47 | | | | | | | # PIC16C5X | BSF | Bit Set f | | | | | | | | |--|---|---------|-------|--|--|--|--|--| | Syntax: | [label] BSF f,b | | | | | | | | | Operands: | $\begin{aligned} 0 &\leq f \leq 31 \\ 0 &\leq b \leq 7 \end{aligned}$ | | | | | | | | | Operation: | $1 \rightarrow (f < b >)$ | | | | | | | | | Status Affected: | ected: None | | | | | | | | | Encoding: | 0101 bbbf ffff | | | | | | | | | Description: Bit 'b' in register 'f' is set. | | | | | | | | | | Words: | 1 | | | | | | | | | Cycles: | 1 | | | | | | | | | Example: | BSF | FLAG_RE | EG, 7 | | | | | | | Before Instruction FLAG_REG = 0x0A After Instruction | | | | | | | | | | FLAG_F | REG = 0 | A8x(| | | | | | | | BTFSC | Bit Test f, Skip if Clear | | | | | | | | | |---------------------------------------|---|---|--|--|--|--|--|--|--| | Syntax: | [label] BTFSC f,b | | | | | | | | | | Operands: | $\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$ | | | | | | | | | | Operation: | skip if $(f < b >) = 0$ | | | | | | | | | | Status Affected: | None | | | | | | | | | | Encoding: | 0110 bbbf ffff | | | | | | | | | | Description: | If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2-cycle instruction. | | | | | | | | | | Words: | 1 | | | | | | | | | | Cycles: | 1(2) | | | | | | | | | | Example: | HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • • | E | | | | | | | | | Before Instru
PC
After Instruct | = address (HERE) | | | | | | | | | | if FLAG
PC
if FLAG
PC | = address (TRUE); | | | | | | | | | | BTFSS | Bit Test f, Skip if Set | | | | | | | | | |--|--|---|--|--|--|--|--|--|--| | Syntax: | [label] BTFSS f,b | | | | | | | | | | Operands: | $0 \le f \le 31$
$0 \le b < 7$ | | | | | | | | | | Operation: | skip if $(f < b >) = 1$ | | | | | | | | | | Status Affected: | None | | | | | | | | | | Encoding: | 0111 bbbf ffff | | | | | | | | | | Description: | If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2-cycle instruction. | | | | | | | | | | Words: | 1 | | | | | | | | | | Cycles: | 1(2) | | | | | | | | | | Example: | HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • • | : | | | | | | | | | Before Instru
PC
After Instruc
If FLAG-
PC
if FLAG-
PC | = address (HERE) ction <1> = 0, | | | | | | | | | # 12.4 DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial) PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial) | DC CH | ARACTE | RISTICS | Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial | | | | | | |--------------|--------|---|--|-------------------------------|--|----------------------------|--|--| | Param
No. | Symbol | Characteristic/Device | Min | Тур† | Max | Units | Conditions | | | D030 | VIL | Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) | Vss
Vss
Vss
Vss
Vss | _
_
_
_ | 0.2 VDD
0.15 VDD
0.15 VDD
0.15 VDD
0.3 VDD | V
V
V
V | Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP | | | D040 | VIH | Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) | 0.45 VDD
2.0
0.36 VDD
0.85 VDD
0.85 VDD
0.85 VDD
0.7 VDD | | VDD
VDD
VDD
VDD
VDD
VDD | V
V
V
V
V | For all VDD ⁽⁴⁾ 4.0V < VDD ≤ 5.5V ⁽⁴⁾ VDD > 5.5V PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP | | | D050 | VHYS | Hysteresis of Schmitt
Trigger inputs | 0.15 VDD* | _ | _ | V | | | | D060 | IIL | Input Leakage Current ^(1,2) I/O ports MCLR MCLR TOCKI OSC1 | -1
-5
-3
-3 | 0.5
—
0.5
0.5
0.5 | +1

+5
+3
+3 | μΑ
μΑ
μΑ
μΑ
μΑ | For Vdd \leq 5.5V:
VSS \leq VPIN \leq VDD,
pin at hi-impedance
VPIN = VSS + 0.25V
VPIN = VDD
VSS \leq VPIN \leq VDD
VSS \leq VPIN \leq VDD,
PIC16C5X-XT, 10, HS, LP | | | D080 | Vol | Output Low Voltage I/O ports OSC2/CLKOUT | _ | _ | 0.6
0.6 | V
V | IOL = 8.7 mA, VDD = 4.5V
IOL = 1.6 mA, VDD = 4.5V,
PIC16C5X-RC | | | D090 | Voн | Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT | VDD - 0.7
VDD - 0.7 | _
_ | | V
V | IOH = -5.4 mA, VDD = 4.5V
IOH = -1.0 mA, VDD = 4.5V,
PIC16C5X-RC | | ^{*} These parameters are characterized but not tested. - 2: Negative current is defined as coming out of the pin. - **3:** For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode. - 4: The user may use the better of the two specifications. [†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. **Note 1:** The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage. # 12.5 DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended) | | | | Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for extended | | | | | | |--------------|--------|---|--|------------------------------|---|----------------------------|---|--| | Param
No. | Symbol | Characteristic | Min | Typ† | Max | Units | Conditions | | | D030 | VIL | Input Low Voltage I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) | Vss
Vss
Vss
Vss
Vss | 11111 | 0.15 VDD
0.15 VDD
0.15 VDD
0.15 VDD
0.3 VDD | V
V
V
V | Pin at hi-impedance PIC16C5X-RC only ⁽³⁾ PIC16C5X-XT, 10, HS, LP | | | D040 | VHYS | Input High Voltage I/O ports I/O ports I/O ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) Hysteresis of Schmitt | 0.45 VDD
2.0
0.36 VDD
0.85 VDD
0.85 VDD
0.85 VDD
0.7 VDD | | VDD VDD VDD VDD VDD VDD VDD VDD | V
V
V
V
V | For all $VDD^{(4)}$
$4.0V < VDD \le 5.5V^{(4)}$
VDD > 5.5 V
PIC16C5X-RC only ⁽³⁾
PIC16C5X-XT, 10, HS, LP | | | D060 | lι∟ | Trigger inputs Input Leakage Current (1,2) I/O ports MCLR MCLR TOCKI OSC1 | -1
-5
-3
-3 | 0.5

0.5
0.5
0.5 | +1

+5
+3
+3 | μΑ
μΑ
μΑ
μΑ
μΑ | For VDD \leq 5.5 V:
VSS \leq VPIN \leq VDD,
pin at hi-impedance
VPIN = VSS + 0.25V
VPIN = VDD
VSS \leq VPIN \leq VDD
VSS \leq VPIN \leq VDD,
PIC16C5X-XT, 10, HS, LP | | | D080 | Vol | Output Low Voltage I/O ports OSC2/CLKOUT | | _ | 0.6
0.6 | V
V | IOL = 8.7 mA, VDD = 4.5V
IOL = 1.6 mA, VDD = 4.5V,
PIC16C5X-RC | | | D090 | Voн | Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT | VDD - 0.7
VDD - 0.7 | _ | | V
V | IOH = -5.4 mA, VDD = 4.5V
IOH = -1.0 mA, VDD = 4.5V,
PIC16C5X-RC | | ^{*} These parameters are characterized but not tested. [†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage. ^{2:} Negative current is defined as coming out of the pin. **^{3:}** For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode. **^{4:}** The user may use the better of the two specifications. FIGURE 14-19: PORTA, B AND C IOH vs. Voh, VDD = 3 V FIGURE 14-20: PORTA, B AND C IOH vs. Voh, VDD = 5 V # 15.6 Timing Diagrams and Specifications **AC Characteristics** ## FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16C54A TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A Standard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial -20°C \leq TA \leq +85°C for industrial - PIC16LV54A-02I -40° C \leq TA \leq +125 $^{\circ}$ C for extended **Param Symbol** Characteristic Min Max Units Conditions Typ† No. External CLKIN Fre-Fosc DC MHz XT osc mode 4.0 quency⁽¹⁾ XT osc mode (PIC16LV54A) DC 2.0 MHz MHz HS osc mode (04) DC 4.0 DC 10 MHz HS osc mode (10) DC 20 MHz HS osc mode (20) DC 200 kHz LP osc mode Oscillator Frequency⁽¹⁾ DC MHz RC osc mode 4.0 DC 2.0 MHz RC osc mode (PIC16LV54A) 0.1 4.0 MHz XT osc mode MHz XT osc mode (PIC16LV54A) 2.0 0.1 4.0 MHz HS osc mode (04) 4.0 4.0 10 MHz HS osc mode (10) 20 MHz HS osc mode (20) 4.0 200 LP osc mode 5.0 kHz **Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. 2: Instruction cycle period (TcY) equals four times the input oscillator time base period. ^{*} These parameters are characterized but not tested. [†] Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested. Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean - 3s (-40°C to 125°C) 10000 1000 IDD (μA) 100 10 0.1 10 Freq (MHz) **FIGURE 16-10:** TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 20 PF, 25°C) FIGURE 18-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C) FIGURE 18-7: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (-40°C, 85°C) 10 TYPICAL IDD vs FREQ(RC MODE @ 100 pF/25C) Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean - 3s (-40°C to 125°C) 10000 1000 IDD(μA) 5.5\ 100 3.5 TYPICAL IDD vs. FREQUENCY (WDT DISABLED, RC MODE @ 100 PF, 25°C) FIGURE 18-12: FREQ(MHz) 10 0.1 FIGURE 18-16: PORTA, B AND C IOH vs. Voh, VDD = 5 V FIGURE 18-17: PORTA, B AND C IOL vs. Vol, VDD = 3 V # 19.4 Timing Diagrams and Specifications FIGURE 19-3: EXTERNAL CLOCK TIMING - PIC16C5X-40 TABLE 19-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X-40 | AC Chara | AC Characteristics Standard Operating Conditions (unless otherwise specified Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial | | | | | 1) | | |--------------|--|---|------|--------|------|-------|---------------| | Param
No. | Symbol | Characteristic | | Typ† | Max | Units | Conditions | | | Fosc | External CLKIN Frequency ⁽¹⁾ | 20 | _ | 40 | MHz | HS osc mode | | 1 | Tosc | External CLKIN Period ⁽¹⁾ | 25 | _ | _ | ns | HS osc mode | | 2 | Tcy | Instruction Cycle Time ⁽²⁾ | _ | 4/Fosc | _ | _ | | | 3 | TosL, TosH | Clock in (OSC1) Low or High
Time | 6.0* | _ | _ | ns | HS oscillator | | 4 | TosR, TosF | Clock in (OSC1) Rise or Fall
Time | _ | _ | 6.5* | ns | HS oscillator | ^{*} These parameters are characterized but not tested. - Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices. - 2: Instruction cycle period (TcY) equals four times the input oscillator time base period. [†] Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. ## 20.0 DEVICE CHARACTERIZATION - PIC16LC54C 40MHz The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. "Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean – 3σ) respectively, where σ is a standard deviation, over the whole temperature range. # 28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP) **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | INCHES* | | | MILLIMETERS | | | |----------------------------|--------|-------|---------|-------|-------|-------------|-------|--| | Dimension | Limits | MIN | NOM | MAX | MIN | NOM | MAX | | | Number of Pins | n | | 28 | | | 28 | | | | Pitch | р | | .100 | | | 2.54 | | | | Top to Seating Plane | Α | .195 | .210 | .225 | 4.95 | 5.33 | 5.72 | | | Ceramic Package Height | A2 | .155 | .160 | .165 | 3.94 | 4.06 | 4.19 | | | Standoff | A1 | .015 | .038 | .060 | 0.38 | 0.95 | 1.52 | | | Shoulder to Shoulder Width | Е | .595 | .600 | .625 | 15.11 | 15.24 | 15.88 | | | Ceramic Pkg. Width | E1 | .514 | .520 | .526 | 13.06 | 13.21 | 13.36 | | | Overall Length | D | 1.430 | 1.460 | 1.490 | 36.32 | 37.08 | 37.85 | | | Tip to Seating Plane | L | .125 | .138 | .150 | 3.18 | 3.49 | 3.81 | | | Lead Thickness | С | .008 | .010 | .012 | 0.20 | 0.25 | 0.30 | | | Upper Lead Width | B1 | .050 | .058 | .065 | 1.27 | 1.46 | 1.65 | | | Lower Lead Width | В | .016 | .020 | .023 | 0.41 | 0.51 | 0.58 | | | Overall Row Spacing § | eВ | .610 | .660 | .710 | 15.49 | 16.76 | 18.03 | | | Window Diameter | W | .270 | .280 | .290 | 6.86 | 7.11 | 7.37 | | ^{*} Controlling Parameter § Significant Characteristic JEDEC Equivalent: MO-103 Drawing No. C04-013 # PIC16C5X | M | Q | |--|---| | MCLR Reset | Q cycles | | Register values on20 | Quick-Turnaround-Production (QTP) Devices | | Memory Map | _ | | PIC16C54/CR54/C5525 | R | | PIC16C56/CR5625 | RC Oscillator17 | | PIC16C57/CR57/C58/CR5825 | Read Only Memory (ROM) Devices7 | | Memory Organization25 | Read-Modify-Write36 | | MOVF56 | Register File Map | | MOVLW56 | PIC16C54, PIC16CR54, PIC16C55, PIC16C56, | | MOVWF57 | PIC16CR56 | | MPLAB C17 and MPLAB C18 C Compilers61 | PIC16C57/CR5727 | | MPLAB ICD In-Circuit Debugger63 | PIC16C58/CR5827 | | MPLAB ICE High Performance Universal In-Circuit Emulator | Registers | | with MPLAB IDE62 | Special Function | | MPLAB Integrated Development Environment Software 61 | Value on reset | | MPLINK Object Linker/MPLIB Object Librarian62 | Reset | | N | Reset on Brown-Out | | | RETLW 57 | | NOP57 | RLF58 | | 0 | RRF 58 | | | S | | One-Time-Programmable (OTP) Devices7 | | | OPTION57 | Serialized Quick-Turnaround-Production (SQTP) Devices 7 | | OPTION Register30 | SLEEP | | Value on reset20 | Software Simulator (MPLAB SIM) | | Oscillator Configurations | Special Features of the CPU | | Oscillator Types | Special Function Registers | | HS15 | Stack | | LP15 | STATUS Register | | RC | Value on reset | | XT15 | SUBWF | | P | SWAPF59 | | | Т | | PA0 bit 29 | • | | PA1 bit | Timer0 | | Paging | Switching Prescaler Assignment | | Value on reset | Timer0 (TMR0) Module | | PD bit | TMR0 with External Clock | | Peripheral Features | Timing Diagrams and Specifications | | PICDEM 1 Low Cost PIC MCU Demonstration Board 63 | PIC16C54/55/56/57 | | PICDEM 17 Demonstration Board | PIC16C54A | | PICDEM 2 Low Cost PIC16CXX Demonstration Board 63 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | PICDEM 3 Low Cost PIC16CXXX Demonstration Board 64 | C58B/CR58B | | PICSTART Plus Entry Level Development Programmer 63 | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | Pin Configurations | C58B/CR58B-40 | | Pinout Description - PIC16C54, PIC16CR54, PIC16C56, | PIC16CR54A | | PIC16CR56, PIC16C58, PIC16CR5811 | Timing Parameter Symbology and Load Conditions | | Pinout Description - PIC16C55, PIC16C57, PIC16CR57 12 | PIC16C54/55/56/57 | | PORTA35 | PIC16C54A110 | | Value on reset | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | PORTB | C58B/CR58B | | Value on reset | PIC16C54C/CR54C/C55A/C56A/CR56A/C57C/CR57C/ | | PORTC | C58B/CR58B-40 | | Value on reset | PIC16CR54A85 | | Power-Down Mode | TO bit | | Power-On Reset (POR) | TRIS | | Register values on | TRIS Registers | | Prescaler | Value on reset | | PRO MATE II Universal Device Programmer | | | Program Counter31 | U | | Program Memory Organization25 | UV Erasable Devices7 | | Program Verification/Code Protection47 | | #### Note the following details of the code protection feature on Microchip devices: - · Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949 #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 1997-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 9781620769355 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # Worldwide Sales and Service #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 **China - Beijing** Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 M-1----- **Malaysia - Kuala Lumpur** Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 ## EUROPE Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 11/29/12