

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	73 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c58b-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

PIC16C5Xs can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- 1. LP: Low Power Crystal
- 2. XT: Crystal/Resonator
- 3. HS: High Speed Crystal/Resonator
- 4. RC: Resistor/Capacitor

Note: Not all oscillator selections available for all parts. See Section 9.1.

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16C5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

FIGURE 4-2:

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS -PIC16C5X, PIC16CR5X

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range C2
XT	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR -PIC16C5X. PIC16CR5X

Osc Type	Crystal Freq	Cap.Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
XT	100 kHz	15-30 pF	200-300 pF
	200 kHz	15-30 pF	100-200 pF
	455 kHz	15-30 pF	15-100 pF
	1 MHz	15-30 pF	15-30 pF
	2 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15 pF	15 pF
	20 MHz	15 pF	15 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

Note: If you change from this device to another device, please verify oscillator characteristics in your application.

7.6 I/O Programming Considerations

7.6.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Example 7-1 shows the effect of two sequential read-modify-write instructions (e.g., BCF, BSF, etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 7-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT Settings
; PORTB<7:4> Inputs
; PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
;not connected to other circuitry
;

;				PORT	latch	PORT	pins
;							
	BCF	PORTB,	7	;01pp	pppp	11pp	pppp
	BCF	PORTB,	6	;10pp	pppp	11pp	pppp
	MOVLW	H'3F'		;			
	TRIS	PORTB		;10pp	pppp	10pp	pppp
;							

;Note that the user may have expected the pin ;values to be 00pp pppp. The 2nd BCF caused ;RB7 to be latched as the pin value (High).

7.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 7-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 7-2: SUCCESSIVE I/O OPERATION

9.3 Power-Down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (Wake-up from SLEEP).

9.3.1 SLEEP

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the TO bit (STATUS<4>) is set, the PD bit (STATUS<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low, or hi-impedance).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR/VPP pin low.

For lowest current consumption while powered down, the T0CKI input should be at VDD or Vss and the $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level ($\overline{\text{MCLR}} = \text{VIH}$).

9.3.2 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. An external RESET input on MCLR/VPP pin.
- 2. A Watchdog Timer Time-out Reset (if WDT was enabled).

Both of these events cause a device RESET. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits can be used to determine the cause of device RESET. The $\overline{\text{TO}}$ bit is cleared if a WDT timeout occurred (and caused wake-up). The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked.

The WDT is cleared when the device wakes from SLEEP, regardless of the wake-up source.

9.4 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

9.5 ID Locations

Four memory locations are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify.

Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '1's.

Note: Microchip will assign a unique pattern number for QTP and SQTP requests and for ROM devices. This pattern number will be unique and traceable to the submitted code.

CALL	Subroutine Call		
Syntax:	[<i>label</i>] CALL k		
Operands:	$0 \leq k \leq 255$		
Operation:	(PC) + 1 \rightarrow TOS; k \rightarrow PC<7:0>; (STATUS<6:5>) \rightarrow PC<10:9>; 0 \rightarrow PC<8>		
Status Affected:	None		
Encoding:	1001 kkkk kkkk		
Description.	Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two- cycle instruction.		
Words:	1		
Cycles:	2		
Example:	HERE CALL THERE		
Before Instru PC = After Instruct PC = TOS =	ction address (HERE) ion address (THERE) address (HERE + 1)		

CLRE	Clear f
	Cical I

Syntax:	[label] CLRF f			
Operands:	$0 \leq f \leq 31$			
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	0000	011f	ffff	
Description:	The cont cleared a	ents of re and the Z	gister 'f' a bit is set.	are
Words:	1			
Cycles:	1			
Example:	CLRF	FLAG_RE	G	
Before Instru FLAG_RI After Instructi	ction EG = Ion	0x5A		
FLAG_RI	EG =	0x00		
Z	=	1		

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
VV = After Instruct W = Z =	= 0x5A tion = 0x00 = 1
CLRWDT	Clear Watchdog Timer
CLRWDT Syntax:	Clear Watchdog Timer
CLRWDT Syntax: Operands:	Clear Watchdog Timer [<i>label</i>] CLRWDT None
CLRWDT Syntax: Operands: Operation:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
CLRWDT Syntax: Operands: Operation: Status Affected:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding:	Clear Watchdog Timer[label]CLRWDTNone $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ \overline{TO}, PD 0000 0000
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description:	Clear Watchdog Timer[label] CLRWDTNone $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0100 The CLRWDT instruction resets theWDT. It also resets the prescaler, ifthe prescaler is assigned to theWDT and not Timer0. Status bitsTO and PD are set.
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set. 1
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Clear Watchdog Timer [label] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set. 1 1
CLRWDT Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example:	Clear Watchdog Timer [<i>label</i>] CLRWDT None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow TO;$ $1 \rightarrow PD$ TO, PD 0000 0000 0100 The CLRWDT instruction resets the WDT. It also resets the prescaler, if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set. 1 1 CLRWDT

After Instruction		
WDT counter	=	0x00
WDT prescaler	=	0
TO	=	1
PD	=	1

XORLW	Exclusive OR literal with W			
Syntax:	[<i>label</i>]	XORLW	k	
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .XOR. $k \rightarrow$ (W)			
Status Affected:	Z			
Encoding:	1111	kkkk	kkkk	
Description:	The cont XOR'ed The resu ter.	ents of th with the e It is place	e W regis ight bit lit d in the V	ster are eral 'k'. V regis-
Words:	1			
Cycles:	1			
Example:	XORLW	0xAF		
Before Instru W = After Instruct W =	ction 0xB5 ion 0x1A			

XORWF	Exclusive OR W with f			
Syntax:	[label]	XORWF	f,d	
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$			
Operation:	(W) .XOR. (f) \rightarrow (dest)			
Status Affected:	Z			
Encoding:	0001	10df	ffff	
Description:	W regis the resi ter. If 'd back in	ter with reg ult is stored ' is 1 the re register 'f'.	gister 'f'. If 'd' is 0 I in the W regis- sult is stored	
Words:	1			
Cycles:	1			
Example	XORWF	REG,1		
Before Instru	ction			
REG	= (0xAF		
W	= (0xB5		
After Instruct	ion			
REG	=	0x1A		
W	= (0xB5		

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

11.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

13.6 Timing Diagrams and Specifications

FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A

TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A

AC Chara	cteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \ \ for \ commercial \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ \ for \ industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \ for \ extended \end{array}$								
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions			
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode			
			DC	—	4.0	MHz	HS osc mode (04)			
			DC	—	10	MHz	HS osc mode (10)			
			DC	—	20	MHz	HS osc mode (20)			
			DC	—	200	kHz	LP osc mode			
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC osc mode			
			0.1	—	4.0	MHz	XT OSC mode			
			4.0	—	4.0	MHz	HS osc mode (04)			
			4.0	—	10	MHz	HS osc mode (10)			
				—	20	MHz	HS osc mode (20)			
			5.0		200	kHz	LP osc mode			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

AC Chara	octeristics											
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions					
1	Tosc	External CLKIN Period ⁽¹⁾	250		—	ns	XT OSC mode					
			250	—		ns	HS OSC mode (04)					
			100	—		ns	HS osc mode (10)					
			50	—	—	ns	HS osc mode (20)					
			5.0	_	—	μs	LP OSC mode					
		Oscillator Period ⁽¹⁾	250	—		ns	RC OSC mode					
			250	—	10,000	ns	XT OSC mode					
			250	—	250	ns	HS OSC mode (04)					
			100	—	250	ns	HS osc mode (10)					
			50	—	250	ns	HS OSC mode (20)					
			5.0		200	μS	LP OSC mode					
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—						
3	TosL, TosH	Clock in (OSC1) Low or High	50*	—	—	ns	XT oscillator					
		Time	20*	—	—	ns	HS oscillator					
			2.0*		—	μS	LP oscillator					
4	TosR, TosF	Clock in (OSC1) Rise or Fall	—	—	25*	ns	XT oscillator					
		Time		—	25*	ns	HS oscillator					
			—	—	50*	ns	LP oscillator					

TABLE 13-1:	EXTERNAL CLOCK TIMING REQUIREMENTS	- PIC16CR54A

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

when an external clock input is used, the "max" cycle time limit is "Du" (no clock) for all device

2: Instruction cycle period (TcY) equals four times the input oscillator time base period.

FIGURE 14-2: TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 20 PF Typical: statistical mean @ 25°C Maximum: mean + 3s (-40°C to 125°C) Minimum: mean – 3s (-40°C to 125°C) 5.5 R = 3.3K5.0 4.5 R = 5K 4.0 3.5 Fosc (MHz) 3.0 R = 10K 2.5 2.0 Measured on DIP Packages, $T = 25^{\circ}C$ 1.5 1.0 R = 100K 0.5 0.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)

FIGURE 14-3:

TYPICAL RC OSC FREQUENCY vs. VDD, CEXT = 100 PF

15.1 DC Characteristics: PIC16C54A-04, 10, 20 (Commercial) PIC16C54A-04I, 10I, 20I (Industrial) PIC16LC54A-04 (Commercial) PIC16LC54A-04I (Industrial)

PIC16LC PIC16LC (Comm	16LC54A-04 16LC54A-04I ommercial, Industrial)Standard Operating Conditions (unless otherwise spectrum) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commendation $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial)								
PIC16CS PIC16CS (Comm	54A-04, 10 54A-04I, 1 hercial, Ind), 20 0I, 20I (ustrial)	$\begin{array}{c} Standard Operating Conditions (unless otherwise specification of the conditions of the co$						
Param No.	Symbol	Characteristic/Device	Min Typ† Max Units Conditions						
	IPD	Power-down Current ⁽²⁾							
D006		PIC16LC5X	—	2.5	12	μΑ	VDD = 2.5V, WDT enabled, Commercial		
			—	0.25	4.0	μΑ	VDD = 2.5V, WDT disabled, Commercial		
			_	0.25	5.0	μΑ μΑ	VDD = 2.5V, WDT enabled, industrial $VDD = 2.5V$, WDT disabled, Industrial		
D006A		PIC16C5X	_	4.0	12	μΑ	VDD = 3.0V, WDT enabled, Commercial		
			—	0.25	4.0	μA	VDD = 3.0V, WDT disabled, Commercial		
			—	5.0	14	μΑ	VDD = 3.0V, WDT enabled, Industrial		
				0.3	5.0	μA	$v \Box U = 3.0v, v U T uisabled, industrial$		

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.

- a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
- b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

15.2 DC Characteristics: PIC16C54A-04E, 10E, 20E (Extended) PIC16LC54A-04E (Extended)

PIC16I	C54A-04F		Stand	, ard One	ratino	, Condi	tions (unless otherwise specified)				
(Exten	ded)	-	Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
PIC16C (Exten	54A-04E, ded)	10E, 20E	Standa Operat	Standard Operating Conditions (unless otherwise spectOperating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extermine							
Param No.	Symbol	Characteristic	Min	Тур†	Conditions						
	Vdd	Supply Voltage									
D001		PIC16LC54A	3.0 2.5		6.25 6.25	V V	XT and RC modes LP mode				
D001A		PIC16C54A	3.5 4.5		5.5 5.5	V V	RC and XT modes HS mode				
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	—	V	Device in SLEEP mode				
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	-	Vss	_	V	See Section 5.1 for details on Power-on Reset				
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*		—	V/ms	See Section 5.1 for details on Power-on Reset				
	IDD	Supply Current ⁽²⁾									
D010		PIC16LC54A	-	0.5	25	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes				
			-	11	27	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Commercial				
			—	11	35	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Industrial				
			—	11	37	μA	Fosc = 32 kHz, VDD = 2.5V, LP mode, Extended				
D010A		PIC16C54A	—	1.8	3.3	mA	Fosc = 4.0 MHz, VDD = 5.5V, RC ⁽³⁾ and XT modes				
			-	4.8	10	mA	Fosc = 10 MHz, VDD = 5.5V, HS mode				
			-	9.0	20	mA	Fosc = 20 MHz, VDD = 5.5V, HS mode				

Legend: Rows with standard voltage device data only are shaded for improved readability.

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

FIGURE 16-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)

17.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial, Industrial) PIC16LC54C/LC55A/LC56A/LC57C/LC58B-04 (Commercial, Industrial) PIC16CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial, Industrial) PIC16LCR54C/LCR56A/LCR57C/LCR58B-04 (Commercial, Industrial)

5X R5X ercial, Indu	ustrial)	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \end{array}$				
X 5X ercial, Indu	ustrial)	Stand Opera	$\begin{array}{ll} \mbox{tandard Operating Conditions (unless otherwise specified)} \\ \mbox{perating Temperature} & 0^\circ C \le TA \le +70^\circ C \mbox{ for commercial} \\ -40^\circ C \le TA \le +85^\circ C \mbox{ for industrial} \end{array}$			
Symbol	Characteristic/Device	Min	Тур†	Max	Units	Conditions
IDD	Supply Current ^(2,3)					
	PIC16LC5X		0.5	2.4	mA	Fosc = 4.0 MHz, VDD = 5.5V, XT and
			11	27	μA	RC modes
						FOSC = 32 kHz , VDD = 2.5V, LP mode,
			14	35	μA	Commercial Ease $= 22 \text{ kHz}$ Vpp $= 2.5 \text{ // LP mode}$
						Industrial
	PIC16C5X	_	1.8	2.4	mA	Fosc = 4 MHz, VDD = 5.5V, XT and RC
			2.6	3.6*	mA	modes
		—	4.5	16	mA	FOSC = 10 MHz, VDD = 3.0V, HS mode
			14	32	μA	FOSC = 20 MHz, VDD = 5.5 V, HS mode
			47	40		POSC = 32 kHz, VDD = 3.0 V, LP mode,
		_	17	40	μA	Commercial
						Industrial
	5X R5X ercial, Indu Symbol	5X R5X ercial, Industrial) X 5X ercial, Industrial) Symbol Characteristic/Device IDD Supply Current ^(2,3) PIC16LC5X PIC16C5X	SX Stand: Opera R5X Opera ercial, Industrial) Stand: Opera Symbol Characteristic/Device Min IDD Supply Current ^(2,3) — PIC16LC5X — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	SX R5X ercial, Industrial) Standard Ope Operating Tem Operating Tem Operating Tem Symbol Characteristic/Device Min Typ† IDD Supply Current ^(2,3) Min Typ† IDD Supply Current ^(2,3) 0.5 IDD PIC16LC5X — 0.5 IDD PIC16LC5X — 14 IDD 14 14 IDD 14 14	SX R5X ercial, Industrial) Standard Operating Operating Temperatu Operating Temperatu Symbol Characteristic/Device Min Typ† Max IDD Supply Current ^(2,3) 91C16LC5X 0.5 2.4 11 27 14 35 PIC16C5X 1.8 2.4 14 35 14 32 14 32 14 32 14 32 17 40	5X Standard Operating Condit Operating Temperature 6x Standard Operating Condit Operating Temperature 6x Standard Operating Condit Operating Temperature 5x Standard Operating Condit Operating Temperature 5x Standard Operating Condit Operating Temperature Symbol Characteristic/Device Min Typ† Max Units IDD Supply Current ^(2,3) PIC16LC5X — 0.5 2.4 mA IDD PIC16LC5X — 11 27 µA IDD PIC16C5X — 1.8 2.4 mA IDD PIC16C5X — 1.8 2.4 mA IDD IDD PIC16C5X — 1.8 2.4 mA IDD IDD <t< td=""></t<>

Legend: Rows with standard voltage device data only are shaded for improved readability.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Chara	cteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions			
2	Тсу	Instruction Cycle Time ⁽²⁾		4/Fosc						
3	TosL, TosH	Clock in (OSC1) Low or High	50*		_	ns	XT oscillator			
		Time	20*	—	_	ns	HS oscillator			
			2.0*	—	_	μS	LP oscillator			
4	4 TosR, TosF Clock in (OSC1) Rise or Fall		_		25*	ns	XT oscillator			
		Time	—	—	25*	ns	HS oscillator			
			—	_	50*	ns	LP oscillator			

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

FIGURE 17-9: TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X

TABLE 17-4: TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Chara	octeristics Operating temperating	ature 0°C ≤ -40°C ≤ -40°C ≤ -40°C ≤	Ta ≤ +7 Ta ≤ +8 Ta ≤ +1	0°C fo 5°C fo 25°C 1	r comm r indust for exte	nercial rial nded
Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
Tt0H	T0CKI High Pulse Width - No Prescaler	0.5 Tcy + 20*		_	ns	
	- With Prescaler	10*	—	—	ns	
TtOL	T0CKI Low Pulse Width - No Prescaler	0.5 Tcy + 20*	_	_	ns	
	- With Prescaler	10*	—	_	ns	
Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N		—	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)
	Symbol Tt0H Tt0L Tt0P	Symbol Characteristic Tt0H T0CKI High Pulse Width - No Prescaler - With Prescaler Tt0L T0CKI Low Pulse Width - No Prescaler - With Prescaler Tt0P T0CKI Period	SymbolCharacteristicMinTt0HT0CKI High Pulse Width - No Prescaler - With Prescaler $0.5 \text{ Tcy} + 20^*$ Tt0LT0CKI Low Pulse Width - No Prescaler - With Prescaler $0.5 \text{ Tcy} + 20^*$ Tt0LT0CKI Low Pulse Width - No Prescaler - With Prescaler $0.5 \text{ Tcy} + 20^*$ Tt0PT0CKI Period $0.5 \text{ Tcy} + 40^*$ Tt0PT0CKI Period $20 \text{ or } \frac{\text{Tcy} + 40^*}{\text{N}}$	SymbolCharacteristics $-40^{\circ}C \le TA \le +8$ $-40^{\circ}C \le TA \le +1$ SymbolCharacteristicMinTyptTt0HT0CKI High Pulse Width $- No Prescaler$ $0.5 TcY + 20^{*}$ $-$ $-$ Tt0LT0CKI Low Pulse Width $- No Prescaler$ $0.5 TcY + 20^{*}$ $-$ Tt0LT0CKI Low Pulse Width $- No Prescaler$ $0.5 TcY + 20^{*}$ $-$ Tt0PT0CKI Period $0.5 TcY + 20^{*}$ $-$ Tt0PT0CKI Period $20 \text{ or } TcY + 40^{*}$ $-$	-40°C \leq TA \leq +85°C fc -40°C \leq TA \leq +125°C fSymbolCharacteristicMinTyp†MaxTt0HT0CKI High Pulse Width - No Prescaler0.5 Tcy + 20*With Prescaler10*Tt0LT0CKI Low Pulse Width - No Prescaler0.5 Tcy + 20*Tt0LT0CKI Low Pulse Width - No Prescaler0.5 Tcy + 20*Tt0PT0CKI Period20 or Tcy + 40*Tt0PT0CKI Period20 or Tcy + 40*NN	$-40^{\circ}C \le TA \le +85^{\circ}C$ for indust $-40^{\circ}C \le TA \le +125^{\circ}C$ for exterSymbolCharacteristicMinTyp†MaxUnitsTt0HTOCKI High Pulse Width - No Prescaler - With Prescaler $0.5 TCY + 20^{*}$ nsTt0LTOCKI Low Pulse Width - No Prescaler - With Prescaler $0.5 TCY + 20^{*}$ nsTt0LTOCKI Low Pulse Width - No Prescaler - With Prescaler $0.5 TCY + 20^{*}$ nsTt0PTOCKI Period $20 \text{ or } TCY + 40^{*}$ nsTt0PTOCKI Period $20 \text{ or } TCY + 40^{*}$ ns

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-10: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT (IN XT, HS AND LP MODES) vs. VDD

19.1 DC Characteristics:PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

PIC16C (Com	;54C/C55 mercial)	A/C56A/C57C/C58B-40	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5		5.5	V	HS mode from 20 - 40 MHz
D002	Vdr	RAM Data Retention Voltage ⁽²⁾	—	1.5*	—	V	Device in SLEEP mode
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	—	Vss	-	V	See Section 5.1 for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power- on Reset	0.05*	_		V/ms	See Section 5.1 for details on Power-on Reset
D010	IDD	Supply Current ⁽³⁾	-	5.2 6.8	12.3 16	mA mA	FOSC = 40 MHz, VDD = 4.5V, HS mode FOSC = 40 MHz, VDD = 5.5V, HS mode
D020	IPD	Power-down Current ⁽³⁾		1.8 9.8	7.0 27*	μΑ μΑ	VDD = 5.5V, WDT disabled, Commercial VDD = 5.5V, WDT enabled, Commercial

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

- **Note 1:** Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected, HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 19.1.
 - **2:** This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - **3:** The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.

28-Lead Ceramic Dual In-line with Window (JW) - 600 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.195	.210	.225	4.95	5.33	5.72
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.038	.060	0.38	0.95	1.52
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Ceramic Pkg. Width	E1	.514	.520	.526	13.06	13.21	13.36
Overall Length	D	1.430	1.460	1.490	36.32	37.08	37.85
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.020	.023	0.41	0.51	0.58
Overall Row Spacing §	eB	.610	.660	.710	15.49	16.76	18.03
Window Diameter	W	.270	.280	.290	6.86	7.11	7.37

Sontolling Parameter
 Significant Characteristic
 JEDEC Equivalent: MO-103
 Drawing No. C04-013