

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	3KB (2K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	73 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c58b-20-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C5X

8-Bit EPROM/ROM-Based CMOS Microcontrollers

1.0 GENERAL DESCRIPTION

The PIC16C5X from Microchip Technology is a family of low cost, high performance, 8-bit fully static, EPROM/ROM-based CMOS microcontrollers. It employs a RISC architecture with only 33 single word/ single cycle instructions. All instructions are single cycle except for program branches which take two cycles. The PIC16C5X delivers performance in an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC16C5X products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external RESET circuitry. There are four oscillator configurations to choose from, including the power saving LP (Low Power) oscillator and cost saving RC oscillator. Power saving SLEEP mode, Watchdog Timer and Code Protection features improve system cost, power and reliability.

The UV erasable CERDIP packaged versions are ideal for code development, while the cost effective One Time Programmable (OTP) versions are suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

The PIC16C5X products are supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC16C5X series fits perfectly in applications ranging from high speed automotive and appliance motor control to low power remote transmitters/receivers, pointing devices and telecom processors. The EPROM technology makes customizing application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low cost, low power, high performance ease of use and I/O flexibility make the PIC16C5X series very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, co-processor applications).

PIC16C5X

FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

10.0 INSTRUCTION SET SUMMARY

Each PIC16C5X instruction is a 12-bit word divided into an OPCODE, which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C5X instruction set summary in Table 10-2 groups the instructions into byte-oriented, bit-oriented, and literal and control operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 10-1:	OPCODE FIELD
	DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x1F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1)
	The assembler will generate code with $x = 0$.
	It is the recommended form of use for com-
	patibility with all Microchip software tools.
d	Destination select;
	d = 0 (store result in W)
	d = 1 (store result in file register 'f')
	Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
WDT	Watchdog Timer Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination, either the W register or the
	specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
E	In the set of
italics	User defined term (font is courier)

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2 μ s.

Figure 10-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations							
<u>11 6</u>	5	4 0					
OPCODE	d	f (FILE #)					
d = 0 for destination d = 1 for destination f = 5-bit file registe	d = 0 for destination W d = 1 for destination f f = 5-bit file register address						
Bit-oriented file register	r ope	erations					
11 8	7	5 4 0					
OPCODE	b (Bl	IT #) f (FILE #)					
f = 5-bit file register addressLiteral and control operations (except GOTO)							
<u>11</u>	8	7 0					
OPCODE		k (literal)					
k = 8-bit immediate value							
Literal and control operations - GOTO instruction							
11	9	8 0					
OPCODE k (literal)							
k = 9-bit immediate value							

^{© 1997-2013} Microchip Technology Inc.

BSF	Bit Set f					
Syntax:	[label]	BSF f,b				
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$1 \rightarrow (f < b)$	>)				
Status Affected:	None					
Encoding:	0101 bbbf ffff					
Description:	Bit 'b' in register 'f' is set.					
Words:	1					
Cycles:	1					
Example:	BSF	FLAG_RE	G, 7			
Before Instruction FLAG_REG = 0x0A After Instruction						
FLAG_F	$FLAG_REG = 0x8A$					

BTFSC	Bit Test	f, Skip if	Clear			
Syntax:	[label]	BTFSC	f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 3 \\ 0 \leq b \leq 7 \end{array}$	1				
Operation:	skip if (f) = 0				
Status Affected:	None					
Encoding:	0110	bbbf	ffff			
Description:	If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2-cycle instruction					
Words:	1					
Cycles:	1(2)					
Example:	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •					
Before Instru	ction					
PC After Instruction if FLAG<1> PC if FLAG<1> PC		address 0, address (1, address (1	(HERE) TRUE); FALSE)			

BTFSS	Bit Test f, Skip if Set					
Syntax:	[label] BTFSS f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$					
Operation:	skip if (f) = 1					
Status Affected:	None					
Encoding:	0111 bbbf ffff					
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2-cycle instruction.					
Words:	1					
Cycles:	1(2)					
Example:	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •					
Before Instr	ruction					
PC	= address (HERE)					
After Instruc	ction					
	< i > = 0, = address (FALSE)					
if FLAG<	<1> = 1.					
PC	= address (TRUE)					

MOVWF	Move W to f				
Syntax:	[label]	MOVWF	f		
Operands:	$0 \le f \le 31$				
Operation:	$(W) \rightarrow (f)$)			
Status Affected:	None				
Encoding:	0000	001f	ffff		
Description:	Move data from the W register to register 'f'.				
Words:	1				
Cycles:	1				
Example:	MOVWF	TEMP_RE	lG		
Before Instru TEMP_F W After Instructi TEMP_F W	ction REG = on REG = =	0xFF 0x4F 0x4F 0x4F 0x4F			

NOP	No Operation				
Syntax:	[label]	NOP			
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	0000	0000	0000]	
Description:	No opera	ation.		-	
Words:	1				
Cycles:	1				
Example:	NOP				

OPTION	Load OPTION Register					
Syntax:	[label]	OPTIO	N			
Operands:	None					
Operation:	$(W) \rightarrow C$	PTION				
Status Affected:	None					
Encoding:	0000	0000	0010			
Description:	The content of the W register is loaded into the OPTION register.					
Words:	1					
Cycles:	1					
Example	OPTION					
Before Instruction						
W	= 0x	07				
After Instruction						
OPTION	= 0x	07				

RETLW	Return w	ith Liter	al in W			
Syntax:	[label]	RETLW	k			
Operands:	$0 \leq k \leq 25$	5				
Operation:	$k \rightarrow (W);$ TOS $\rightarrow P$	С				
Status Affected:	None					
Encoding:	1000	kkkk	kkkk			
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.					
Words:	1					
Cycles:	2					
Example:	CALL TAN	BLE ;W ;tal ;val ;W r ;val	contair ole offs lue. now has lue.	ns set table		
TABLE	ADDWF PC RETLW k: RETLW k:	C ;W = 1 ;Beg 2 ; n ; En	= offset gin tabl nd of ta	le le able		
Before Instru	ction					
W	= 0x0)7				
After Instruct	ion .	(1.5				
VV	= valu	ue of k8				

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

11.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.7 Timing Diagrams and Specifications

FIGURE 12-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

Standard Operating Conditions (unless otherwise specified)							
AC Characteristics		Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
		-40)°C ≤]	TA ≤ + 85°	C for ind	ustrial	
		-40)°C ≤ 1	「A ≤ +125	°C for ex	tended	
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode
			DC	—	10	MHz	10 MHz mode
			DC	—	20	MHz	HS OSC mode (Comm/Ind)
			DC	—	16	MHz	HS OSC mode (Ext)
			DC	—	40	kHz	LP OSC mode
		Oscillator Frequency ⁽¹⁾	DC	—	4.0	MHz	RC OSC mode
			0.1	—	4.0	MHz	XT OSC mode
			4.0	—	10	MHz	10 MHz mode
			4.0	—	20	MHz	HS OSC mode (Comm/Ind)
			4.0	—	16	MHz	HS OSC mode (Ext)
			DC	_	40	kHz	LP osc mode

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

AC Characteristics		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions			
1	Tosc	External CLKIN Period ⁽¹⁾	250			ns	XT OSC mode			
			100		—	ns	10 MHz mode			
			50		—	ns	HS OSC mode (Comm/Ind)			
			62.5		—	ns	HS OSC mode (Ext)			
			25		—	μS	LP OSC mode			
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC OSC mode			
			250		10,000	ns	XT OSC mode			
			100		250	ns	10 MHz mode			
			50		250	ns	HS OSC mode (Comm/Ind)			
			62.5		250	ns	HS OSC mode (Ext)			
			25		—	μS	LP OSC mode			
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc	—	—				
3	TosL,	Clock in (OSC1) Low or High	85*	—	—	ns	XT oscillator			
	TosH	Time	20*	—	—	ns	HS oscillator			
			2.0*		—	μS	LP oscillator			
4	TosR,	Clock in (OSC1) Rise or Fall	—	_	25*	ns	XT oscillator			
	TosF	Time	—	—	25*	ns	HS oscillator			
			—	—	50*	ns	LP oscillator			

TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

© 1997-2013 Microchip Technology Inc.

13.6 Timing Diagrams and Specifications

FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A

TABLE 13-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A

AC Characteristics		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \ \ for \ commercial \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ \ for \ industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ \ for \ extended \\ \end{array} $								
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions			
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT OSC mode			
			DC	—	4.0	MHz	HS osc mode (04)			
			DC	—	10	MHz	HS osc mode (10)			
			DC	—	20	MHz	HS osc mode (20)			
			DC	—	200	kHz	LP osc mode			
		Oscillator Frequency ⁽¹⁾	DC		4.0	MHz	RC osc mode			
			0.1	—	4.0	MHz	XT OSC mode			
			4.0	—	4.0	MHz	HS osc mode (04)			
			4.0	—	10	MHz	HS osc mode (10)			
			4.0	—	20	MHz	HS osc mode (20)			
			5.0		200	kHz	LP osc mode			

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

PIC16C5X

15.4 DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial) PIC16C54A-04E, 10E, 20E, PIC16LC54A-04E (Extended)

DC CH	ARACTE	RISTICS	$\begin{array}{l} \textbf{Standard Operating Conditions (unless otherwise specified)} \\ \textbf{Operating Temperature} & 0^{\circ}\text{C} \leq \text{Ta} \leq +70^{\circ}\text{C} \text{ for commercial} \\ -40^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C} \text{ for industrial} \\ -20^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C} \text{ for industrial-PIC16LV54A-02I} \\ -40^{\circ}\text{C} \leq \text{Ta} \leq +125^{\circ}\text{C} \text{ for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions	
D030	VIL	Input Low Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	Vss Vss Vss Vss Vss		0.2 VDD 0.15 VDD 0.15 VDD 0.15 VDD 0.3 VDD	V V V V	Pin at hi-impedance RC mode only ⁽³⁾ XT, HS and LP modes	
D040	VIH	Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1	0.2 VDD + 1 2.0 0.85 VDD 0.85 VDD 0.85 VDD 0.85 VDD 0.7 VDD		VDD VDD VDD VDD VDD VDD	V V V V V V	For all V _{DD} ⁽⁴⁾ 4.0V < V _{DD} ≤ 5.5V ⁽⁴⁾ RC mode only ⁽³⁾ XT, HS and LP modes	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 VDD*	_	_	V		
D060	IIL	Input Leakage Current ^(1,2) I/O ports MCLR MCLR TOCKI OSC1	-1.0 -5.0 -3.0 -3.0	0.5 — 0.5 0.5 0.5	+1.0 +5.0 +3.0 +3.0 —	μΑ μΑ μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD VSS \leq VPIN \leq VDD VSS \leq VPIN \leq VDD, XT, HS and LP modes	
D080	VOL	Output Low Voltage I/O ports OSC2/CLKOUT	_		0.6 0.6	V V	IOL = 8.7 mA, VDD = 4.5V IOL = 1.6 mA, VDD = 4.5V, RC mode only	
	VOH	Output High Voltage ⁽²⁾ I/O ports OSC2/CLKOUT	Vdd - 0.7 Vdd - 0.7			V V	IOH = -5.4 mA, VDD = 4.5V IOH = -1.0 mA, VDD = 4.5V, RC mode only	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be driven with external clock in RC mode.

*

FIGURE 15-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C54A

TABLE 15-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54A

AC Chara	cteristics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-20^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial - PIC16LV54A-021 $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended							
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	100* 1			ns μs	VDD = 5.0V VDD = 5.0V (PIC16LV54A only)		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)		
34	Tioz	I/O Hi-impedance from MCLR Low			100* 1μs	ns —	(PIC16LV54A only)		

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-4: TIMER0 CLOCK REQUIREMENTS - PIC16C54A

	Standard Operating Conditions (unless otherwise specified)										
		Operating Temperat	ture $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial								
	AC Chara	acteristics	-40°C ≤	$TA \le +8$	85°C fo	or indus	trial				
			–20°C ≤	$TA \leq +8$	85°C fc	or indus	trial - PIC16LV54A-02I				
			-40°C ≤	TA ≤ +1	25°C	for exte	nded				
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions				
40	Tt0H	T0CKI High Pulse Width									
		- No Prescaler	0.5 TCY + 20*	—	—	ns					
		- With Prescaler	10*			ns					
41	Tt0L	T0CKI Low Pulse Width									
		- No Prescaler	0.5 TCY + 20*	—	—	ns					
		- With Prescaler	10*			ns					
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> *	_	_	ns	Whichever is greater.				
			N				N = Prescale Value				
							(1, 2, 4,, 256)				

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended) PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)

PIC16C54C/C55A/C56A/C57C/C58B-04E, 20E PIC16CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)				Standard Operating Conditions (unless otherwise specifier Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions			
D001	Vdd	Supply Voltage	3.0 4.5		5.5 5.5	V V	RC, XT, LP, and HS mode from 0 - 10 MHz from 10 - 20 MHz			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure Power-on Reset	—	Vss	—	V	See Section 5.1 for details on Power-on Reset			
D004	SVDD	VDD rise rate to ensure Power-on Reset	0.05*	_	—	V/ms	See Section 5.1 for details on Power-on Reset			
D010	IDD	Supply Current ⁽²⁾ XT and RC ⁽³⁾ modes HS mode	_	1.8 9.0	3.3 20	mA mA	Fosc = 4.0 MHz, Vdd = 5.5V Fosc = 20 MHz, Vdd = 5.5V			
D020	IPD	Power-down Current ⁽²⁾		0.3 10 12 4.8 18 26	17 50* 60* 31* 68* 90*	μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, WDT disabled VDD = 4.5V, WDT disabled VDD = 5.5V, WDT disabled VDD = 3.0V, WDT enabled VDD = 4.5V, WDT enabled VDD = 5.5V, WDT enabled			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode. The power-down current in SLEEP mode does not depend on the oscillator type.
 - **3:** Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in kΩ.

TABLE 17-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X

AC Characteristics		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions			
2	Тсу	Instruction Cycle Time ⁽²⁾	—	4/Fosc						
3	TosL, TosH	Clock in (OSC1) Low or High	50*		_	ns	XT oscillator			
		Time	20*	—	_	ns	HS oscillator			
			2.0*	—	_	μS	LP oscillator			
4	TosR, TosF	Clock in (OSC1) Rise or Fall	-		25*	ns	XT oscillator			
		Time	—	—	25*	ns	HS oscillator			
			—	—	50*	ns	LP oscillator			

- * These parameters are characterized but not tested.
- † Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

19.2 DC Characteristics: PIC16C54C/C55A/C56A/C57C/C58B-40 (Commercial)⁽¹⁾

DC CH	ARACTER	RISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Param No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions	
D030	VIL	Input Low Voltage I/O Ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	Vss Vss Vss Vss		0.8 0.15 Vdd 0.15 Vdd 0.2 Vdd	V V V V	4.5V <vdd <math="">\leq 5.5V HS, 20 MHz \leq Fosc \leq 40 MHz</vdd>	
D040	Viн	Input High Voltage I/O ports MCLR (Schmitt Trigger) T0CKI (Schmitt Trigger) OSC1	2.0 0.85 Vdd 0.85 Vdd 0.85 Vdd		Vdd Vdd Vdd Vdd	V V V V	4.5V < VDD ≤ 5.5V HS, 20 MHz ≤ Fosc ≤ 40 MHz	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15 Vdd*	—	—	V		
D060	ΙιL	Input Leakage Current ^(2,3) I/O ports MCLR MCLR	-1.0 -5.0 —	0.5 — 0.5	+1.0 +5.0 +3.0	μΑ μΑ μΑ	For VDD \leq 5.5V: VSS \leq VPIN \leq VDD, pin at hi-impedance VPIN = VSS +0.25V VPIN = VDD	
		T0CKI OSC1	-3.0 -3.0	0.5 0.5	+3.0	μA μA	$\begin{array}{l} Vss \leq VPIN \leq VDD \\ Vss \leq VPIN \leq VDD, \textbf{HS} \end{array}$	
D080	Vol	Output Low Voltage I/O ports	_	_	0.6	V	IOL = 8.7 mA, VDD = 4.5V	
D090	Vон	Output High Voltage ⁽³⁾ I/O ports	Vdd - 0.7	_	_	V	Іон = -5.4 mA, Vdd = 4.5V	

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: Device operation between 20 MHz to 40 MHz requires the following: VDD between 4.5V to 5.5V, OSC1 pin externally driven, OSC2 pin not connected and HS oscillator mode and commercial temperatures. For operation between DC and 20 MHz, See Section 17.3.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

3: Negative current is defined as coming out of the pin.

NOTES:

FIGURE 20-9: IOL vs. VOL, VDD = 5 V

Μ

MCLR Reset	
Register values on2	20
Memory Map	
PIC16C54/CR54/C55	25
PIC16C56/CR56	25
PIC16C57/CR57/C58/CR582	25
Memory Organization	25
MOVF	56
MOVLW	56
MOVWF	57
MPLAB C17 and MPLAB C18 C Compilers	31
MPLAB ICD In-Circuit Debugger	33
MPLAB ICE High Performance Universal In-Circuit Emulat	or
with MPLAB IDE	32
MPLAB Integrated Development Environment Software	31
MPLINK Object Linker/MPLIB Object Librarian	32

Ν

NOP	

0

One Time Dreasemmehle (OTD) Devices	7
One-Time-Programmable (OTP) Devices	
OPTION	57
OPTION Register	
Value on reset	
Oscillator Configurations	
Oscillator Types	
HS	15
LP	
RC	
ХТ	

Ρ

PA0 bit	29
PA1 bit	29
Paging	31
PC	31
Value on reset2	20
PD bit	29
Peripheral Features	. 1
PICDEM 1 Low Cost PIC MCU Demonstration Board6	33
PICDEM 17 Demonstration Board6	64
PICDEM 2 Low Cost PIC16CXX Demonstration Board 6	33
PICDEM 3 Low Cost PIC16CXXX Demonstration Board 6	64
PICSTART Plus Entry Level Development Programmer 6	33
Pin Configurations	. 2
Pinout Description - PIC16C54, PIC16CR54, PIC16C59	6,
PIC16CR56, PIC16C58, PIC16CR58 1	11
Pinout Description - PIC16C55, PIC16C57, PIC16CR57 1	12
PORTA	35
Value on reset2	20
PORTB	35
Value on reset2	20
PORTC	35
Value on reset2	20
Power-Down Mode4	17
Power-On Reset (POR)	21
Register values on2	20
Prescaler4	10
PRO MATE II Universal Device Programmer6	33
Program Counter	31
Program Memory Organization	25
Program Verification/Code Protection4	17

Q

0 avalate (12
Q cycles
Quick-Turnaround-Production (QTP) Devices
R
RC Oscillator17
Read Only Memory (ROM) Devices7
Read-Modify-Write
Register File Map
PIC16C54, PIC16CR54, PIC16C55, PIC16C56,
PIC16CR56
PIC16C57/CR57
PIC16C58/CR5827
Registers
Special Function
Value on reset
Reset
Reset on Brown-Out
RETLW
RLF
RRF

S

evices 7
43, 47, 58
62
43
32
9, 29
20
59
59

Т