

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	768B (512 x 12)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	25 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6.25V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc54at-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C5X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C5X uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle except for program branches.

The PIC16C54/CR54 and PIC16C55 address 512 x 12 of program memory, the PIC16C56/CR56 address 1K x 12 of program memory, and the PIC16C57/CR57 and PIC16C58/CR58 address 2K x 12 of program memory. All program memory is internal.

The PIC16C5X can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory. The PIC16C5X has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C5X simple yet efficient. In addition, the learning curve is reduced significantly. The PIC16C5X device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1 (for PIC16C54/56/58) and Table 3-2 (for PIC16C55/57).

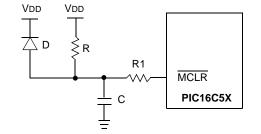
5.1 Power-On Reset (POR)

The PIC16C5X family incorporates on-chip Power-On Reset (POR) circuitry which provides an internal chip RESET for most power-up situations. To use this feature, the user merely ties the MCLR/VPP pin to VDD. A simplified block diagram of the on-chip Power-On Reset circuit is shown in Figure 5-1.

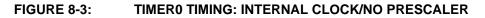
The Power-On Reset circuit and the Device Reset Timer (Section 5.2) circuit are closely related. On power-up, the RESET latch is set and the DRT is <u>RESET</u>. The DRT timer begins counting once it detects MCLR to be high. After the time-out period, which is typically 18 ms, it will RESET the reset latch and thus end the on-chip RESET signal.

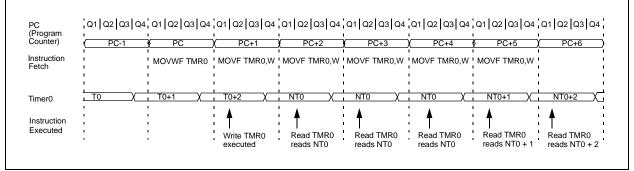
A power-up example where MCLR is not tied to VDD is shown in Figure 5-3. VDD is allowed to rise and stabilize before bringing MCLR high. The chip will actually come out of reset TDRT msec after MCLR goes high.

In Figure 5-4, the on-chip Power-On Reset feature is being used (MCLR and VDD are tied together). The VDD is stable before the start-up timer times out and there is no problem in getting a proper RESET. However, Figure 5-5 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses a high on the MCLR/VPP pin, and when the MCLR/VPP pin (and VDD) actually reach their full value, is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip is, therefore, not guaranteed to function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (Figure 5-2).

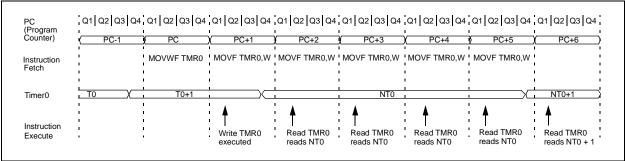

Note: When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For more information on PIC16C5X POR, see *Power-Up Considerations* - AN522 in the <u>Embedded Control Handbook</u>.


The POR circuit does not produce an internal RESET when VDD declines.


FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)



- External Power-On Reset circuit is required only if VDD power-up is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
- R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device electrical specification.
- R1 = 100Ω to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR} pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

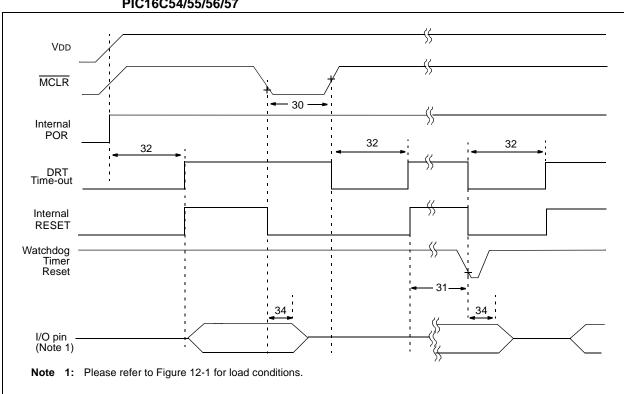
FIGURE 8-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0 -	Fimer0 - 8-bit real-time clock/counter							xxxx xxxx	uuuu uuuu
N/A	OPTION	_		TOCS	TOSE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells not used by Timer0.

MOVWF	NF Move W to f						
Syntax:	[<i>label</i>] MOVWF f						
Operands:	$0 \leq f \leq 31$						
Operation:	$(W) \rightarrow (f)$						
Status Affected:	None						
Encoding:	0000 001f ffff						
Description:	Move data from the W register to						
	register 'f'.						
Words:	1						
Cycles:	1						
Example:	MOVWF TEMP_REG						
W After Instruct	REG = 0xFF $= 0x4F$						


NOP	No Operation						
Syntax:	[label]	NOP					
Operands:	None						
Operation:	No operation						
Status Affected:	None						
Encoding:	0000	0000	0000				
Description:	No opera	ation.					
Words:	1						
Cycles:	1						
Example:	NOP						

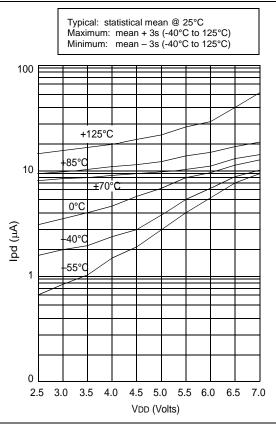
OPTION	Load Ol		egister	
Syntax:	[label]	OPTIO	N	
Operands:	None			
Operation:	$(W) \rightarrow C$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:		tent of the	0	
Words:	1			
Cycles:	1			
Example	OPTION			
Before Instru	ction			
W	•	07		
After Instructi				
OPTION	= 0x	07		

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None
Encoding:	1000 kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE ;W contains ;table offset ;value. • ;W now has table • ;value.
TABLE	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>
Before Instru	
W After Instruct	= 0x07
After Instruct W	ion = value of k8

SUBWF	Subt	ract W	from f
Syntax:	[label	JSL	JBWF f,d
Operands:	$0 \le f$	≤ 31	
•	d ∈ [0	D,1]	
Operation:	(f) – (W) \rightarrow	(dest)
Status Affected:	C, DO	C, Z	
Encoding:	000	- 1	Odf ffff
Description:			s complement method) ter from register 'f'. If 'd'
	is 0 tł regist	ne resu er. If 'o	It is stored in the W I' is 1 the result is in register 'f'.
Words:	1		
Cycles:	1		
Example 1:	SUBW	FF	REG1, 1
Before Instru	ction		
REG1	=	3	
W	=	2	
С	=	?	
After Instruct	ion		
REG1	=	1	
W C	=	2 1	, recult is positive
Example 2:	=	I	; result is positive
Before Instru	ction		
REG1	=	2	
W	=	2	
C	=	?	
After Instruct	ion		
REG1	=	0	
W	=	2	
С	=	1	; result is zero
Example 3:			
Before Ins	tructio		
REG1	=	1	
W	=	2	
C	=	?	
After Instruct		0.VEE	
REG1 W	=	0xFF 2	
C	_	2	; result is negative
Ũ	-	U	, isourio nogativo

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$
Status Affected:	None
Encoding:	0011 10df ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.
Words:	1
Cycles:	1
Example	SWAPF REG1, 0
REG1 After Instruct REG1 W	= 0xA5 ion = 0xA5 = 0x5A
TRIS	Load TRIS Register
Syntax:	[<i>label</i>] TRIS f
Operands:	f = 5, 6 or 7
Operation:	(W) \rightarrow TRIS register f
Status Affected:	None
Encoding:	0000 0000 0fff
Description:	TRIS register 'f' ($f = 5, 6, or 7$) is loaded with the contents of the W register.
Words:	1
Cycles:	1
Example	TRIS PORTB
Before Instru W After Instructi TRISB	= 0xA5 on

FIGURE 12-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -PIC16C54/55/56/57


TABLE 12-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57

AC Chara	cteristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (u}\\ \mbox{Operating Temperature} & 0^{\circ}C \leq \\ & -40^{\circ}C \leq \\ & -40^{\circ}C \leq \end{array}$	TA ≤ +7 TA ≤ +8	0°C for 5°C for	comme industria	rcial al	
Param No.	Symbol	Characteristic Min Typ† Max Units Conditions					
30	TmcL	MCLR Pulse Width (low)	100*	—	—	ns	VDD = 5.0V
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	100*	ns	

* These parameters are characterized but not tested.

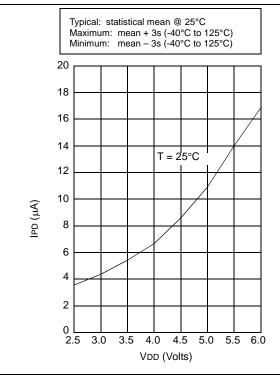

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-6: MAXIMUM IPD vs. VDD, WATCHDOG DISABLED

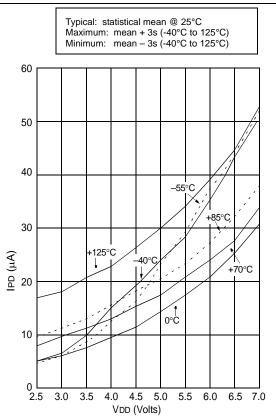
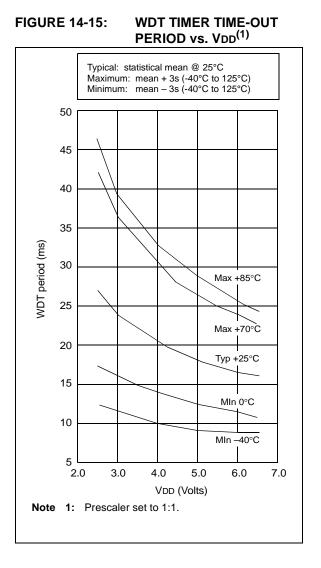
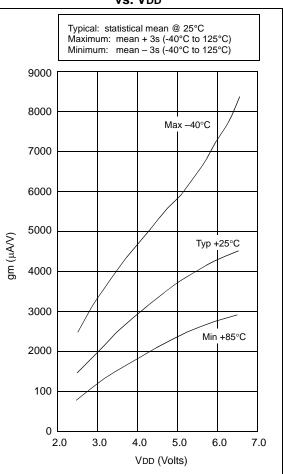
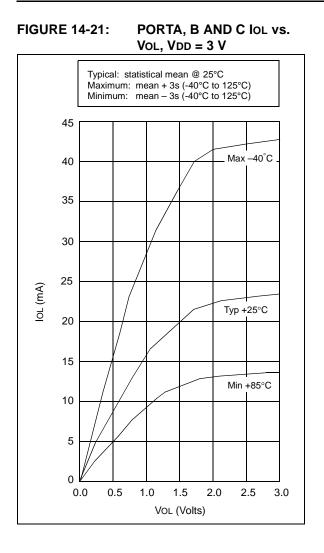


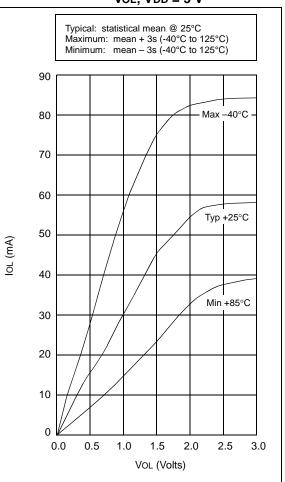
FIGURE 14-7: T


TYPICAL IPD vs. VDD, WATCHDOG ENABLED


FIGURE 14-8: MAXIMUM IPD vs. VDD, WATCHDOG ENABLED



IPD, with WDT enabled, has two components: The leakage current, which increases with higher temperature, and the operating current of the WDT logic, which increases with lower temperature. At -40° C, the latter dominates explaining the apparently anomalous behavior.



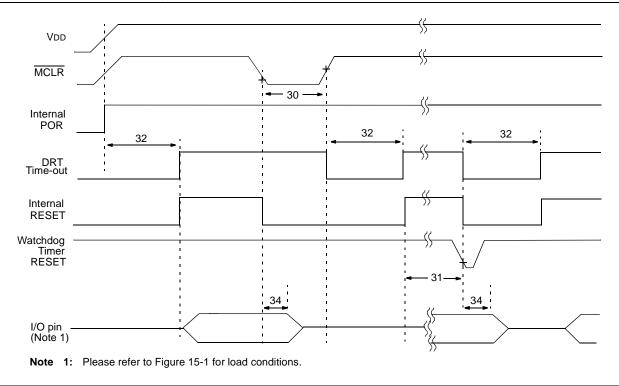

FIGURE 14-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD

FIGURE 14-22: PORTA, B AND C IOL vs. VoL, VDD = 5 V

FIGURE 15-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C54A

TABLE 15-3: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54A

		Standard Operating Condition	ns (unle	ess othe	erwise	specifie	ed)
		Operating Temperature 0	$0^{\circ}C \leq TA$	√≤ + 70°	C for co	mmercia	al
AC Chara	cteristics	-40	$0^{\circ}C \leq TA$	√≤ + 85°	C for ind	dustrial	
		-20	$0^{\circ}C \leq TA$	∖ ≤ + 85°	C for ind	dustrial -	- PIC16LV54A-02I
		-40	$0^{\circ}C \leq TA$	∖ ≤ + 125	°C for e	xtended	ł
Param							
No.	Symbol	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100*	_	_	ns	VDD = 5.0V
			1	—	—	μS	VDD = 5.0V (PIC16LV54A only)
31	Twdt	Watchdog Timer Time-out	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
		Period (No Prescaler)					
32	Tdrt	Device Reset Timer Period	9.0*	18*	30*	ms	VDD = 5.0V (Comm)
34	Tioz	I/O Hi-impedance from MCLR	_	_	100*	ns	
		Low	—		1μs	—	(PIC16LV54A only)

These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

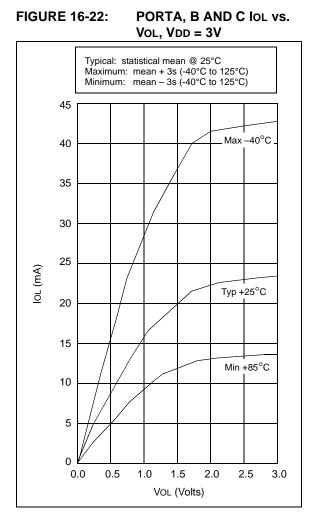
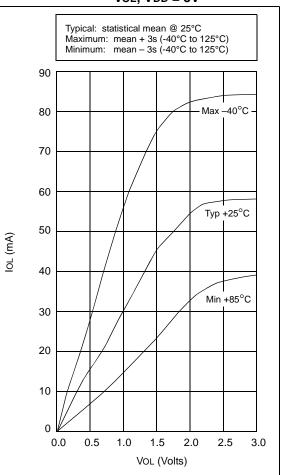
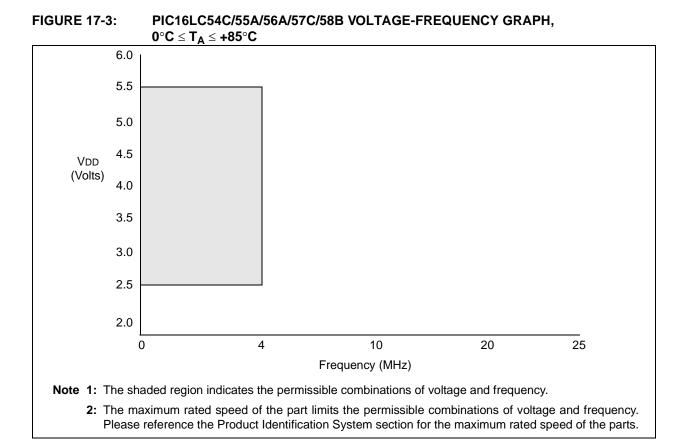



TABLE 16-2:INPUT CAPACITANCE FOR
PIC16C54A/C58A

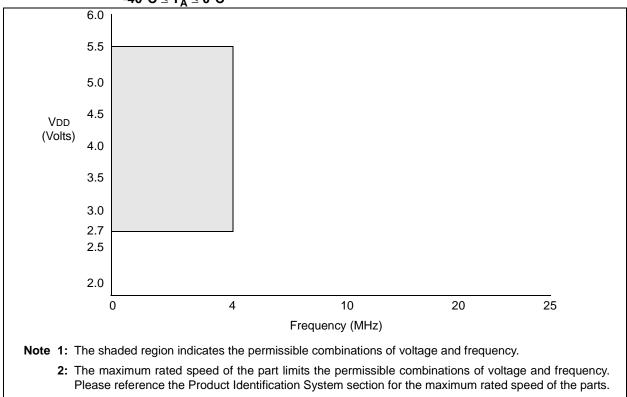
Pin	Typical Capacitance (pF)					
FIII	18L PDIP	18L SOIC				
RA port	5.0	4.3				
RB port	5.0	4.3				
MCLR	17.0	17.0				
OSC1	4.0	3.5				
OSC2/CLKOUT	4.3	3.5				
TOCKI	3.2	2.8				

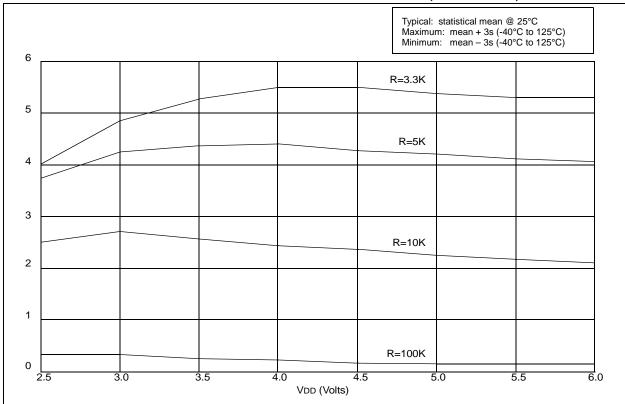
All capacitance values are typical at 25°C. A part-to-part variation of $\pm 25\%$ (three standard deviations) should be taken into account.

FIGURE 16-23: PORTA, B AND C IOL vs. VOL, VDD = 5V

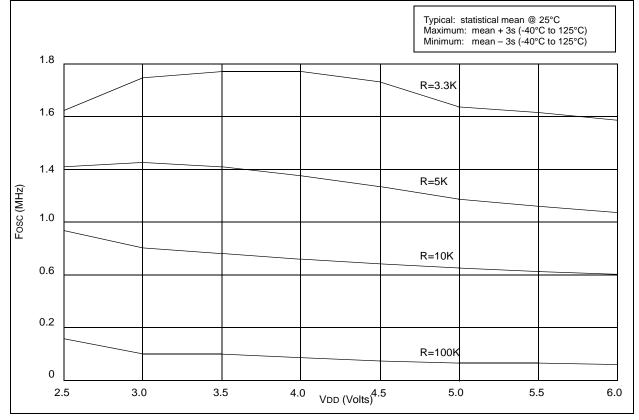


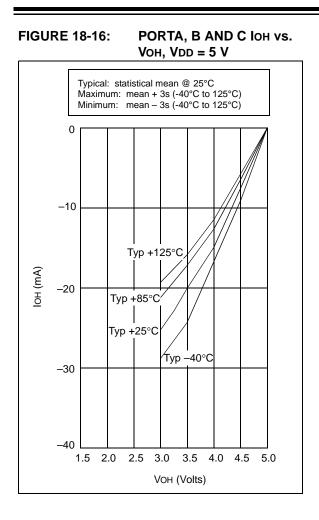
17.0 ELECTRICAL CHARACTERISTICS - PIC16LC54A


Absolute Maximum Ratings^(†)


Ambient temperature under bias	–55°C to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss	0 to +14V
Voltage on all other pins with respect to Vss0.0	6V to (VDD + 0.6V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of Vss pin	150 mA
Max. current into Vod pin	
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, liк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	20 mA
Max. output current sourced by a single I/O (Port A, B or C)	50 mA
Max. output current sunk by a single I/O (Port A, B or C)	50 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x let $x \in X$ }	OH} + $∑$ (VOL x IOL)

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.





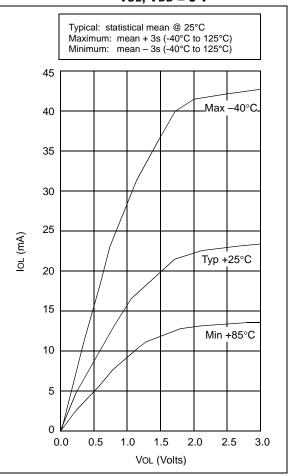
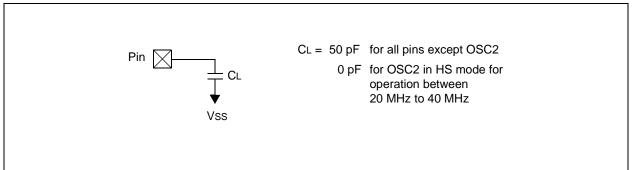

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF, 25°C

FIGURE 18-17: PORTA, B AND C IOL vs. Vol, VDD = 3 V


19.3 Timing Parameter Symbology and Load Conditions

The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

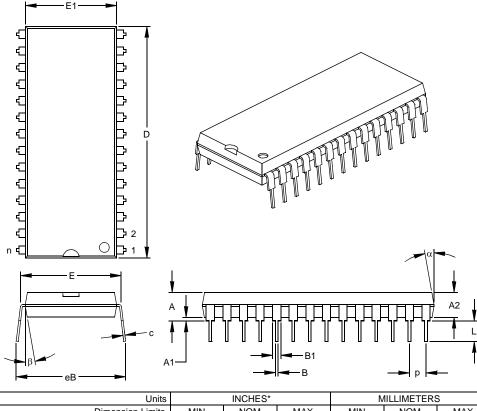

2. TppS					
Т					
F	Frequency	T Time			
Lowe	Lowercase letters (pp) and their meanings:				
рр					
2	to	mc MCLR			
ck	CLKOUT	osc oscillator			
су	cycle time	os OSC1			
drt	device reset timer	t0 T0CKI			
io	I/O port	wdt watchdog timer			
Uppercase letters and their meanings:					
S					
F	Fall	P Period			
н	High	R Rise			
Ι	Invalid (Hi-impedance)	V Valid			
L	Low	Z Hi-impedance			

FIGURE 19-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS -PIC16C54C/C55A/C56A/C57C/C58B-40

28-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimer	ision Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.505	.545	.560	12.83	13.84	14.22
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-011 Drawing No. C04-079

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent						
RE:	Reader Response							
Fror	n: Name							
	Company							
Telephone:								
	blication (optional):							
VVOL	uld you like a reply?YN							
Device: PIC16C5X Literature Number: DS30453E								
Que	estions:							
1. What are the best features of this document?								
2.	How does this document meet your hardware and software development needs?							
3.	Do you find the organization of this data sheet easy to follow? If not, why?							
4.	What additions to the data sheet do you think would enhance the structure and subject?							
_								
5.	What deletions from the data sheet could be made without affecting the overall usefulness?							
6	Is there any incorrect or misleading inform	nation (what and where)?						
0.	is there any mooneer of misleading mon							
	-							
7.	How would you improve this document?							
•								
8.	How would you improve our software, sys	stems, and silicon products?						